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Modeling time series

Thus far, our data have been (marginally) iid. Now consider a sequence of observations:

x1, x2, x3, . . . , xt

that are not independent.

Examples:
I Sequence of images
I Stock prices
I Recorded speech or music, English sentences
I Kinematic variables in a robot
I Sensor readings from an industrial process
I Amino acids, DNA, etc. . .

Goal: To build a joint probabilistic model of the data p(x1, . . . , xt ).

I Predict p(xt |x1, . . . , xt−1)

I Detect abnormal/changed behaviour (if p(xt , xt+1, . . . |x1, . . . , xt−1) small)
I Recover underlying/latent/hidden causes linking entire sequence
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Markov models

In general:

P(x1, . . . , xt ) = P(x1)P(x2|x1)P(x3|x1, x2) · · ·P(xt |x1, x2 . . . xt−1)

First-order Markov model:

P(x1, . . . , xt ) = P(x1)P(x2|x1) · · ·P(xt |xt−1)

x1 x2 x3 xT• • •

The term Markov refers to a conditional independence relationship. In this case, the Markov
property is that, given the present observation (xt ), the future (xt+1, . . .) is independent of the
past (x1, . . . , xt−1).

Second-order Markov model:

P(x1, . . . , xt ) = P(x1)P(x2|x1) · · ·P(xt−1|xt−3, xt−2)P(xt |xt−2, xt−1)

x1 x2 x3 xT• • •
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Causal structure and latent variables

y1 y2 y3 yT

x1 x2 x3 xT

• • •

Temporal dependence captured by latents, with observations conditionally independent.
Speech recognition:

I y - underlying phonemes or words
I x - acoustic waveform

Vision:
I y - object identities, poses, illumination
I x - image pixel values

Industrial Monitoring:
I y - current state of molten steel in caster
I x - temperature and pressure sensor readings



Latent-Chain models

y1 y2 y3 yT

x1 x2 x3 xT

• • •

Joint probability factorizes:

P(y1:T , x1:T ) = P(y1)P(x1|y1)
T∏

t=2

P(yt |yt−1)P(xt |yt )

where yt and xt are both real-valued vectors, and �1:T ≡ �1, . . . ,�T .

Two frequently-used tractable models:
I Linear-Gaussian state-space models
I Hidden Markov models



Linear-Gaussian state-space models (SSMs)

y1 y2 y3 yT

x1 x2 x3 xT

• • •

In a linear Gaussian SSM all conditional distributions are linear and Gaussian:

Output equation: xt = Cyt + vt

State dynamics equation: yt = Ayt−1 + wt

where vt and wt are uncorrelated zero-mean multivariate Gaussian noise vectors.

Also assume y1 is multivariate Gaussian. The joint distribution over all variables x1:T , y1:T is
(one big) multivariate Gaussian.

These models are also known as stochastic linear dynamical systems, Kalman filter models.



From factor analysis to state space models

x1 x2 xD

y1 y2 yK• • •

• • •

↔
yt

xt

Factor analysis: xi =
K∑

j=1

Λij yj + εi SSM output: xt,i =
K∑

j=1

Cij yt,j + vi .

Interpretation 1:
I Observations confined near low-dimensional subspace (as in FA/PCA).
I Successive observations are generated from correlated points in the latent space.
I However:

I FA requires K < D and Ψ diagonal; SSMs may have K ≥ D and arbitrary output
noise. Why?

I Thus ML estimates of subspace by FA and SSM may differ.



Linear dynamical systems

y1 y2 y3 yT

x1 x2 x3 xT

• • •

Interpretation 2:

I Markov chain with linear dynamics yt = Ayt . . .
I . . . perturbed by Gaussian innovations noise – may describe stochasticity, unknown

control, or model mismatch.
I Observations are a linear projection of the dynamical state, with additive iid Gaussian

noise.
I Note:

I Dynamical process (yt ) may be higher dimensional than the observations (xt ).
I Observations do not form a Markov chain – longer-scale dependence

reflects/reveals latent dynamics.



State Space Models with Control Inputs

y1 y2 y3 yT

x1 x2 x3 xT

u1 u2 u3 uT

• • •

State space models can be used to model the input–output behaviour of controlled systems.
The observed variables are divided into inputs (ut ) and outputs (xt ).

State dynamics equation: yt = Ayt−1 + But−1 + wt .

Output equation: xt = Cyt + Dut + vt .

Note that we can have many variants, e.g. yt = Ayt−1 + But + wt or even
yt = Ayt−1 + Bxt−1 + wt .



Hidden Markov models

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Discrete hidden states st ∈ {1 . . . ,K}; outputs xt can be discrete or continuous.
Joint probability factorizes:

P(s1:T , x1:T ) = P(s1)P(x1|s1)
T∏

t=2

P(st |st−1)P(xt |st )

Generative process:
I A first-order Markov chain generates the hidden state sequence (path):

initial state probs: πj = P(s1 = j) transition matrix: Φij = P(st+1 = j|st = i)

I A set of emission (output) distributions Aj (·) (one per state) converts state path to a
sequence of observations xt .

Aj (x) = P(xt = x|st = j) (for continuous xt )

Ajk = P(xt = k |st = j) (for discrete xt )



Hidden Markov models
Two interpretations:

I a Markov chain with stochastic measurements:

s1 s2 s3 sT

x1 x2 x3 xT

• • •

I or a mixture model with states coupled across time:

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Even though hidden state sequence is first-order Markov, the output process may not be
Markov of any order (for example: 1111121111311121111131 . . .).

Discrete state, discrete output models can approximate any continuous dynamics and
observation mapping even if nonlinear; however this is usually not practical.

HMMs are related to stochastic finite state machines/automata.



Input-output hidden Markov models

s1 s2 s3 sT

x1 x2 x3 xT

u1 u2 u3 uT

• • •

Hidden Markov models can also be used to model sequential input-output behaviour:

P(s1:T , x1:T |u1:T ) = P(s1|u1)P(x1|s1, u1)
T∏

t=2

P(st |st−1, ut−1)P(xt |st , ut )

IOHMMs can capture arbitrarily complex input-output relationships, however the number of
states required is often impractical.



HMMs and SSMs
(Linear Gaussian) State space models are the continuous state analogue of hidden Markov
models.

s1 s2 s3 sT

x1 x2 x3 xT

• • •

⇔
y1 y2 y3 yT

x1 x2 x3 xT

• • •

I A continuous vector state is a very powerful representation.
For an HMM to communicate N bits of information about the past, it needs 2N states!
But a real-valued state vector can store an arbitrary number of bits in principle.

s1 s2 s3 sT

x1 x2 x3 xT

• • •

I Linear-Gaussian output/dynamics are very weak.
The types of dynamics linear SSMs can capture is very limited. HMMs can in principle
represent arbitrary stochastic dynamics and output mappings.



Many Extensions

I Constrained HMMs

1 64

1

64

I Continuous state models with discrete outputs for time series and static data

I Hierarchical models
I Hybrid systems⇔ Mixed continuous & discrete states, switching state-space models



Richer state representations

At


Dt


Ct


Bt


At+1

Dt+1

Ct+1

Bt+1

...

At+2

Dt+2

Ct+2

Bt+2

Factorial HMMs Dynamic Bayesian Networks

I These are hidden Markov models with many state variables (i.e. a distributed
representation of the state).

I The state can capture many more bits of information about the sequence (linear in the
number of state variables).



Chain models: ML Learning with EM

y1 y2 y3 yT

x1 x2 x3 xT

• • •

y1 ∼ N (µ0,Q0)

yt |yt−1 ∼ N (Ayt−1,Q)

xt |yt ∼ N (Cyt ,R)

s1 s2 s3 sT

x1 x2 x3 xT

• • •

s1 ∼ π

st |st−1 ∼ Φst−1,·

xt |st ∼ Ast

The structure of learning and inference for both models is dictated by the factored structure.

P(x1, . . . , xT , y1, . . . , yT ) = P(y1)
T∏

t=2

P(yt |yt−1)
T∏

t=1

P(xt |yt )

Learning (M-step):

argmax 〈log P(x1, . . . , xT , y1, . . . , yT )〉q(y1,...,yT ) =

argmax

[
〈log P(y1)〉q(y1) +

T∑
t=2

〈log P(yt |yt−1)〉q(yt ,yt−1) +
T∑

t=1

〈log P(xt |yt )〉q(yt )

]
So the expectations needed (in E-step) are derived from singleton and pairwise marginals.
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Chain models: Inference

Three general inference problems:

Filtering: P(yt |x1, . . . , xt )

Smoothing: P(yt |x1, . . . , xT ) (also P(yt , yt−1|x1, . . . , xT ) for learning)

Prediction: P(yt |x1, . . . , xt−∆t )

Naively, these marginal posteriors seem to require very large integrals (or sums)

P(yt |x1, . . . , xt ) =

∫
· · ·
∫

dy1 . . . dyt−1 P(y1, . . . , yt |x1, . . . , xt )

but again the factored structure of the distributions will help us. The algorithms rely on a form
of temporal updating or message passing.
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Crawling the HMM state-lattice

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Consider an HMM, where we want to find P(st =k |x1 . . . xt ) =∑
k1,...,kt−1

P(s1=k1, . . . , st =k |x1 . . . xt ) =
∑

k1,...,kt−1

πk1 Ak1 (x1)Φk1,k2 Ak2 (x2) . . .Φkt−1,k Ak (xt )

Naı̈ve algorithm:
I start a “bug” at each of the K states at t = 1 holding value 1
I move each bug forward in time: make copies of each bug to each subsequent state and

multiply the value of each copy by transition prob. × output emission prob.
I repeat

until all bugs have reached time t

I sum up values on all K t−1 bugs that reach state st = k (one bug per state path)
Clever recursion:

I at every step, replace bugs at each node with a single bug carrying sum of values
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Probability updating: “Bayesian filtering”

y1 y2 y3 yT

x1 x2 x3 xT

• • •

P(yt |x1:t ) =

∫
P(yt , yt−1|x1:t ) dyt−1

=

∫
P(xt , yt , yt−1|x1:t−1)

P(xt |x1:t−1)
dyt−1

∝
∫

P(xt |yt , yt−1, x1:t−1)P(yt |yt−1, x1:t−1)P(yt−1|x1:t−1) dyt−1

=

Markov property

∫
P(xt |yt )P(yt |yt−1)P(yt−1|x1:t−1) dyt−1

This is a forward recursion based on Bayes rule.



Probability updating: “Bayesian filtering”

y1 y2 y3 yT

x1 x2 x3 xT

• • •

P(yt |x1:t ) =

∫
P(yt , yt−1|xt , x1:t−1) dyt−1

=

∫
P(xt , yt , yt−1|x1:t−1)

P(xt |x1:t−1)
dyt−1

∝
∫

P(xt |yt , yt−1, x1:t−1)P(yt |yt−1, x1:t−1)P(yt−1|x1:t−1) dyt−1

=

Markov property

∫
P(xt |yt )P(yt |yt−1)P(yt−1|x1:t−1) dyt−1

This is a forward recursion based on Bayes rule.



Probability updating: “Bayesian filtering”

y1 y2 y3 yT

x1 x2 x3 xT

• • •

P(yt |x1:t ) =

∫
P(yt , yt−1|xt , x1:t−1) dyt−1

=

∫
P(xt , yt , yt−1|x1:t−1)

P(xt |x1:t−1)
dyt−1

∝
∫

P(xt |yt , yt−1, x1:t−1)P(yt |yt−1, x1:t−1)P(yt−1|x1:t−1) dyt−1

=

Markov property

∫
P(xt |yt )P(yt |yt−1)P(yt−1|x1:t−1) dyt−1

This is a forward recursion based on Bayes rule.



Probability updating: “Bayesian filtering”

y1 y2 y3 yT

x1 x2 x3 xT

• • •

P(yt |x1:t ) =

∫
P(yt , yt−1|xt , x1:t−1) dyt−1

=

∫
P(xt , yt , yt−1|x1:t−1)

P(xt |x1:t−1)
dyt−1

∝
∫

P(xt |yt , yt−1, x1:t−1)P(yt |yt−1, x1:t−1)P(yt−1|x1:t−1) dyt−1

=

Markov property

∫
P(xt |yt )P(yt |yt−1)P(yt−1|x1:t−1) dyt−1

This is a forward recursion based on Bayes rule.



Probability updating: “Bayesian filtering”

y1 y2 y3 yT

x1 x2 x3 xT

• • •

P(yt |x1:t ) =

∫
P(yt , yt−1|xt , x1:t−1) dyt−1

=

∫
P(xt , yt , yt−1|x1:t−1)

P(xt |x1:t−1)
dyt−1

∝
∫

P(xt |yt , yt−1, x1:t−1)P(yt |yt−1, x1:t−1)P(yt−1|x1:t−1) dyt−1

=

Markov property

∫
P(xt |yt )P(yt |yt−1)P(yt−1|x1:t−1) dyt−1

This is a forward recursion based on Bayes rule.



Probability updating: “Bayesian filtering”

y1 y2 y3 yT

x1 x2 x3 xT

• • •

P(yt |x1:t ) =

∫
P(yt , yt−1|xt , x1:t−1) dyt−1

=

∫
P(xt , yt , yt−1|x1:t−1)

P(xt |x1:t−1)
dyt−1

∝
∫

P(xt |yt , yt−1, x1:t−1)P(yt |yt−1, x1:t−1)P(yt−1|x1:t−1) dyt−1

=

Markov property

∫
P(xt |yt )P(yt |yt−1)P(yt−1|x1:t−1) dyt−1

This is a forward recursion based on Bayes rule.



The HMM: Forward pass

The forward recursion for the HMM is a form of dynamic programming.

Define:

αt (i) = P(x1, . . . , xt , st = i|θ)

Then much like the Bayesian filtering updates, we have:

α1(i) = πi Ai (x1) αt+1(i) =

(
K∑

j=1

αt (j)Φji

)
Ai (xt+1)

We’ve defined αt (i) to be a joint rather than a posterior. It’s easy to obtain the posterior by
normalisation:

P(st = i|x1, . . . , xt , θ) =
αt (i)∑
k αt (k)

This form enables us to compute the likelihood for θ = {A,Φ,π} efficiently in O(TK 2) time:

P(x1 . . . xT |θ) =
∑

s1,...,sT

P(x1, . . . , xT , s1, . . . , sT , θ) =
K∑

k=1

αT (k)

avoiding the exponential number of paths in the naı̈ve sum (number of paths = K T ).
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The LGSSM: Kalman Filtering

y1 y2 y3 yT

x1 x2 x3 xT

• • • y1 ∼ N (µ0,Q0)

yt |yt−1 ∼ N (Ayt−1,Q)

xt |yt ∼ N (Cyt ,R)

For the SSM, the sums become integrals.

Let ŷ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(y1|x1) = N
(
ŷ0

1 + K1(x1 − Cŷ0
i ), V̂ 0

1 − K1CV̂ 0
1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ŷτt ≡ E[yt |x1, . . . , xτ ] and V̂ τt ≡ V [yt |x1, . . . , xτ ]. Then,

P(yt |x1:t−1) =

∫
dyt−1P(yt |yt−1)P(yt−1|x1:t−1) = N (Aŷt−1

t−1︸ ︷︷ ︸
ŷt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(yt |x1:t ) = N (ŷt−1
t + Kt (xt − Cŷt−1

t )︸ ︷︷ ︸
ŷt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.
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t )︸ ︷︷ ︸
ŷt
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ŷt

t

, V̂ t−1
t − Kt CV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

FA: β = (I + ΛTΨ−1Λ)−1ΛTΨ−1 mat. inv. lem.
= ΛT(ΛΛT + Ψ)−1; µ = βxn; Σ = I − βΛ.



The LGSSM: Kalman Filtering

y1 y2 y3 yT

x1 x2 x3 xT

• • • y1 ∼ N (µ0,Q0)

yt |yt−1 ∼ N (Ayt−1,Q)

xt |yt ∼ N (Cyt ,R)

For the SSM, the sums become integrals. Let ŷ0
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t−1︸ ︷︷ ︸
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1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(y1|x1) = N
(
ŷ0
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y1 y2 y3 yT

x1 x2 x3 xT

• • • y1 ∼ N (µ0,Q0)

yt |yt−1 ∼ N (Ayt−1,Q)

xt |yt ∼ N (Cyt ,R)

For the SSM, the sums become integrals. Let ŷ0
1 = µ0 and V̂ 0

1 = Q0; then (cf. FA)

P(y1|x1) = N
(
ŷ0

1 + K1(x1 − Cŷ0
i )︸ ︷︷ ︸

ŷ1
1

, V̂ 0
1 − K1CV̂ 0

1︸ ︷︷ ︸
V̂ 1

1

)
K1 = V̂ 0

1 CT(CV̂ 0
1 CT + R)−1

In general, we define ŷτt ≡ E[yt |x1, . . . , xτ ] and V̂ τt ≡ V [yt |x1, . . . , xτ ]. Then,

P(yt |x1:t−1) =

∫
dyt−1P(yt |yt−1)P(yt−1|x1:t−1) = N (Aŷt−1

t−1︸ ︷︷ ︸
ŷt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t
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t + Kt (xt − Cŷt−1
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ŷt
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V̂ t
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t CT(
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The marginal posterior: “Bayesian smoothing”

y1 y2 y3 yT

x1 x2 x3 xT

• • •

P(yt |x1:T )

=
P(yt , xt+1:T |x1:t )

P(xt+1:T |x1:t )

=
P(xt+1:T |yt )P(yt |x1:t )

P(xt+1:T |x1:t )

The marginal combines a backward message with the forward message found by filtering.
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The HMM: Forward–Backward Algorithm
State estimation: compute marginal posterior distribution over state at time t :

γt (i) ≡ P(st =i|x1:T ) =
P(st =i, x1:t )P(xt+1:T |st =i)

P(x1:T )
=

αt (i)βt (i)∑
j αt (j)βt (j)

where there is a simple backward recursion for

βt (i) ≡ P(xt+1:T |st =i) =
K∑

j=1

P(st+1=j, xt+1, xt+2:T |st =i)

=
K∑

j=1

P(st+1=j|st =i)P(xt+1|st+1=j)P(xt+2:T |st+1=j) =
K∑

j=1

Φij Aj (xt+1)βt+1(j)

αt (i) gives total inflow of probabilities to node (t, i); βt (i) gives total outflow of probabiilties.

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Bugs again: the bugs run forward from time 0 to t and backward from time T to t .



Viterbi decoding

I The numbers γt (i) computed by forward-backward give the marginal posterior
distribution over states at each time.

I By choosing the state i∗t with the largest γt (i) at each time, we can make a “best” state
path. This is the path with the maximum expected number of correct states.

I But it is not the single path with the highest probability of generating the data.
In fact it may be a path of probability zero!

I To find the single best path, we use the Viterbi decoding algorithm which is just
Bellman’s dynamic programming algorithm applied to this problem. This is an inference
algorithm which computes the most probable state sequences: argmax

s1:T

P(s1:T |x1:T , θ)

I The recursions look the same as forward-backward, except with max instead of
∑

.

I Bugs once more: same trick except at each step kill all bugs but the one with the highest
value at the node.

I There is also a modified EM training based on the Viterbi decoder (assignment).
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The LGSSM: Kalman smoothing

y1 y2 y3 yT

x1 x2 x3 xT

• • •

We use a slightly different decomposition:

P(yt |x1:T ) =

∫
P(yt , yt+1|x1:T ) dyt+1

=

∫
P(yt |yt+1, x1:T )P(yt+1|x1:T ) dyt+1

=
Markov property

∫
P(yt |yt+1, x1:t )P(yt+1|x1:T ) dyt+1

This gives the additional backward recursion:

Jt = V̂ t
t AT(V̂ t

t+1)−1

ŷT
t = ŷt

t + Jt (ŷT
t+1 − Aŷt

t )

V̂ T
t = V̂ t

t + Jt (V̂ T
t+1 − V̂ t

t+1)Jt
T



ML Learning for SSMs using batch EM

y1 y2 y3 yT

x1 x2 x3 xT

• • •A A A A

C C C C

Parameters: θ = {µ0,Q0,A,Q,C,R}
Free energy:

F(q, θ) =

∫
dy1:T q(y1:T )(log P(x1:T , y1:T |θ)− log q(y1:T ))

E-step: Maximise F w.r.t. q with θ fixed: q∗(y) = p(y|x, θ)
This can be achieved with a two-state extension of the Kalman smoother.

M-step: Maximize F w.r.t. θ with q fixed.
This boils down to solving a few weighted least squares problems, since all the variables in:

p(y, x|θ) = p(y1)p(x1|y1)
T∏

t=2

p(yt |yt−1)p(xt |yt )

form a multivariate Gaussian.



The M step for C

p(xt |yt ) ∝ exp
[
− 1

2 (xt − Cyt )
TR−1(xt − Cyt )

]
⇒

Cnew = argmax
C

〈∑
t

ln p(xt |yt )

〉
q

= argmax
C

〈
−1

2

∑
t

(xt − Cyt )
TR−1(xt − Cyt )

〉
q

+ const

= argmax
C

{
−1

2

∑
t

xT
t R−1xt − 2xT

t R−1C〈yt〉+ 〈yT
t CTR−1Cyt〉

}

= argmax
C

{
Tr

[
C
∑

t

〈yt〉xT
t R−1

]
− 1

2
Tr

[
CTR−1C

〈∑
t

yt y
T
t

〉]}

using ∂Tr[AB]
∂A = BT, we have

∂{·}
∂C

= R−1
∑

t

xt〈yt〉T − R−1C

〈∑
t

yt y
T
t

〉

⇒ Cnew =

(∑
t

xt〈yt〉T
)(∑

t

〈
yt y

T
t

〉)−1

Notice that this is exactly the same equation as in factor analysis and linear regression!
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The M step for A

p(yt+1|yt ) ∝ exp
{
− 1

2 (yt+1 − Ayt )
TQ−1(yt+1 − Ayt )

}
⇒

Anew = argmax
A

〈∑
t

ln p(yt+1|yt )

〉
q

= argmax
A

〈
−1

2

∑
t

(yt+1 − Ayt )
TQ−1(yt+1 − Ayt )

〉
q

+ const

= argmax
A

{
−1

2

∑
t

yT
t+1Q−1yt+1 − 2

〈
yT

t+1Q−1Ayt

〉
+
〈

yT
t ATQ−1Ayt

〉}

= argmax
A

{
Tr

[
A
∑

t

〈
yt y

T
t+1

〉
Q−1

]
− 1

2
Tr

[
ATQ−1A

∑
t

〈
yt y

T
t

〉]}

using ∂Tr[AB]
∂A = BT, we have

∂{·}
∂A

= Q−1
∑

t

〈
yt+1yT

t

〉
− Q−1A

∑
t

〈
yt y

T
t

〉

⇒ Anew =

(∑
t

〈
yt+1yT

t

〉)(∑
t

〈
yt y

T
t

〉)−1

This is still analagous to factor analysis and linear regression, with expected correlations.
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Learning (online gradient)

Time series data must often be processed in real-time, and we may want to update
parameters online as observations arrive. We can do so by updating a local version of the
likelihood based on the Kalman filter estimates.
Consider the log likelihood contributed by each data point (`t ):

` =
T∑

t=1

ln p(xt |x1, . . . , xt−1) =
T∑

t=1

`t

Then,

`t = −D
2

ln 2π − 1
2

ln |Σ| − 1
2

(xt − Cŷt−1
t )TΣ−1(xt − Cŷt−1

t )

where D is dimension of x, and:

ŷt−1
t = Aŷt−1

t−1

Σ = CV̂ t−1
t CT + R

V̂ t−1
t = AV̂ t−1

t−1 AT + Q

We differentiate `t to obtain gradient rules for A,C,Q,R. The size of the gradient step
(learning rate) reflects our expectation about nonstationarity.



Learning HMMs using EM

s1 s2 s3 sT

x1 x2 x3 xT

• • •T T T T

A A A A

Parameters: θ = {π,Φ,A}
Free energy:

F(q, θ) =
∑
s1:T

q(s1:T )(log P(x1:T , s1:T |θ)− log q(s1:T ))

E-step: Maximise F w.r.t. q with θ fixed: q∗(s1:T ) = P(s1:T |x1:T , θ)

We will only need the marginal probabilities q(st , st+1), which can also be obtained from the
forward–backward algorithm.

M-step: Maximize F w.r.t. θ with q fixed.

We can re-estimate the parameters by computing the expected number of times the HMM
was in state i , emitted symbol k and transitioned to state j .

This is the Baum-Welch algorithm and it predates the (more general) EM algorithm.



M step: Parameter updates are given by ratios of expected counts

We can derive the following updates by taking derivatives of F w.r.t. θ.

I The initial state distribution is the expected number of times in state i at t = 1:

π̂i = γ1(i)

I The expected number of transitions from state i to j which begin at time t is:

ξt (i → j) ≡ P(st = i, st+1 = j|x1:T ) = αt (i)Φij Aj (xt+1)βt+1(j)/P(x1:T )

so the estimated transition probabilities are:

Φ̂ij =
T−1∑
t=1

ξt (i → j)

/
T−1∑
t=1

γt (i)

I The output distributions are the expected number of times we observe a particular
symbol in a particular state:

Âik =
∑

t:xt =k

γt (i)

/
T∑

t=1

γt (i)

(or the state-probability-weighted mean and variance for a Gaussian output model).
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HMM practicalities

I Numerical scaling: the conventional message definition is in terms of a large joint:

αt (i) = P(x1:t , st =i) → 0 as t grows, and so can easily underflow.

Rescale:

αt (i) = Ai (xt )
∑

j

α̃t−1(j)Φji ρt =
K∑

i=1

αt (i) α̃t (i) = αt (i)/ρt

Exercise: show that:

ρt = P(xt |x1:t−1, θ)
T∏

t=1

ρt = P(x1:T |θ)

What does this make α̃t (i)?

I Multiple observed sequences: average numerators and denominators in the ratios of
updates.

I Local optima (random restarts, annealing; see discussion later).
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HMM pseudocode: inference (E step)

Forward-backward including scaling tricks.
[◦ is the element-by-element (Hadamard/Schur) product: ‘.∗’ in matlab.]

for t = 1 :T , i = 1 :K pt (i) = Ai (xt )

α1 = π ◦ p1 ρ1 =
∑K

i=1 α1(i) α1 = α1/ρ1

for t = 2 :T αt = (ΦT ∗ αt−1) ◦ pt ρt =
∑K

i=1 αt (i) αt = αt/ρt

βT = 1

for t = T − 1 :1 βt = Φ ∗ (βt+1 ◦ pt+1)/ρt+1

log P(x1:T ) =
∑T

t=1 log(ρt )

for t = 1 :T γt = αt ◦βt

for t = 1 :T − 1 ξt = Φ ◦(αt ∗ (βt+1 ◦ pt+1)T)/ρt+1



HMM pseudocode: parameter re-estimation (M step)

Baum-Welch parameter updates:

For each sequence l = 1 : L, run forward–backward to get γ(l) and ξ(l), then

πi =
1
L

∑L
l=1 γ

(l)
1 (i)

Φij =

∑L
l=1

∑T (l)−1
t=1 ξ

(l)
t (ij)∑L

l=1

∑T (l)−1
t=1 γ

(l)
t (i)

Aik =

∑L
l=1

∑T (l)

t=1 δ(xt = k)γ
(l)
t (i)∑L

l=1

∑T (l)

t=1 γ
(l)
t (i)



Degeneracies

Recall that the FA likelihood is conserved with respect to orthogonal transformations of y:

P(y) = N (0, I)

P(x|y) = N (Λy,Ψ)

&
ỹ = Uy

Λ̃ = ΛUT
⇒

P(ỹ) = N
(

U0,UIUT
)

= N (0, I)

P(x|ỹ) = N
(

ΛUTUy,Ψ
)

= N
(

Λ̃ỹ,Ψ
)

Similarly, a mixture model is invariant to permutations of the latent.

The LGSSM likelihood is conserved with respect to any invertible transform of the latent:

P(yt+1|yt ) = N (Ayt ,Q)

P(xt |yt ) = N (Cy,R)

&
ỹ = Gy Ã = GAG−1

Q̃ = GQGT C̃ = CG−1

⇒
P(ỹt+1|ỹt ) = N

(
GAG−1Gyt ,GQGT

)
= N

(
Ãỹt , Q̃

)
P(xt |ỹt ) = N

(
CG−1Gy,R

)
= N

(
C̃ỹ,R

)

and the HMM is invariant to permutations (and to relaxations into something called an
observable operator model).
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ỹ = Gy Ã = GAG−1

Q̃ = GQGT C̃ = CG−1

⇒
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ỹ = Gy Ã = GAG−1

Q̃ = GQGT C̃ = CG−1

⇒
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P(x|ỹ) = N
(

ΛUTUy,Ψ
)

= N
(

Λ̃ỹ,Ψ
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Λ̃ỹ,Ψ
)

Similarly, a mixture model is invariant to permutations of the latent.

The LGSSM likelihood is conserved with respect to any invertible transform of the latent:

P(yt+1|yt ) = N (Ayt ,Q)

P(xt |yt ) = N (Cy,R)
&
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The likelihood landscape

Besides the degenerate solutions, both LGSSMs and HMMs likelihood functions tend to have
multiple local maxima. This complicates any ML-based approach to learning (including EM
and gradient methods).

Strategies:

I Restart EM/gradient ascent from different (often random) initial parameter values.

I Initialise output parameters with a stationary model:

PCA→ FA→ LGSSM

k-means→ mixture→ HMM

I Stochastic gradient methods and momentum. “Overstepping” EM.

I Deterministic annealing.

I Non-ML learning (spectral methods).
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Slow Feature Analysis (SFA)
Is there a zero-noise limit for an LGSSM analagous to PCA?

We can take:

A = diag [a1 . . . aK ]→ I (with a1 ≤ a2 ≤ · · · ≤ aK ≤ 1)

Q = I − AAT → 0 (setting the stationary latent covariance to I)

R → 0 .

This limit yields a spectral algorithm called Slow Feature Analysis (or SFA).

SFA is conventionally defined as slowness pursuit (cf PCA and variance pursuit):
Given zero-mean series {x1, x2, . . . xT} find a K × D matrix W (= CT) such that yt = Wxt

changes as slowly as possible.

Specifically, find

W = argmin
W

∑
t

‖yt − yt−1‖2 subject to
∑

t

yt y
T
t = I .

The variance constraint prevents the trivial solutions W = 0 and W = 1wT.

W can be found by solving the generalised eigenvalue problem

WA = ΩWB where A =
∑

t (xt − xt−1)(xt − xt−1)T and B =
∑

t xt xT
t .

See http://www.gatsby.ucl.ac.uk/∼maneesh/papers/turner-sahani-2007-sfa.pdf.
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(Generalised) Method of Moments estimators

What if we don’t want the A→ I limit?

The limit is necessary to make the spectral estimate and the (limiting) ML estimates coincide.
However, if we give up on ML, then there are general spectral estimates available.

The ML parameter estimates are defined:

θML = argmax
θ

log P(X|θ)

and as you found, if P ∈ ExpFam with sufficient statistic T then

〈T (x)〉θML =
1
N

∑
i

T (xi ) (moment matching) .

We can generalise this condition to arbitrary T even if P /∈ ExpFam.

That is, we find estimate θ∗ with

〈T (x)〉θ∗ =
1
N

∑
i

T (xi ) or θ∗ = argmin
θ

‖〈T (x)〉θ −
1
N

∑
i

T (xi )‖C

Judicious choice of T and metric C might make solution unique (no local optima) and
consistent (correct given infinite within-model data).
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Ho-Kalman SSID for LGSSMs

yt−2 yt−1 yt yt+1 yt+2 • • •• • •

xt−2 xt−1 xt xt+1 xt+2

• • • • • •

x+
t = [xt:t+L−1]x−t = [xt−1:t−L]

Mτ ≡
〈

xt+τxT
t

〉
=
〈

xt+τyT
t

〉
CT = CAτ

〈
yt y

T
t

〉
CT = CAτΠCT

H ≡
〈

x+
t , x
−
t

T
〉

=


M1 M2 · · · ML

M2 M3

...
...

ML · · · M2L−1



LD × LD

=


C

CA
...

CAL−1



LD × K

Ξ

[
AΠCT · · · ALΠCT

]

K × LD

Υ

Off-diagonal correlation unaffected by noise. SVD( 1
T

∑
x+

t x−t
T
) yields least-squares

estimates of Ξ and Υ. Regression between blocks of Ξ yields Â and Ĉ.
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HMMs → OOMs

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Now consider an HMM with discrete output symbols.

The likelihood can be written:

P(x1:T |π,Φ,A)

=
∑

i

πi Ai (x1)
∑

j

Φji Aj (x2)
∑

k

Φkj AK (x3) . . .

= πTAx1 ΦTAx2 ΦTAx3 . . . 1 [Ax1 = diag [A1(x1),A2(x1), . . .]]

= 1TOxT OxT−1 . . .Ox1π

where Oa = ΦAa is a “propagation operator” on the latent belief that depends on observation.

Observable operator model (OOM) representation.
I OOMs with arbitrary O matrices describe a larger class of distributions that HMMs.
I Not easy to normalise or even guarantee all assigned “probabilities” are positive.
I Degenerate with respect to similarity transform Õ = GOG−1.
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HMMs → OOMs

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Now consider an HMM with discrete output symbols. The likelihood can be written:

P(x1:T |π,Φ,A) =
∑

i

πi Ai (x1)
∑

j

Φji Aj (x2)
∑

k

Φkj AK (x3) . . .

= πTAx1 ΦTAx2 ΦTAx3 . . . 1 [Ax1 = diag [A1(x1),A2(x1), . . .]]

= 1TOxT OxT−1 . . .Ox1π

where Oa = ΦAa is a “propagation operator” on the latent belief that depends on observation.

Observable operator model (OOM) representation.

I OOMs with arbitrary O matrices describe a larger class of distributions that HMMs.
I Not easy to normalise or even guarantee all assigned “probabilities” are positive.
I Degenerate with respect to similarity transform Õ = GOG−1.
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Spectral learning for HMMs

st−2 st−1 st st+1 st+2 • • •• • •

xt−2 xt−1 xt xt+1 xt+2

• • • • • •

x+
t = [xt:t+L−1]x−t = [xt−1:t−L]

Write xt = [δ(xt =i)]; st = [δ(st =i)]; A = [Aij ] = [P(xt =i|st =j)]

Mτ ≡
〈

xt+τxT
t

〉
= [〈P(xt+τ=i|st )P(xt =j|st )〉st

] = AΦτ
〈

st s
T
t

〉
AT = AΦτΠAT

H ≡
〈

x+
t , x
−
t

T
〉

=


M1 M2 · · · ML

M2 M3

...
...

ML · · · M2L−1



LD × LD

=


A

AΦ
...

AΦL−1



LD × K

[
ΦΠAT · · · ΦLΠAT

]

K × LD

(The conventional algorithm is written slightly differently, but follows similar logic).
Φ̂ and Â can be recovered as before upto arbitrary invertible transform of s→ OOM.
‘Projection’ to HHM space possible, but amplifies estimation errors.
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Φ̂ and Â can be recovered as before upto arbitrary invertible transform of s→ OOM.
‘Projection’ to HHM space possible, but amplifies estimation errors.



Spectral learning for HMMs

st−2 st−1 st st+1 st+2 • • •• • •

xt−2 xt−1 xt xt+1 xt+2

• • • • • •

x+
t = [xt:t+L−1]x−t = [xt−1:t−L]

Write xt = [δ(xt =i)]; st = [δ(st =i)]; A = [Aij ] = [P(xt =i|st =j)]

Mτ ≡
〈

xt+τxT
t

〉
= [〈P(xt+τ=i, xt =j|st )〉st

]

= [〈P(xt+τ=i|st )P(xt =j|st )〉st
] = AΦτ

〈
st s

T
t

〉
AT = AΦτΠAT

H ≡
〈

x+
t , x
−
t

T
〉

=


M1 M2 · · · ML

M2 M3

...
...

ML · · · M2L−1



LD × LD

=


A

AΦ
...

AΦL−1



LD × K

[
ΦΠAT · · · ΦLΠAT

]

K × LD

(The conventional algorithm is written slightly differently, but follows similar logic).
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‘Projection’ to HHM space possible, but amplifies estimation errors.
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ML and spectral learning

Spectral learning:

I Efficient closed-form solution.
I Consistent (recovers true parameters upto degeneracies from infinite within-model data).
I Eigen-/singular-value spectrum clue to latent dimensionality.
I Assumes stationarity. May be inappropriate for short sequences.
I HMM learning returns OOM parameters – may not correspond to any HMM or indeed to

proper probabilistic model.
I Not easily generalised to nonlinear or more complex models (but see

http://www.gatsby.ucl.ac.uk/∼maneesh/papers/buesing-etal-2012-nips.pdf).
I In practice, error in recovered parameters is often large.
I Often valuable as initialisation for ML methods.

Maximum likelihood learning:

I Requires iterative maximisation.
I Many local optima.
I Consistent and asymptotically efficient (if the global maximum can be found).
I Generalises to “principled” approximate algorithms for nonlinear or complex models.
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Recognition (classification) with HMMs

Multiple HMM models:

1. train one HMM for each class (requires each sequence to be labelled by the class)

2. evaluate the probability of an unknown sequence under each HMM

3. classify the unknown sequence by the HMM which gave it the highest likelihood

L1 L2 Lk



Recognition (labelling) with HMMs

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Use a single HMM to label sequences:

1. train a single HMM on sequences of data x1, . . . , xT and corresponding labels
s1, . . . , sT .

2. On an unlabelled test sequence, compute the posterior distribution over label sequences
P(s1, . . . , sT |x1, . . . , xT ).

3. Return the label sequence either with highest expected number of correct states, or
highest probability under the posterior (Viterbi).

Models the whole joint distribution P(x1:T , s1:T ), but only uses P(s1:T |x1:T ).

I May be more accurate and more efficient use of data to model P(s1:T |x1:T ) directly.
I This leads to a model called a Conditional Random Field.



Recognition (labelling) with HMMs

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Use a single HMM to label sequences:

1. train a single HMM on sequences of data x1, . . . , xT and corresponding labels
s1, . . . , sT .

2. On an unlabelled test sequence, compute the posterior distribution over label sequences
P(s1, . . . , sT |x1, . . . , xT ).

3. Return the label sequence either with highest expected number of correct states, or
highest probability under the posterior (Viterbi).

Models the whole joint distribution P(x1:T , s1:T ), but only uses P(s1:T |x1:T ).

I May be more accurate and more efficient use of data to model P(s1:T |x1:T ) directly.

I This leads to a model called a Conditional Random Field.



Recognition (labelling) with HMMs

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Use a single HMM to label sequences:

1. train a single HMM on sequences of data x1, . . . , xT and corresponding labels
s1, . . . , sT .

2. On an unlabelled test sequence, compute the posterior distribution over label sequences
P(s1, . . . , sT |x1, . . . , xT ).

3. Return the label sequence either with highest expected number of correct states, or
highest probability under the posterior (Viterbi).

Models the whole joint distribution P(x1:T , s1:T ), but only uses P(s1:T |x1:T ).

I May be more accurate and more efficient use of data to model P(s1:T |x1:T ) directly.
I This leads to a model called a Conditional Random Field.



Conditional distribution in a HMM
Conditional distribution over label sequences of a HMM:

P(s1:T |x1:T , θ) =
P(s1:T , x1:T |θ)∑
s1:T

P(s1:T , x1:T |θ)

∝ P(s1|π)
T−1∏
t=1

P(st+1|st , T)
T∏

t=1

P(xt |st ,A)

= exp
(∑

i

δ(s1=i) logπi +
T−1∑
t=1

∑
ij

δ(st =i, st+1=j) log Φij

= exp
(

+
T∑

t=1

∑
ik

δ(st =i, xt =k) log Aik

)
.

This functional form gives a well-defined conditional distribution, even if we do not enforce the
constraints

Φij ≥ 0
∑

j

Φij = 1

or the similar ones for π and A (cf. OOMs). The forward-backward algorithm can still be
applied to compute the conditional distribution.

This is an example of a conditional random field.



Conditional random fields

Define two sets of functions: single label and label-pair functions.
Single label functions:

fi (st , xt ) for i = 1, . . . , I

Label-pair functions:

gj (st , st+1, xt , xt+1) for j = 1, . . . , J

Each function is associated with a real-valued parameter: λi , κj .
A conditional random field defines a conditional distribution over s1:T given x1:T as follows:

P(s1:T |x1:T ,λ,κ) ∝ exp
( T∑

t=1

∑
i

λi fi (st , xt ) +
T−1∑
t=1

∑
j

κj gj (st , st+1, xt , xt+1)

)
The forward-backward algorithm can be used to compute:

P(st |x1:T ,λ,κ) P(st , st+1|x1:T ,λ,κ) argmax
s1:T

P(s1:T |x1:T ,λ,κ)



Factor graph notation for CRFs

P(s1:T |x1:T ,λ,κ) ∝ exp
( T∑

t=1

∑
i

λi fi (st , xt ) +
T−1∑
t=1

∑
j

κj gj (st , st+1, xt , xt+1)

)

x1 x2 xτ

s1 s2 sτ

x3

s3

λ!f(s1, x1)

κ!g(s1:2, x1:2)



Discriminative vs generative modelling
Labelled training data comes from a true underlying distribution P̃(s1:T , x1:T ).
Generative modelling: train a HMM by maximizing likelihood:

θJoint = argmax
θ

EP̃ [log P(s1:T , x1:T |θ)]

(note do not need EM here, since no latent variables)
Discriminative modelling: train another HMM by maximizing conditional likelihood:

θCond = argmax
θ

EP̃ [log P(s1:T |x1:T , θ)]

By construction:

EP̃ [log P(s1:T |x1:T , θCond)] ≥ EP̃ [log P(s1:T |x1:T , θJoint)]

If P̃ belongs to model class, P(·|θJoint) = P̃ and equality holds.

P̃ (s1:τ , x1:τ )

θJoint

θCond

Caveats:
I Underlying distribution P̃ not usually in

model class.
I training set differs from P̃.
I Overfitting easier in discriminative setting.
I Generative modelling often much simpler

(fits each conditional probability
separately, not iterative).

Major point of debate in machine learning.



Structured generalized linear models

P(s1:T |x1:T ,λ,κ) ∝ exp
( T∑

t=1

∑
i

λi fi (st , xt ) +
T−1∑
t=1

∑
j

κj gj (st , st+1, xt , xt+1)

)
The conditional distribution over s1:T forms an exponential family parameterized by λ,κ and
dependent on x1:T .

CRFs are a multivariate generalization of generalized linear models (GLMs).

The labels st in a CRF are not independently predicted, but they have a Markov property:
s1:t−1 is independent of st+1:T given st and x1:T .
This allows efficient inference using the forward-backward algorithm.

CRFs are models for structured prediction (another major machine learning frontier).

CRFs are very flexible.

CRFs have found wide spread applications across a number of fields: natural language
processing (part-of-speech tagging, named-entity recognition, coreference resolution),
information retrieval (information extraction), computer vision (image segmentation, object
recognition, depth perception), bioinformatics (protein structure prediction, gene finding)...



Learning CRFs

P(s1:T |x1:T ,λ,κ) ∝ exp
( T∑

t=1

∑
i

λi fi (st , xt ) +
T−1∑
t=1

∑
j

κj gj (st , st+1, xt , xt+1)

)

Given labelled data {s(c)
1:T , x

(c)
1:T}

N
c=1, we train CRFs by maximum likelihood:

∂
∑

c log P(s(c)
1:T |x

(c)
1:T ,λ,κ)

∂λi
=

N∑
c=1

T∑
t=1

fi (s(c)
t , x(c)

t )− E
P(s1:T |x

(c)
1:T )

[fi (s(c)
t , x(c)

t )]

∂
∑

c log P(s(c)
1:T |x

(c)
1:T ,λ,κ)

∂κj
=

N∑
c=1

T−1∑
t=1

gj (s(c)
t:t+1, x

(c)
t:t+1)− E

P(s1:T |x
(c)
1:T )

[gj (st:t+1, x
(c)
t:t+1)]

There is no closed-form solution for the parameters, so we use gradient ascent instead.

Note: expectations are computed using the forward-backward algorithm.

The log likelihood is concave, so unlike EM we will get to global optimum (another major
frontier in machine learning).
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