
Assignment 4

Probabilistic and Unsupervised Learning

Maneesh Sahani

Due: Monday Dec 4, 2017

Note: Assignments are due at 11:00 AM (the start of lecture) on the day specified. Please bring them
to the lecture hall, or make arrangements with the TAs to hand them in before that time. If you are
taking this course as COMPGI16 then late assignments may be turned in to the CS TAs, or to Barry
Fong in the Gatsby Unit. The usual College late assignments policy will apply.

Please attempt the main questions before trying the bonus ones.

1. [35 points] Deriving Gibbs Sampling for LDA.

In this question we derive two Gibbs sampling algorithms for latent Dirichlet allocation (LDA).
Recall that LDA is a topic model that defines multiple mixtures of discrete distributions with
shared components. The archetypical application is to words in documents. Suppose there are
W possible words, D documents and K topics. The LDA model specifies the distribution of the
ith word in the dth document, xid ∈ {1 . . .W}, in terms of the hyperparameters α and β, by
way of latent Dirichlet parameters:

topic distribution for dth document θd|α ∼ Dirichlet(α, . . . , α) (1)

word distribution for kth topic φk|β ∼ Dirichlet(β, . . . , β) (2)

topic for ith word in dth document zid|θd ∼ Discrete(θd) (3)

identity of ith word in dth document xid|zid,φzid
∼ Discrete(φzid

) (4)

Let Adk =
∑

i δ(zid = k) be the number of zid variables taking on value k in document d, and
Bkw =

∑
d

∑
i δ(xid = w)δ(zid = k) be the number of times word w is assigned to topic k across

all the documents. Let Nd be the total number of words in document d and let Mk =
∑

w Bkw

be the total number of words assigned to topic k.

(a) Write down the joint probability over the observed data and latent variables, expressing
the joint probability in terms of the counts Nd, Mk, Adk, and Bkw. [5 points]

(b) Derive the Gibbs sampling updates for all the latent variables zid and parameters θd and
φk. [10 points]

(c) Integrate out all the parameters θd and φk from the joint probability in (a), resulting in
a joint probability over only the zid topic assignment variables and xid observed variables.
Again this expression should relate to zid’s and xid’s only through the counts Nd, Mk, Adk,
and Bkw. [5 points]

(d) Derive the Gibbs sampling updates for the zid with all parameters integrated out. This is
called collapsed Gibbs sampling. You will need the the following identity of the Gamma
function: Γ(1 + x) = xΓ(x) for x > 0. [10 points]

(e) What hyperpriors would you give to α and β? How would you generate samples of α
and β from the appropriate conditionals? [You should suggest an algorithm and justify its
feasibility, but do not need to derive the update equations; 5 points]



2. [65 points] Decrypting Messages with MCMC. You are given a passage of English text
that has been encrypted by remapping each symbol to a (usually) different one. For example,

a → s

b → !

〈space〉 → v

...

Thus a text like ‘a boy. . . ’ might be encrypted by ‘sv!op. . . ’. Assume that the mapping between
symbols is one-to-one. The file symbols.txt gives the list of symbols, one per line (the second
line is 〈space〉). The file message.txt gives the encrypted message.

Decoding the message by brute force is impossible, since there are 53 symbols and thus 53!
possible permutations to try. Instead we will set up a Markov chain Monte Carlo sampler to
find modes in the space of permutations.

We model English text, say s1s2 · · · sn where si are symbols, as a Markov chain, so that each
symbol is independent of the preceding text given only the symbol before:

p(s1s2 · · · sn) = p(s1)
n∏

i=2

p(si|si−1)

(a) Learn the transition statistics of letters and punctuation in English by downloading a
large text [say War and Peace (in translation!)] from the web and estimating the tran-
sition probabilities p(si = α|si−1 = β) ≡ ψ(α, β) as well as the stationary distribution
limi→∞ p(si = γ) ≡ φ(γ). Assume that the first letter of your text (and also that of the
encrypted text provided) is itself sampled from the stationary distribution.

Give formulae for the ML estimates of these probabilities as functions of the counts of
numbers of occurrences of symbols and pairs of symbols.

Compute the estimated probabilities. You may report the values using a table, Hinton
diagram or other method. [6 marks]

(b) The state variable for our MCMC sampler will be the symbol permutation. Let σ(s) be the
symbol that stands for symbol s in the encrypted text, e.g., σ(a) = s and σ(b) =! above.
Assume a uniform prior distribution over permutations.

Are the latent variables σ(s) for different symbols s independent?

Let e1e2 · · · en be an encrypted English text. Write down the joint probability of e1e2 · · · en
given σ. [6 marks]

(c) We use a Metropolis-Hastings (MH) chain, with the proposal given by choosing two symbols
s and s′ at random and swapping the corresponding encrypted symbols σ(s) and σ(s′).

How does the proposal probability S(σ → σ′) depend on the permutations σ and σ′? What
is the MH acceptance probability for a given proposal? [10 marks]

(d) Implement the MH sampler, and run it on the provided encrypted text. Report the current
decryption of the first 60 symbols after every 100 iterations. Your Markov chain should
converge to give you a fairly sensible message. (Hint: it may help to initialize your chain
intelligently and to try multiple times; in any case, please describe what you did). [30
marks]

(e) Note that some ψ(α, β) values may be zero. Does this affect the ergodicity of the chain?
If the chain remains ergodic, give a proof; if not, explain and describe how you can restore
ergodicity. [5 marks]

(f) Analyse this approach to decoding. For instance, would symbol probabilities alone (rather
than transitions) be sufficient? If we used a second order Markov chain for English text,
what problems might we encounter? Will it work if the encryption scheme allows two
symbols to be mapped to the same encrypted value? Would it work for Chinese with
> 10000 symbols? [8 marks]



3. [Bonus 60 points] Implementing Gibbs sampling for LDA. Take a look at the ac-
companying code, which sets up a framework in which you will implement both the standard and
collapsed Gibbs sampling inference for LDA. Read the README which lays out the MATLAB
variables used.

(a) Implement both standard and collapsed Gibbs sampline updates, and the log joint prob-
abilities in question 1(a), 1(c) above. The files you need to edit are stdgibbs logjoint,
stdgibbs update, colgibbs logjoint,colgibbs update. Debug your code by running toyexam-
ple. Show sample plots produced by toyexample, and attach and document the MATLAB
code that you wrote. [20 points]

(b) Based upon the plots of log predictive and joint probabilities produced by toyexample, how
many iterations do you think are required for burn-in? Discarding the burn-in iterations,
compute and plot the autocorrelations of the log predictive and joint probabilities for both
Gibbs samplers. You will need to run toyexample for a larger number of iterations to reduce
the noise in the autocorrelation. Based upon the autocorrelations how many samples do
you think will be need to have a representative set of samples from the posterior? Describe
what you did and justify your answers with one or two sentences. [10 points]

(c) Based on the computed autocorrelations, which of the two Gibbs samplers do you think
converge faster, or do they converge at about the same rate? If they differ, why do you
think this might be the case? Justify your answers. [5 points]

(d) Try varying α, β and K. What effects do these have on the posterior and predictive
performance of the model? Justify your answers. [5 points]

Topic modelling of NIPS papers. Now that we have code for LDA, we can try our
hands on finding the topics at a major machine learning conference (NIPS). In the provided
code there is a file nips.data which contains preprocessed data. The vocabulary is given in
nips.vocab.

(e) The data in nips.data is probably too big so that our MATLAB implementation will be too
slow. We will try to reduce the data set to a more tractable size, by removing words from the
vocabulary. Come up with a metric for how informative/relevant/topical a vocabulary word
is. You may want to experiment and try multiple metrics, and make sure that keywords
like “Bayesian”, “graphical”, “Gaussian”, “support”, “vector”, “kernel”, “representation”,
“regression”, “classification” etc have high metric. Report on your experiences, and use
your metric to prune the data set to just the top few hundred words (say 500, or lower
if the implementation is still too slow). You may find it useful to read up on tf-idf on
wikipedia. [10 points]

(f) Now run LDA on the reduced NIPS data, using one of the Gibbs samplers you have just
written. You will need to experiment with various settings of α, β and K until the topics
discovered looks “reasonable”. Describe the topics you found. How do the topics change
(qualitatively) as α, β and K are varied? [10 points]


