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Convexity

A convex function f : X → R is one where

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2)

for any x1, x2 ∈ X and 0 ≤ α ≤ 1.

x1 x2

αf (x1) + (1− α)f (x2)

f (αx1 + (1− α)x2)

Convex functions have a global infimum (unless not bounded below) and there are efficient
algorithms to find a minimum subject to convex constraints.

Examples: linear programs (LP), quadratic programs (QP), second-order cone programs
(SOCP), semi-definite programs (SDP), geometric programs.

Convexity and Approximate Inference

The theory of convex functions and convex spaces has long been central to optimisation. It
has recently also found application in the theory of free energy and approximation:

I Linear programming relaxation as an approximate method to find the MAP assignment
in Markov random fields.

I Attractive Markov random fields: binary case exact and related to a maximum
flow-minimum cut problem in graph theory (a linear program). Approximate otherwise.

I Unified view of approximate inference as optimization on the marginal polytope.

I Tree-structured convex upper bounds on the log partition function (convexified belief
propagation).

I Learning graphical models using maximum margin principles and convex approximate
inference.

LP Relaxation for Markov Random Fields
Consider a discrete Markov random field (MRF) with pairwise interactions:

p(X) =
1
Z

∏
(ij)

fij (Xi ,Xj )
∏

i

fi (Xi ) =
1
Z

exp

∑
(ij)

Eij (Xi ,Xj ) +
∑

i

Ei (Xi )


The problem is to find the most likely configuration XMAP:

XMAP = argmax
X

∑
(ij)

Eij (Xi ,Xj ) +
∑

i

Ei (Xi )

Reformulate in terms of indicator variables:

bi (xi ) = δ(Xi = xi )

bij (xi , xj ) = δ(Xi = xi )δ(Xj = xj )

where δ(·) = 1 if argument is true, 0 otherwise. Each bi (xi ) is an indicator for whether
variable Xi takes on value xi . The indicator variables need to satisfy certain constraints:

bi (xi ), bij (xi , xj ) ∈ {0, 1} Indicator variables are binary variables.∑
xi

bi (xi ) = 1 Xi takes on exactly one value.

∑
xj

bij (xi , xj ) = bi (xi ) Pairwise indicators are consistent with single-site indicators.



LP Relaxation for Markov Random Fields

MAP assignment problem is equivalent to:

argmax
{bi ,bij}

∑
(ij)

∑
xi ,xj

bij (xi , xj )Eij (xi , xj ) +
∑

i

∑
xi

bi (xi )Ei (xi )

with constraints:

∀i, j, xi , xj : bi (xi ), bij (xi , xj ) ∈ {0, 1}
∑

xi

bi (xi ) = 1
∑

xj

bij (xi , xj ) = bi (xi )

The linear programming relaxation for MRFs is:

argmax
{bi ,bij}

∑
(ij)

∑
xi ,xj

bij (xi , xj )Eij (xi , xj ) +
∑

i

∑
xi

bi (xi )Ei (xi )

with constraints:

∀i, j, xi , xj : bi (xi ), bij (xi , xj ) ∈ [0, 1]
∑

xi

bi (xi ) = 1
∑

xj

bij (xi , xj ) = bi (xi )

LP Relaxation for Markov Random Fields

I The LP relaxation is a linear program which can be solved efficiently.

I If the solution is integral, i.e. each bi (xi ), bij (xi , xj ) ∈ {0, 1}, then the solution
corresponds to the MAP solution XMAP.

I LP relaxation is a zero-temperature version of the Bethe free energy formulation of loopy
BP, where the Bethe entropy term can be ignored.

I If the MRF is binary and attractive, then (a slightly different reformulation of LP
relaxation) will always give the MAP solution.

I Next: we show how to find the MAP solution directly for binary attractive MRFs using
network flow.

Attractive Binary MRFs and Max Flow-Min Cut

Binary MRFs:

p(X) =
1
Z

exp

∑
(ij)

Wijδ(Xi = Xj ) +
∑

i

ci Xi


The binary MRF is attractive if Wij ≥ 0 for all i, j .

I Neighbouring variables ‘prefer’ to be in the same state.

I No loss of generality; any Boltzmann machines with positive interactions can be
reparametrised to this form.

I Many practical MRFs are attractive, e.g. image segmentation, webpage classification.

I MAP X can be found efficiently by converting problem into a maximum flow-minimum cut
program.

Attractive Binary MRFs and Max Flow-Min Cut

The MAP problem:

argmax
x

∑
(ij)

Wijδ(xi = xj ) +
∑

i

ci xi

Construct a network as follows:

1. Edges (ij) are undirected with weight λij = Wij ;

2. Add a source s and a sink t node;

3. ci >0: Connect the source node to variable i with
weight λsi = ci ;

4. cj <0: Connect variable j to the sink node with weight
λjt = −cj .

i jWij

+

-

-

+ +

-

-

+

+

-cj

+ci

A cut is a partition of the nodes into S and T with s ∈ S and t ∈ T . The weight of the cut is

Λ(S, T ) =
∑

i∈S,j∈T

λij

The minimum cut problem is to find the cut with minimum weight.



Attractive Binary MRFs and Max Flow-Min Cut
Identify an assignment X = x with a cut:

S= {s} ∪ {i : xi = 1}
T = {t} ∪ {j : xj = 0}

The weight of the cut is:

Λ(S, T ) =
∑
(ij)

Wijδ(xi 6= xj )

+
∑

i

(1− xi ) max(0, ci )

+
∑

j

xj max(0,−cj )

=−
∑
(ij)

Wijδ(xi = xj )−
∑

i

xi ci + constant

i jWij

+

-

-

+ +

-

-

+

+

-cj

+ci

So finding the minimum cut corresponds to finding the MAP assignment.

How do we find the minimum cut? The minimum cut problem is dual to the maximum flow
problem, i.e. find the maximum flow allowable from the source to the sink through the
network. This can be solved extremely efficiently (see wikipedia entry).

The framework can be generalized to general attractive MRFs, but will not be exact anymore.

Exponential families: the log partition function

Consider an exponential family distribution with sufficient statistic s(X) and natural parameter
θ (and no base factor in X alone). We can write its probability or density function as

p(X |θ) = exp
(
θTs(X)− Φ(θ)

)
where Φ(θ) is the log partition function

Φ(θ) = log
∑

x

exp
(
θTs(x)

)
Φ(θ) plays an important role in the theory of the exponential family. For example, it maps
natural parameters to the moments of the sufficient statistics:

∂

∂θ
Φ(θ) = e−Φ(θ)

∑
x

s(x)eθTs(x) = Eθ [s(X)] = µ(θ) = µ

∂2

∂θ2 Φ(θ) = e−Φ(θ)
∑

x

s(x)2eθTs(x) − e−2Φ(θ)
[∑

x

s(x)eθTs(x)
]2

= Vθ [s(X)]

The second derivative is thus positive semi-definite, and so Φ(θ) is convex in θ.

Exponential families: mean parameters and negative entropy

An exponential family distribution can also (almost always) be parameterised by the means of
the sufficient statistics.

µ(θ) = Eθ [s(X)]

Consider the negative entropy of the distribution as a function of the mean parameter:

Ψ(µ) = Eθ [log p(X |θ(µ))] = θTµ− Φ(θ)

so

θTµ= Φ(θ) + Ψ(µ)

The negative entropy is dual to the log-partition function. For example,

d
dµ

Ψ(µ) =
∂

∂µ

(
θTµ− Φ(θ)

)
+

dθ
dµ

∂

∂θ

(
θTµ− Φ(θ)

)
= θ +

dθ
dµ

(µ− µ) = θ

Exponential families: duality

In fact, the log partition function and negative entropy are conjugate dual functions.

Consider the KL divergence between distributions with natural parameters θ and θ′:

KL
[
θ
∥∥θ′] = KL

[
p(X |θ)

∥∥p(X |θ′)
]

= Eθ

[
− log p(X |θ′) + log p(X |θ)

]
= −θ′Tµ + Φ(θ′) + Ψ(µ) ≥ 0

⇒ Ψ(µ) ≥ θ′Tµ− Φ(θ′)

where µ are the mean parameters corresponding to θ.

Now, the minimum KL divergence of zero is reached iff θ = θ′, so

Ψ(µ)= sup
θ′

[
θ′Tµ− Φ(θ′)

]
and, if finite θ(µ)= argmax

θ′

[
θ′Tµ− Φ(θ′)

]
The left-hand equation is the definition of the conjugate dual of a convex function.

Continuous functions are reciprocally dual, so we also have:

Φ(θ)= sup
µ′

[
θTµ′ −Ψ(µ′)

]
and, if finite µ(θ)= argmax

µ′

[
θTµ′ −Ψ(µ′)

]
Thus, duality gives us another relation between θ and µ.



Duality, inference and the free energy

Consider a joint exponential family distribution on observed x and latent y.

p(x, y) = exp
[
θTs(x, y)− ΦXY (θ)

]
The posterior on y is also in the exponential family, with the clamped sufficient statistic
sY (y; x) = sXY (xobs, y); the same (now possibly redundant) natural parameter θ; and
partition function ΦY (θ) = log

∑
y expθTsY (y).

The likelihood is

L(θ) = p(x|θ) =
∑

y

eθTs(x,y)−ΦXY (θ) =
∑

y

eθTsY (y;x)e−ΦXY (θ) = exp[ΦY (θ)−ΦXY (θ)]

So we can write the log-likelihood as

`(θ) = sup
µY

[θTµY − ΦXY (θ)︸ ︷︷ ︸
〈log p(x,y)〉q

−Ψ(µY )︸ ︷︷ ︸
−H[q]

] = sup
µY

F(θ,µY )

This is the familiar free energy with q(y) represented by its mean parameters µY !

Inference with mean parameters
We have described inference in terms of the distribution q, approximating as needed, then
computing expected suff stats. Can we describe it instead as an optimisation over µ directly?

µ∗Y = argmax
µY

[θTµY −Ψ(µY )]

Concave maximisation(!), but two complications:
I The optimum must be found over feasible means. Interdependance of the sufficient

statistics may prevent arbitrary sets of mean sufficient statistics being achieved

I Feasible means are convex combinations of all the single-configuration sufficient
statistics.

µ =
∑

x

ν(x)s(x)
∑

x

ν(x) = 1

I Take a Boltzmann machine on two variables, x1, x2.
I The sufficient stats are s(x) = [x1, x2, x1x2].
I Clearly only the stats S = {[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 1]} are possible.
I Thus µ ∈ convex hull(S).

I For a discrete distribution, this space of possible means is bounded by
exponentially many hyperplanes connecting the discrete configuration stats: called
the marginal polytope.

I Even when restricted to the marginal polytope, evaluating Ψ(µ) can be challenging.

Convexity and undirected trees
I We can parametrise a discrete pairwise MRF as follows:

p(X) =
1
Z

∏
i

fi (X)
∏
(ij)

fij (Xi ,Xj )

= exp

∑
i

∑
xi

θi (xi )δ(Xi = xi ) +
∑
(ij)

∑
xi ,xj

θij (xi , xj )δ(Xi = xi )δ(Xj = xj )− Φ(θ)


I So discrete MRFs are always exponential family, with natural and mean parameters:

θ =
[
θi (xi ),θij (xi , xj ) ∀i, j, xi , xj

]
µ =

[
p(Xi = xi ), p(Xi = xi ,Xj = xj ) ∀i, j, xi , xj

]
In particular, the mean parameters are just the singleton and pairwise probability tables.

I If the MRF has tree structure T , the negative entropy can be written in terms of the
single-site entropies and mutual informations on edges:

Ψ(µT ) = EθT

log
∏

i

p(Xi )
∏

(ij)∈T

p(Xi ,Xj )

p(Xi )p(Xj )


= −

∑
i

H(Xi ) +
∑

(ij)∈T

I(Xi ,Xj )

The Bethe free energy again

We can see the Bethe free energy problem as a relaxation of the true free-energy
optimisation:

µ∗Y = argmax
µY∈M

[θTµY −Ψ(µY )]

whereM is the set of feasible means.

1. RelaxM→ L, where L is the set of locally consistent means (i.e. all nested means
marginalise correctly).

2. Approximate Ψ(µY ) by the tree-structured form

ΨBethe(µY ) = −
∑

i

H(Xi ) +
∑

(ij)∈G

I(Xi ,Xj )

L is still a convex set (polytope for discrete problems). However ΨBethe is not convex.



Convexifying BP

Consider instead an upper bound on Φ(θ):

Imagine a set of spanning trees T for the MRF, each with its own parameters θT ,µT . By
padding entries corresponding to off-tree edges with zero, we can assume that θT has the
same dimensionality as θ.

Suppose also that we have a distribution β over the spanning trees so that Eβ [θT ] = θ.

Then by the convexity of Φ(θ),

Φ(θ) = Φ(Eβ [θT ]) ≤ Eβ [Φ(θT )]

If we were to tighten the upper bound we might obtain a good approximation to Φ:

Φ(θ) ≤ inf
β,θT :Eβ [θT ]=θ

Eβ [Φ(θT )]

Convex Upper Bounds on the Log Partition Function

Φ(θ) ≤ inf
θT :Eβ [θT ]=θ

Eβ [Φ(θT )]

Solve this constrained optimisation problem using Lagrange multipliers:

L = Eβ [Φ(θT )]− λT(Eβ [θT ]− θ)

Setting the derivatives wrt θT to zero, we get:

β(T )λT − β(T )ΠT (λ) = 0

λT = ΠT (λ)

where ΠT (λ) are the Lagrange multipliers corresponding to vertices and edges on the tree T .

Although there can be many θT parameters, at optimum they are all constrained: their
corresponding mean parameters are all consistent with each other and with λ.

Convex Upper Bounds on the Log Partition Function

Φ(θ) ≤ sup
λ

inf
θT

Eβ [Φ(θT )]− λT(Eβ [θT ]− θ)

= sup
λ

λTθ + Eβ
[

inf
θT

Φ(θT )− θT
T ΠT (λ)

]
= sup

λ
λTθ + Eβ [−Ψ(ΠT (λ))]

= sup
λ

λTθ + Eβ

∑
i

Hλ(Xi )−
∑

(ij)∈T

Iλ(Xi ,Xj )


= sup

λ
λTθ +

∑
i

Hλ(Xi )−
∑
(ij)

βij Iλ(Xi ,Xj )

This is a convexified Bethe free energy.
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