Log-likelihoods

Probabilistic \& Unsupervised Learning

Expectation Maximisation

Maneesh Sahani

maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science

University College London

Term 1, Autumn 2017

Example: mixture of Gaussians

Component distributions:
$\mathbf{x}_{i} \mid\left(s_{i}=m\right) \sim \mathcal{P}_{m}\left[\theta_{m}\right]=\mathcal{N}\left(\boldsymbol{\mu}_{m}, \Sigma_{m}\right)$
Marginal distribution:

$$
P\left(\mathbf{x}_{i}\right)=\sum_{m=1}^{k} \pi_{m} P_{m}\left(\mathbf{x} ; \theta_{m}\right)
$$

Log-likelihood:

$$
\ell\left(\left\{\boldsymbol{\mu}_{m}\right\},\left\{\Sigma_{m}\right\}, \boldsymbol{\pi}\right)=\sum_{i=1}^{n} \log \sum_{m=1}^{k} \frac{\pi_{m}}{\sqrt{\left|2 \pi \Sigma_{m}\right|}} e^{-\frac{1}{2}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{m}\right)^{\top} \Sigma_{m}^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{m}\right)}
$$

- Exponential family models: $p(\mathbf{x} \mid \boldsymbol{\theta})=f(\mathbf{x}) e^{\boldsymbol{\theta}^{\top} \mathbf{T}(\mathbf{x})} / Z(\boldsymbol{\theta})$

$$
\left.\ell(\theta)=\theta^{\top} \sum_{n} T\left(\mathbf{x}_{n}\right)-N \log Z(\theta) \text { (}+ \text { constants }\right)
$$

- Concave function.
- Maximum may be closed-form.
- If not, numerical optimisation is still generally straightforward.
- Latent variable models: $p\left(\mathbf{x} \mid \boldsymbol{\theta}_{x}, \boldsymbol{\theta}_{y}\right)=\int d \mathbf{y} \underbrace{f_{x}(\mathbf{x}) \frac{e^{\phi\left(\boldsymbol{\theta}_{x}, \mathbf{y}\right)^{\top} \mathbf{T}_{x}(\mathbf{x})}}{Z_{x}\left(\phi\left(\boldsymbol{\theta}_{x}, \mathbf{y}\right)\right)}}_{p\left(\mathbf{x} \mid \mathbf{y}, \boldsymbol{\theta}_{x}\right)} \underbrace{f_{y}(\mathbf{y}) \frac{e^{\boldsymbol{\theta}_{y}^{\top} \mathbf{T}_{y}(\mathbf{y})}}{Z_{y}\left(\boldsymbol{\theta}_{y}\right)}}_{p\left(\mathbf{y} \mid \boldsymbol{\theta}_{y}\right)}$
$\ell\left(\theta_{x}, \theta_{y}\right)=\sum_{n} \log \int d \mathbf{y} f_{x}(\mathbf{x}) \frac{e^{\phi\left(\boldsymbol{\theta}_{x}, \mathbf{y}\right)^{\top} \mathbf{T}_{x}(\mathbf{x})}}{Z_{x}\left(\phi\left(\boldsymbol{\theta}_{x}, \mathbf{y}\right)\right)} f_{y}(\mathbf{y}) \frac{e^{\boldsymbol{\theta}_{y}^{\top} \mathbf{T}_{y}(\mathbf{y})}}{Z_{y}\left(\boldsymbol{\theta}_{y}\right)}$

Usually no closed form optimum.

- Often multiple local maxima.
- Direct numerical optimisation may be possible but infrequently easy.

The joint-data likelihood and EM

- For many models, maximisation might be straightforward if \mathbf{y} were not latent, and we could just maximise the joint-data likelihood:

$$
\ell\left(\theta_{x}, \theta_{y}\right)=\sum_{n} \phi\left(\boldsymbol{\theta}_{x}, \mathbf{y}_{n}\right)^{\top} \mathbf{T}_{x}\left(\mathbf{x}_{n}\right)+\boldsymbol{\theta}_{y}^{\top} \sum_{n} \mathbf{T}_{y}\left(\mathbf{y}_{n}\right)-\sum_{n} \log Z_{x}\left(\boldsymbol{\phi}\left(\boldsymbol{\theta}_{x}, \mathbf{y}_{n}\right)\right)-N \log Z_{y}\left(\boldsymbol{\theta}_{y}\right)
$$

- Conversely, if we knew θ, we might easily compute (the posterior over) the values of \mathbf{y}.

Idea: update $\boldsymbol{\theta}$ and (the distribution on) \mathbf{y} in alternation, to reach a self-consistent answer. Will this yield the right answer?

- Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.

The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird \& Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

E step: Fill in values of latent variables according to posterior given data.
M step: Maximise likelihood as if latent variables were not hidden.

- Decomposes difficult problems into series of tractable steps.
- An alternative to gradient-based iterative methods.
- No learning rate.
- In ML, the E step is called inference, and the M step learning. In stats, these are often imputation and inference or estimation.
- Not essential for simple models (like MoGs/FA), though often more efficient than alternatives. Crucial for learning in complex settings.
- Provides a framework for principled approximations.

The lower bound for EM - "free energy"

Observed data $\mathcal{X}=\left\{\mathbf{x}_{i}\right\}$; Latent variables $\mathcal{Y}=\left\{\mathbf{y}_{i}\right\} ;$ Parameters $\theta=\left\{\theta_{x}, \theta_{y}\right\}$.
Log-likelihood:

$$
\ell(\theta)=\log P(\mathcal{X} \mid \theta)=\log \int d \mathcal{Y} P(\mathcal{Y}, \mathcal{X} \mid \theta)
$$

By Jensen, any distribution, $q(\mathcal{Y})$, over the latent variables generates a lower bound:

$$
\ell(\theta)=\log \int d \mathcal{Y} q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X} \mid \theta)}{q(\mathcal{Y})} \geq \int d \mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X} \mid \theta)}{q(\mathcal{Y})} \stackrel{\text { def }}{=} \mathcal{F}(q, \theta)
$$

Now,

$$
\begin{aligned}
\int d \mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X} \mid \theta)}{q(\mathcal{Y})} & =\int d \mathcal{Y} q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X} \mid \theta)-\int d \mathcal{Y} q(\mathcal{Y}) \log q(\mathcal{Y}) \\
& =\int d \mathcal{Y} q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X} \mid \theta)+\mathbf{H}[q]
\end{aligned}
$$

where $\mathbf{H}[q]$ is the entropy of $q(\mathcal{Y})$.
So:

$$
\mathcal{F}(q, \theta)=\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{q(\mathcal{Y})}+\mathbf{H}[q]
$$

Jensen's inequality

One view: EM iteratively refines a lower bound on the log-likelihood.

In general:
For $\alpha_{i} \geq 0, \sum \alpha_{i}=1$ (and $\left\{x_{i}>0\right\}$):
For probability measure α and concave f

$$
\log \left(\sum_{i} \alpha_{i} x_{i}\right) \geq \sum_{i} \alpha_{i} \log \left(x_{i}\right)
$$

$$
f\left(\mathbb{E}_{\alpha}[x]\right) \geq \mathbb{E}_{\alpha}[f(x)]
$$

Equality (if and) only if $f(x)$ is almost surely constant or linear on (convex) support of α.

The E and M steps of EM

The free-energy lower bound on $\ell(\theta)$ is a function of θ and a distribution q :

$$
\mathcal{F}(q, \theta)=\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{q(\mathcal{Y})}+\mathbf{H}[q]
$$

The EM steps can be re-written:

- E step: optimize $\mathcal{F}(q, \theta)$ wrt distribution over hidden variables holding parameters fixed:

$$
q^{(k)}(\mathcal{Y}):=\underset{q(\mathcal{Y})}{\operatorname{argmax}} \mathcal{F}\left(q(\mathcal{Y}), \theta^{(k-1)}\right) .
$$

- M step: maximize $\mathcal{F}(q, \theta)$ wrt parameters holding hidden distribution fixed:

$$
\theta^{(k)}:=\underset{\theta}{\operatorname{argmax}} \mathcal{F}\left(q^{(k)}(\mathcal{Y}), \theta\right)=\underset{\theta}{\operatorname{argmax}}\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{q^{(k)}(\mathcal{Y})}
$$

The second equality comes from the fact $\mathbf{H}\left[q^{(k)}(\mathcal{Y})\right]$ does not depend directly on θ.

The E Step

The free energy can be re-written

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X} \mid \theta)}{q(\mathcal{Y})} d \mathcal{Y} \\
& =\int q(\mathcal{Y}) \log \frac{P(\mathcal{Y} \mid \mathcal{X}, \theta) P(\mathcal{X} \mid \theta)}{q(\mathcal{Y})} d \mathcal{Y} \\
& =\int q(\mathcal{Y}) \log P(\mathcal{X} \mid \theta) d \mathcal{Y}+\int q(\mathcal{Y}) \log \frac{P(\mathcal{Y} \mid \mathcal{X}, \theta)}{q(\mathcal{Y})} d \mathcal{Y} \\
& =\ell(\theta)-\operatorname{KL}[q(\mathcal{Y}) \| P(\mathcal{Y} \mid \mathcal{X}, \theta)]
\end{aligned}
$$

The second term is the Kullback-Leibler divergence.
This means that, for fixed θ, \mathcal{F} is bounded above by ℓ, and achieves that bound when $\operatorname{KL}[q(\mathcal{Y}) \| P(\mathcal{Y} \mid \mathcal{X}, \theta)]=0$.
But $\operatorname{KL}[q \| p]$ is zero if and only if $q=p$ (see appendix.)
So, the E step sets

$$
q^{(k)}(\mathcal{Y})=P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{(k-1)}\right) \quad[\text { inference / imputation }]
$$

and, after an E step, the free energy equals the likelihood

Coordinate Ascent in \mathcal{F} (Demo)

Coordinate Ascent in \mathcal{F} (Demo)

To visualise, we consider a one parameter / one latent mixture:

$$
\begin{aligned}
& s \sim \text { Bernoulli }[\pi] \\
& x|s=0 \sim \mathcal{N}[-1,1] \quad x| s=1 \sim \mathcal{N}[1,1]
\end{aligned}
$$

Single data point $x_{1}=.3$.
$q(s)$ is a distribution on a single binary latent, and so is represented by $r_{1} \in[0,1]$.

EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$
\ell\left(\theta^{(k-1)}\right) \underset{\mathrm{E} \text { step }}{=} \mathcal{F}\left(q^{(k)}, \theta^{(k-1)}\right) \underset{\mathrm{M} \text { step }}{\leq} \mathcal{F}\left(q^{(k)}, \theta^{(k)}\right) \underset{\text { Jensen }}{\leq} \ell\left(\theta^{(k)}\right)
$$

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt θ.
- $\mathcal{F} \leq \ell$ by Jensen - or, equivalently, from the non-negativity of KL

If the M -step is executed so that $\theta^{(k)} \neq \theta^{(k-1)}$ iff \mathcal{F} increases, then the overall EM iteration will step to a new value of θ iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see appendices).

EM Summary

- An iterative algorithm that finds (local) maxima of the likelihood of a latent variable model.

$$
\ell(\theta)=\log P(\mathcal{X} \mid \theta)=\log \int d \mathcal{Y} P(\mathcal{X} \mid \mathcal{Y}, \theta) P(\mathcal{Y} \mid \theta)
$$

- Increases a variational lower bound on the likelihood by coordinate ascent.

$$
\mathcal{F}(q, \theta)=\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{q(\mathcal{Y})}+\mathbf{H}[q]=\ell(\theta)-\mathbf{K L}[q(\mathcal{Y}) \| P(\mathcal{Y} \mid \mathcal{X})] \leq \ell(\theta)
$$

- E step:

$$
q^{(k)}(\mathcal{Y}):=\underset{a(\mathcal{Y})}{\operatorname{argmax}} \mathcal{F}\left(q(\mathcal{Y}), \theta^{(k-1)}\right)=P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{(k-1)}\right)
$$

- M step:

$$
\theta^{(k)}:=\underset{\theta}{\operatorname{argmax}} \mathcal{F}\left(q^{(k)}(\mathcal{Y}), \theta\right)=\underset{\theta}{\operatorname{argmax}}\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{q^{(k)}(\mathcal{Y})}
$$

- After E-step $\mathcal{F}(q, \theta)=\ell(\theta) \Rightarrow$ maximum of free-energy is maximum of likelihood.

EM for MoGs

- Evaluate responsibilities

$$
r_{i m}=\frac{P_{m}(\mathbf{x}) \pi_{m}}{\sum_{m^{\prime}} P_{m^{\prime}}(\mathbf{x}) \pi_{m^{\prime}}}
$$

- Update parameters

$$
\begin{aligned}
\boldsymbol{\mu}_{m} & \leftarrow \frac{\sum_{i} r_{i m} \mathbf{x}_{i}}{\sum_{i} r_{i m}} \\
\Sigma_{m} & \leftarrow \frac{\sum_{i} r_{i m}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{m}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{m}\right)^{\top}}{\sum_{i} r_{i m}} \\
\pi_{m} & \leftarrow \frac{\sum_{i} r_{i m}}{N}
\end{aligned}
$$

Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase \mathcal{F} wrt θ rather than maximize. (Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step

$$
\left.\frac{\partial}{\partial \theta}\right|_{\theta^{(k-1)}}\langle\log P(\mathcal{X}, \mathcal{Y} \mid \theta)\rangle_{q^{(k)}(\mathcal{Y})\left[=P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{(k-1)}\right)\right]}=\left.\frac{\partial}{\partial \theta}\right|_{\theta^{(k-1)}} \log P(\mathcal{X} \mid \theta)
$$

[cf. mixture gradients from last lecture.] So E-step (inference) can be used to construct other gradient-based optimisation schemes (e.g. "Expectation Conjugate Gradient", Salakhutdinov et al. ICML 2003).

Partial E steps: We can also just increase \mathcal{F} wrt to some of the qs.
For example, sparse or online versions of the EM algorithm would compute the posterior for a subset of the data points or as the data arrives, respectively. One might also update the posterior over a subset of the hidden variables, while holding others fixed...

The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

$$
p(x \mid \theta)=\sum_{m=1}^{k} p(s=m \mid \theta) p(x \mid s=m, \theta) \propto \sum_{m=1}^{k} \frac{\pi_{m}}{\sigma_{m}} \exp \left\{-\frac{1}{2 \sigma_{m}^{2}}\left(x-\mu_{m}\right)^{2}\right\}
$$

where θ is the collection of parameters: means μ_{m}, variances σ_{m}^{2} and mixing proportions $\pi_{m}=p(s=m \mid \theta)$.
The hidden variable s_{i} indicates which component generated observation x_{i}.

The E-step computes the posterior for s_{i} given the current parameters:

$$
\begin{aligned}
& q\left(s_{i}\right)=p\left(s_{i} \mid x_{i}, \theta\right) \\
& r_{i m} \stackrel{\text { def }}{=} q\left(s_{i} \mid s_{i}, \theta\right) p\left(s_{i} \mid \theta\right) \\
&=m) \propto \frac{\pi_{m}}{\sigma_{m}} \exp \left\{-\frac{1}{2 \sigma_{m}^{2}}\left(x_{i}-\mu_{m}\right)^{2}\right\} \quad \text { (responsibilities) } \quad \leftarrow\left\langle\delta_{s_{i}=m}\right\rangle_{q}
\end{aligned}
$$

with the normalization such that $\sum_{m} r_{i m}=1$.

The Gaussian mixture model (M-step)

EM for Factor Analysis

In the M-step we optimize the sum (since s is discrete):

$$
\begin{aligned}
E=\langle\log p(x, s \mid \theta)\rangle_{q(s)} & =\sum q(s) \log [p(s \mid \theta) p(x \mid s, \theta)] \\
& =\sum_{i, m} r_{i m}\left[\log \pi_{m}-\log \sigma_{m}-\frac{1}{2 \sigma_{m}^{2}}\left(x_{i}-\mu_{m}\right)^{2}\right]
\end{aligned}
$$

Optimum is found by setting the partial derivatives of E to zero:

$$
\begin{aligned}
& \frac{\partial}{\partial \mu_{m}} E=\sum_{i} r_{i m} \frac{\left(x_{i}-\mu_{m}\right)}{2 \sigma_{m}^{2}}=0 \Rightarrow \mu_{m}=\frac{\sum_{i} r_{i m} x_{i}}{\sum_{i} r_{i m}} \\
& \frac{\partial}{\partial \sigma_{m}} E=\sum_{i} r_{i m}\left[-\frac{1}{\sigma_{m}}+\frac{\left(x_{i}-\mu_{m}\right)^{2}}{\sigma_{m}^{3}}\right]=0 \Rightarrow \sigma_{m}^{2}=\frac{\sum_{i} r_{i m}\left(x_{i}-\mu_{m}\right)^{2}}{\sum_{i} r_{i m}} \\
& \frac{\partial}{\partial \pi_{m}} E=\sum_{i} r_{i m} \frac{1}{\pi_{m}}, \quad \frac{\partial E}{\partial \pi_{m}}+\lambda=0 \Rightarrow \pi_{m}=\frac{1}{n} \sum_{i} r_{i m}
\end{aligned}
$$

where λ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.

The E step for Factor Analysis

E step: For each data point \mathbf{x}_{n}, compute the posterior distribution of hidden factors given the observed data: $q_{n}\left(\mathbf{y}_{n}\right)=p\left(\mathbf{y}_{n} \mid \mathbf{x}_{n}, \theta\right)=p\left(\mathbf{y}_{n}, \mathbf{x}_{n} \mid \theta\right) / p\left(\mathbf{x}_{n} \mid \theta\right)$
Tactic: write $p\left(\mathbf{y}_{n}, \mathbf{x}_{n} \mid \theta\right)$, consider \mathbf{x}_{n} to be fixed. What is this as a function of \mathbf{y}_{n} ?
$p\left(\mathbf{y}_{n}, \mathbf{x}_{n}\right)=p\left(\mathbf{y}_{n}\right) p\left(\mathbf{x}_{n} \mid \mathbf{y}_{n}\right)$

$$
\begin{aligned}
& =(2 \pi)^{-\frac{K}{2}} \exp \left\{-\frac{1}{2} \mathbf{y}_{n}^{\top} \mathbf{y}_{n}\right\}|2 \pi \Psi|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}_{n}-\Lambda \mathbf{y}_{n}\right)^{\top} \Psi^{-1}\left(\mathbf{x}_{n}-\Lambda \mathbf{y}_{n}\right)\right\} \\
& =c \times \exp \left\{-\frac{1}{2}\left[\mathbf{y}_{n}^{\top} \mathbf{y}_{n}+\left(\mathbf{x}_{n}-\Lambda \mathbf{y}_{n}\right)^{\top} \Psi^{-1}\left(\mathbf{x}_{n}-\Lambda \mathbf{y}_{n}\right)\right]\right\} \\
& =c^{\prime} \times \exp \left\{-\frac{1}{2}\left[\mathbf{y}_{n}^{\top}\left(I+\Lambda^{\top} \Psi^{-1} \Lambda\right) \mathbf{y}_{n}-2 \mathbf{y}_{n}^{\top} \Lambda^{\top} \Psi^{-1} \mathbf{x}_{n}\right]\right\} \\
& =c^{\prime \prime} \times \exp \left\{-\frac{1}{2}\left[\mathbf{y}_{n}^{\top} \Sigma^{-1} \mathbf{y}_{n}-2 \mathbf{y}_{n}^{\top} \Sigma^{-1} \boldsymbol{\mu}_{n}+\boldsymbol{\mu}_{n}^{\top} \Sigma^{-1} \boldsymbol{\mu}_{n}\right]\right\}
\end{aligned}
$$

So $\Sigma=\left(I+\Lambda^{\top} \Psi^{-1} \Lambda\right)^{-1}=I-\beta \Lambda$ and $\boldsymbol{\mu}_{n}=\Sigma \Lambda^{\top} \Psi^{-1} \mathbf{x}_{n}=\beta \mathbf{x}_{n}$. Where $\beta=\Sigma \Lambda^{\top} \Psi^{-1}$. Note that $\boldsymbol{\mu}_{n}$ is a linear function of \mathbf{x}_{n} and Σ does not depend on \mathbf{x}_{n}.

The model for \mathbf{x} :

$$
p(\mathbf{x} \mid \theta)=\int p(\mathbf{y} \mid \theta) p(\mathbf{x} \mid \mathbf{y}, \theta) d \mathbf{y}=\mathcal{N}\left(0, \Lambda \Lambda^{\top}+\Psi\right)
$$

Model parameters: $\theta=\{\Lambda, \Psi\}$.

E step: For each data point \mathbf{x}_{n}, compute the posterior distribution of hidden factors given the observed data: $q_{n}\left(\mathbf{y}_{n}\right)=p\left(\mathbf{y}_{n} \mid \mathbf{x}_{n}, \theta_{t}\right)$.
M step: Find the θ_{t+1} that maximises $\mathcal{F}(q, \theta)$:

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\sum_{n} \int q_{n}\left(\mathbf{y}_{n}\right)\left[\log p\left(\mathbf{y}_{n} \mid \theta\right)+\log p\left(\mathbf{x}_{n} \mid \mathbf{y}_{n}, \theta\right)-\log q_{n}\left(\mathbf{y}_{n}\right)\right] d \mathbf{y}_{n} \\
& =\sum_{n} \int q_{n}\left(\mathbf{y}_{n}\right)\left[\log p\left(\mathbf{y}_{n} \mid \theta\right)+\log p\left(\mathbf{x}_{n} \mid \mathbf{y}_{n}, \theta\right)\right] d \mathbf{y}_{n}+c
\end{aligned}
$$

The M step for Factor Analysis

\mathbf{M} step: Find θ_{t+1} by maximising $\mathcal{F}=\sum_{n}\left\langle\log p\left(\mathbf{y}_{n} \mid \theta\right)+\log p\left(\mathbf{x}_{n} \mid \mathbf{y}_{n}, \theta\right)\right\rangle_{q_{n}\left(\mathbf{y}_{n}\right)}+\mathbf{c}$

$$
\begin{array}{rl}
\log p & p\left(\mathbf{y}_{n} \mid \theta\right)+\log p\left(\mathbf{x}_{n} \mid \mathbf{y}_{n}, \theta\right) \\
& =\mathrm{c}-\frac{1}{2} \mathbf{y}_{n}^{\top} \mathbf{y}_{n}-\frac{1}{2} \log |\Psi|-\frac{1}{2}\left(\mathbf{x}_{n}-\Lambda \mathbf{y}_{n}\right)^{\top} \Psi^{-1}\left(\mathbf{x}_{n}-\Lambda \mathbf{y}_{n}\right) \\
& =\mathrm{c}^{\prime}-\frac{1}{2} \log |\Psi|-\frac{1}{2}\left[\mathbf{x}_{n}^{\top} \Psi^{-1} \mathbf{x}_{n}-2 \mathbf{x}_{n}^{\top} \Psi^{-1} \Lambda \mathbf{y}_{n}+\mathbf{y}_{n}^{\top} \Lambda^{\top} \Psi^{-1} \Lambda \mathbf{y}_{n}\right] \\
& =\mathrm{c}^{\prime}-\frac{1}{2} \log |\Psi|-\frac{1}{2}\left[\mathbf{x}_{n}^{\top} \Psi^{-1} \mathbf{x}_{n}-2 \mathbf{x}_{n}^{\top} \Psi^{-1} \Lambda \mathbf{y}_{n}+\operatorname{Tr}\left[\Lambda^{\top} \Psi^{-1} \Lambda \mathbf{y}_{n} \mathbf{y}_{n}^{\top}\right]\right]
\end{array}
$$

Taking expectations wrt $q_{n}\left(\mathbf{y}_{n}\right)$:

$$
=c^{\prime}-\frac{1}{2} \log |\Psi|-\frac{1}{2}\left[\mathbf{x}_{n}^{\top} \Psi^{-1} \mathbf{x}_{n}-2 \mathbf{x}_{n}^{\top} \Psi^{-1} \Lambda \mu_{n}+\operatorname{Tr}\left[\Lambda^{\top} \Psi^{-1} \Lambda\left(\mu_{n} \mu_{n}^{\top}+\Sigma\right)\right]\right]
$$

Note that we don't need to know everything about $q\left(\mathbf{y}_{n}\right)$, just the moments $\left\langle\mathbf{y}_{n}\right\rangle$ and $\left\langle\mathbf{y}_{n} \mathbf{y}_{n}^{\top}\right\rangle$. These are the expected sufficient statistics.

The M step for Factor Analysis (cont.)

$$
\mathcal{F}=c^{\prime}-\frac{N}{2} \log |\Psi|-\frac{1}{2} \sum_{n}\left[\mathbf{x}_{n}^{\top} \Psi^{-1} \mathbf{x}_{n}-2 \mathbf{x}_{n}^{\top} \Psi^{-1} \Lambda \boldsymbol{\mu}_{n}+\operatorname{Tr}\left[\Lambda^{\top} \Psi^{-1} \Lambda\left(\boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\top}+\Sigma\right)\right]\right]
$$

Taking derivatives wrt Λ and Ψ^{-1}, using $\frac{\partial \operatorname{Tr}[A B]}{\partial B}=A^{\top}$ and $\frac{\partial \log |A|}{\partial A}=A^{-\top}$:

$$
\begin{aligned}
\frac{\partial \mathcal{F}}{\partial \Lambda} & =\Psi^{-1} \sum_{n} \mathbf{x}_{n} \boldsymbol{\mu}_{n}^{\top}-\Psi^{-1} \Lambda\left(N \Sigma+\sum_{n} \boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\top}\right)=0 \\
\Rightarrow \widehat{\Lambda} & =\left(\sum_{n} \mathbf{x}_{n} \boldsymbol{\mu}_{n}^{\top}\right)\left(N \Sigma+\sum_{n} \boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\top}\right)^{-1} \\
\frac{\partial \mathcal{F}}{\partial \Psi^{-1}} & =\frac{N}{2} \Psi-\frac{1}{2} \sum_{n}\left[\mathbf{x}_{n} \mathbf{x}_{n}^{\top}-\Lambda \boldsymbol{\mu}_{n} \mathbf{x}_{n}^{\top}-\mathbf{x}_{n} \boldsymbol{\mu}_{n}^{\top} \Lambda^{\top}+\Lambda\left(\boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\top}+\Sigma\right) \Lambda^{\top}\right] \\
\Rightarrow \widehat{\Psi} & =\frac{1}{N} \sum_{n}\left[\mathbf{x}_{n} \mathbf{x}_{n}^{\top}-\Lambda \boldsymbol{\mu}_{n} \mathbf{x}_{n}^{\top}-\mathbf{x}_{n} \boldsymbol{\mu}_{n}^{\top} \Lambda^{\top}+\Lambda\left(\boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\top}+\Sigma\right) \Lambda^{\top}\right] \\
\widehat{\Psi} & =\Lambda \Sigma \Lambda^{\top}+\frac{1}{N} \sum_{n}\left(\mathbf{x}_{n}-\Lambda \boldsymbol{\mu}_{n}\right)\left(\mathbf{x}_{n}-\Lambda \boldsymbol{\mu}_{n}\right)^{\top} \quad \text { (squared residuals) }
\end{aligned}
$$

Note: we should actually only take derivatives w.r.t. $\Psi_{d d}$ since Ψ is diagonal.
As $\Sigma \rightarrow 0$ these become the equations for ML linear regression

EM for exponential families

EM is often applied to models whose joint over $\mathbf{z}=(\mathbf{y}, \mathbf{x})$ has exponential-family form:

$$
p(\mathbf{z} \mid \theta)=f(\mathbf{z}) \exp \left\{\theta^{\top} \mathrm{T}(\mathbf{z})\right\} / Z(\theta)
$$

(with $Z(\theta)=\int f(\mathbf{z}) \exp \left\{\theta^{\top} T(\mathbf{z})\right\} d \mathbf{z}$) but whose marginal $p(\mathbf{x}) \notin$ ExpFam.
The free energy dependence on θ is given by:

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\int q(\mathbf{y}) \log p(\mathbf{y}, \mathbf{x} \mid \theta) d \mathbf{y}+\mathbf{H}[q] \\
& =\int q(\mathbf{y})\left[\theta^{\top} \mathrm{T}(\mathbf{z})-\log Z(\theta)\right] d \mathbf{y}+\text { const wrt } \theta \\
& =\theta^{\top}\langle\mathrm{T}(\mathbf{z})\rangle_{q(\mathbf{y})}-\log Z(\theta)+\text { const wrt } \theta
\end{aligned}
$$

So, in the E step all we need to compute are the expected sufficient statistics under q. We also have:

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \log Z(\theta)=\frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} Z(\theta) & =\frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} \int f(\mathbf{z}) \exp \left\{\theta^{\top} \mathrm{T}(\mathbf{z})\right\} \\
& =\int \frac{1}{Z(\theta)} f(\mathbf{z}) \exp \left\{\theta^{\top} \mathrm{T}(\mathbf{z})\right\} \cdot \mathrm{T}(\mathbf{z})=\langle\mathrm{T}(\mathbf{z}) \mid \theta\rangle
\end{aligned}
$$

Thus, the M step solves: $\quad \frac{\partial \mathcal{F}}{\partial \theta}=\langle\mathrm{T}(\mathbf{z})\rangle_{q(\mathbf{y})}-\langle\mathrm{T}(\mathbf{z}) \mid \theta\rangle=0$

Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

$$
p(\mathbf{x} \mid \theta)=\sum_{k} \pi_{k} \mathcal{N}\left(\boldsymbol{\mu}_{k}, \Lambda_{k} \Lambda_{k}^{\top}+\Psi\right)
$$

where π_{k} is the mixing proportion for FA $k, \boldsymbol{\mu}_{k}$ is its centre, Λ_{k} is its "factor loading matrix", and Ψ is a common sensor noise model. $\theta=\left\{\left\{\pi_{k}, \boldsymbol{\mu}_{k}, \Lambda_{k}\right\}_{k=1 \ldots k}, \Psi\right\}$
We can think of this model as having two sets of hidden latent variables:

- A discrete indicator variable $s_{n} \in\{1, \ldots K\}$
- For each factor analyzer, a continous factor vector $\mathbf{y}_{n, k} \in \mathcal{R}^{D_{k}}$

$$
p(\mathbf{x} \mid \theta)=\sum_{s_{n}=1}^{K} p\left(s_{n} \mid \theta\right) \int p\left(\mathbf{y} \mid s_{n}, \theta\right) p\left(\mathbf{x}_{n} \mid \mathbf{y}, s_{n}, \theta\right) d \mathbf{y}
$$

As before, an EM algorithm can be derived for this model:
E step: We need moments of $p\left(\mathbf{y}_{n}, s_{n} \mid \mathbf{x}_{n}, \theta\right)$, specifically: $\left\langle\delta_{s_{n}=m}\right\rangle,\left\langle\delta_{s_{n}=m} \mathbf{y}_{n}\right\rangle$ and $\left\langle\delta_{s_{n}=m} \mathbf{y}_{n} \mathbf{y}_{n}^{\top}\right\rangle$.
M step: Similar to M-step for FA with responsibility-weighted moments.
See http://www.learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

EM for exponential family mixtures

To derive EM formally for models with discrete latents (including mixtures) it is useful to introduce an indicator vector \mathbf{s} in place of the discrete s.

$$
s_{i}=m \quad \Leftrightarrow \quad \mathbf{s}_{i}=[0,0, \ldots, \underbrace{1}, \ldots 0]
$$

Collecting the M component distributions' natural params into a matrix $\Theta=\left[\boldsymbol{\theta}_{m}\right]$:

$$
\log P(\mathcal{X}, \mathcal{S})=\sum_{i}\left[(\log \pi)^{\top} \mathbf{s}_{i}+\mathbf{s}_{i}^{\top} \Theta^{\top} T\left(\mathbf{x}_{i}\right)-\mathbf{s}_{i}^{\top} \log \mathbf{Z}(\Theta)\right]+\text { const }
$$

where $\log \mathbf{Z}(\Theta)$ collects the log-normalisers for all components into an M-element vector. Then, the expected sufficient statistics (E-step) are:

$$
\begin{aligned}
\sum_{i}\left\langle\mathbf{s}_{i}\right\rangle_{q} & \text { (responsibilities } r_{i m} \text {) } \\
\sum_{i} T\left(\mathbf{x}_{i}\right)\left\langle\mathbf{s}_{i}^{\top}\right\rangle_{q} & \text { (responsibility-weighted sufficient stats) }
\end{aligned}
$$

And maximisation of the expected log-joint (M-step) gives:

$$
\begin{aligned}
& \boldsymbol{\pi}^{(k+1)} \propto \sum_{i}\left\langle\mathbf{s}_{i}\right\rangle_{q} \\
& \left\langle T(\mathbf{x}) \mid \boldsymbol{\theta}_{m}^{(k+1)}\right\rangle=\left(\sum_{i} T\left(\mathbf{x}_{i}\right)\left\langle\left[\mathbf{s}_{i}\right]_{m}\right\rangle_{q}\right) /\left(\sum_{i}\left\langle\left[\mathbf{s}_{i}\right]_{m}\right\rangle_{q}\right)
\end{aligned}
$$

What if we have a prior?

$$
p(\mathbf{z} \mid \theta)=f(\mathbf{z}) \exp \left\{\theta^{\top} T(\mathbf{z})\right\} / Z(\theta) \quad p(\theta)=F(\nu, \boldsymbol{\tau}) \exp \left\{\theta^{\top} \boldsymbol{\tau}\right\} / Z(\theta)^{\nu}
$$

Augment the free energy by adding the log prior:

$$
\begin{aligned}
\mathcal{F}_{\mathrm{MAP}}(q, \theta) & =\int q(\mathcal{Y}) \log p(\mathcal{Y}, \mathcal{X}, \theta) d \mathcal{Y}+\mathbf{H}[q] \leq \log P(\mathcal{X} \mid \theta)+\log P(\theta) \\
& =\int q(\mathcal{Y})\left[\theta^{\top}\left(\sum_{i} \mathrm{~T}\left(\mathbf{z}_{i}\right)+\boldsymbol{\tau}\right)-(N+\nu) \log Z(\theta)\right] d \mathcal{Y}+\text { const wrt } \theta \\
& =\theta^{\top}\left(\langle\mathrm{T}(\mathbf{z})\rangle_{q(\mathbf{y})}+\boldsymbol{\tau}\right)-(N+\nu) \log Z(\theta)+\text { const wrt } \theta
\end{aligned}
$$

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy maxima are log-joint maxima (i.e. MAP values).

Can we find posteriors? Only approximately - we'll return to this later as "Variational Bayes".

Proof of the Matrix Inversion Lemma

$$
\left(A+X B X^{\top}\right)^{-1}=A^{-1}-A^{-1} X\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1} X^{\top} A^{-1}
$$

Need to prove:

$$
\left(A^{-1}-A^{-1} X\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1} X^{\top} A^{-1}\right)\left(A+X B X^{\top}\right)=I
$$

Expand:

$$
I+A^{-1} X B X^{\top}-A^{-1} X\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1} X^{\top}-A^{-1} X\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1} X^{\top} A^{-1} X B X^{\top}
$$

Regroup:

$$
\begin{aligned}
& =I+A^{-1} X\left(B X^{\top}-\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1} X^{\top}-\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1} X^{\top} A^{-1} X B X^{\top}\right) \\
& =I+A^{-1} X\left(B X^{\top}-\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1} B^{-1} B X^{\top}-\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1} X^{\top} A^{-1} X B X^{\top}\right) \\
& =I+A^{-1} X\left(B X^{\top}-\left(B^{-1}+X^{\top} A^{-1} X\right)^{-1}\left(B^{-1}+X^{\top} A^{-1} X\right) B X^{\top}\right) \\
& =I+A^{-1} X\left(B X^{\top}-B X^{\top}\right)=I
\end{aligned}
$$

References

- A. P. Dempster, N. M. Laird and D. B. Rubin (1977).

Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1 (1977), pp. 1-38. http://www. jstor.org/stable/2984875

- R. M. Neal and G. E. Hinton (1998).

A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (editor) Learning in Graphical Models, pp. 355-368, Dordrecht: Kluwer Academic Publishers.
http://www.cs.utoronto.ca/~radford/ftp/emk.pdf

- R. Salakhutdinov, S. Roweis and Z. Ghahramani, (2003). Optimization with EM and expectation-conjugate-gradient.
In ICML (pp. 672-679).
http://www.cs.utoronto.ca/~rsalakhu/papers/emecg.pdf
- Z. Ghahramani and G. E. Hinton (1996).

The EM Algorithm for Mixtures of Factor Analyzers.
University of Toronto Technical Report CRG-TR-96-1.
http://learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf
$\mathrm{KL}[q(x) \| p(x)] \geq 0$, with equality iff $\forall x: p(x)=q(x)$
First consider discrete distributions; the Kullback-Liebler divergence is:

$$
\mathrm{KL}[q \| p]=\sum_{i} q_{i} \log \frac{q_{i}}{p_{i}}
$$

To minimize wrt distribution q we need a Lagrange multiplier to enforce normalisation:

$$
E \stackrel{\text { def }}{=} \mathbf{K L}[q \| p]+\lambda\left(1-\sum_{i} q_{i}\right)=\sum_{i} q_{i} \log \frac{q_{i}}{p_{i}}+\lambda\left(1-\sum_{i} q_{i}\right)
$$

Find conditions for stationarity

$$
\left.\begin{array}{l}
\frac{\partial E}{\partial q_{i}}=\log q_{i}-\log p_{i}+1-\lambda=0 \Rightarrow q_{i}=p_{i} \exp (\lambda-1) \\
\frac{\partial E}{\partial \lambda}=1-\sum_{j} q_{i}=0 \Rightarrow \sum_{i} q_{i}=1
\end{array}\right\} \Rightarrow q_{i}=p_{i}
$$

Check sign of curvature (Hessian):

$$
\frac{\partial^{2} E}{\partial q_{i} \partial q_{i}}=\frac{1}{q_{i}}>0, \quad \frac{\partial^{2} E}{\partial q_{i} \partial q_{j}}=0
$$

so unique stationary point $q_{i}=p_{i}$ is indeed a minimum. Easily verified that at that minimum,
A similar proof holds for continuous densities, using functional derivatives.

Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^{*}. Then:

$$
\left.\frac{\partial}{\partial \theta}\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Now, $\quad \ell(\theta)=\log P(\mathcal{X} \mid \theta)=\langle\log P(\mathcal{X} \mid \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}$

$$
\begin{aligned}
& =\left\langle\log \frac{P(\mathcal{Y}, \mathcal{X} \mid \theta)}{P(\mathcal{Y} \mid \mathcal{X}, \theta)}\right\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)} \\
& =\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}-\langle\log P(\mathcal{Y} \mid \mathcal{X}, \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}
\end{aligned}
$$

so, $\quad \frac{d}{d \theta} \ell(\theta)=\frac{d}{d \theta}\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}-\frac{d}{d \theta}\langle\log P(\mathcal{Y} \mid \mathcal{X}, \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}$
The second term is 0 at θ^{*} if the derivative exists (minimum of $\mathrm{KL}[\cdot \| \cdot]$), and thus:

$$
\left.\frac{d}{d \theta} \ell(\theta)\right|_{\theta^{*}}=\left.\frac{d}{d \theta}\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

So, EM converges to a stationary point of $\ell(\theta)$.

Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^{*} now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)
Differentiating the previous expression wrt θ again we find

$$
\frac{d^{2}}{d \theta^{2}} \ell(\theta)=\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathcal{Y}, \mathcal{X} \mid \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}-\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathcal{Y} \mid \mathcal{X}, \theta)\rangle_{P\left(\mathcal{Y} \mid \mathcal{X}, \theta^{*}\right)}
$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum). Thus the curvature of the likelihood is negative and

$$
\theta^{*} \text { is a maximum of } \ell
$$

[... as long as the derivatives exist. They sometimes don't (zero-noise ICA)].

