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Graphs, independence and factorisation.

y1 y2 y3 yT
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• • •

The (Markov) independence structure of a latent chain model implied that the joint-data
likelihood factorised:

P(X ,Y) = P(y1)P(x1|y1)
T∏

t=1

P(yt |yt−1)P(xt |yt)

We exploited the factored form to obtain local O(T ) learning algorithms.

I Learning: requires only local marginals of posterior
I Inference: local marginals found by passing local messages

The independence structure of the model (and the factorisation of its likelihood) is encoded in
its graph.
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Varieties of graphical model
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bidirected graph chain graph mixed graph

I Nodes in the graph correspond to random variables.
I Edges in graph indicate statistical dependence between the variables.
I (Absent edges signal (conditional) independence between variables).



Why the graph?

I Gives an intuitive representation of the relationships amongst many variables, possibly
embodying prior beliefs or knowledge about causal relationships.
(Examples: inheritance in family trees, noise in electric circuits, neural networks)

I Provides a precise syntax to describe these relationships, and to infer any implied
(in)dependencies amongst larger groups of variables.

Is A⊥⊥E |{B,C}?

I Each graphical structure corresponds to a parametric family of distributions that satisfy
all the implied (in)dependencies.

I Graph-based manipulations allow us to identify the sufficient statististics of these
distributions needed for learning, and to construct general-purpose message-passing
algorithms that implement inference efficiently.

Find P(A|C = c) without enumerating all settings of B,D,E . . .



Why the graph?

I Gives an intuitive representation of the relationships amongst many variables, possibly
embodying prior beliefs or knowledge about causal relationships.
(Examples: inheritance in family trees, noise in electric circuits, neural networks)

I Provides a precise syntax to describe these relationships, and to infer any implied
(in)dependencies amongst larger groups of variables.

Is A⊥⊥E |{B,C}?

I Each graphical structure corresponds to a parametric family of distributions that satisfy
all the implied (in)dependencies.

I Graph-based manipulations allow us to identify the sufficient statististics of these
distributions needed for learning, and to construct general-purpose message-passing
algorithms that implement inference efficiently.

Find P(A|C = c) without enumerating all settings of B,D,E . . .



Why the graph?

I Gives an intuitive representation of the relationships amongst many variables, possibly
embodying prior beliefs or knowledge about causal relationships.
(Examples: inheritance in family trees, noise in electric circuits, neural networks)

I Provides a precise syntax to describe these relationships, and to infer any implied
(in)dependencies amongst larger groups of variables.

Is A⊥⊥E |{B,C}?

I Each graphical structure corresponds to a parametric family of distributions that satisfy
all the implied (in)dependencies.

I Graph-based manipulations allow us to identify the sufficient statististics of these
distributions needed for learning, and to construct general-purpose message-passing
algorithms that implement inference efficiently.

Find P(A|C = c) without enumerating all settings of B,D,E . . .



Why the graph?

I Gives an intuitive representation of the relationships amongst many variables, possibly
embodying prior beliefs or knowledge about causal relationships.
(Examples: inheritance in family trees, noise in electric circuits, neural networks)

I Provides a precise syntax to describe these relationships, and to infer any implied
(in)dependencies amongst larger groups of variables.

Is A⊥⊥E |{B,C}?

I Each graphical structure corresponds to a parametric family of distributions that satisfy
all the implied (in)dependencies.

I Graph-based manipulations allow us to identify the sufficient statististics of these
distributions needed for learning, and to construct general-purpose message-passing
algorithms that implement inference efficiently.

Find P(A|C = c) without enumerating all settings of B,D,E . . .



Types of independence

For events or random variables X ,Y ,V :

Conditional Independence:

X⊥⊥Y |V ⇔ P(X |Y ,V ) = P(X |V ) [provided, for events, P(Y ,V ) > 0]

Thus,

X⊥⊥Y |V ⇔ P(X ,Y |V ) = P(X |Y ,V )P(Y |V ) = P(X |V )P(Y |V )

We can generalise to conditional independence between sets of random variables:

X⊥⊥Y|V ⇔ {X⊥⊥Y |V, ∀X ∈ X and ∀Y ∈ Y}

Marginal Independence:

X⊥⊥Y ⇔ X⊥⊥Y |∅ ⇔ P(X ,Y ) = P(X)P(Y )



Factor graphs
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A factor graph is a direct graphical representation of the factorised model structure: each
square indicates a factor that depends on the linked variables.

P(X ) = 1
Z

∏
j

fj(XCj )

where X = {X1, . . . ,XK}, XS = {Xi : i ∈ S}, j indexes the factors, Cj contains the indices
of variables adjacent to factor j , fj is the factor function (also called the factor potential or
clique potential) and Z is a normalisation constant.



Factor graphs: examples
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Examples:

(a) P(A,B,C,D,E) = 1
Za

f1(A,C)f2(B,C,D)f3(C,D,E)

(b) P(A,B,C,D,E) = 1
Zb

f1(A,C)f2(B,C)f3(C,D)f4(B,D)f5(C,E)f6(D,E)

and [e.g.]:

Za =
∑
a∈A

∑
b∈B

∑
c∈C

∑
d∈D

∑
e∈E

f1(a, c)f2(b, c, d)f3(c, d , e)

where A, B, C, D and E are the domains of the corresponding random variables.



Factor graphs: conditional independence
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Conditional independence: X⊥⊥Y |V if every path between X and Y contains some V ∈ V .

In both graphs:

A⊥⊥D|C
B 6⊥⊥E |C
B⊥⊥E |{C,D}
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Factorisation and conditional independence
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Every path between X and Y contains some V ∈ V

⇒ there exists a factorisation:

P(X ,Y ,V, . . . ) = 1
Z

gX (X ,VX ,QX )gY (Y ,VY ,QY )gR(QR ,VR)

where Vx ,Vy ,VR ⊆ V and the sets of remaining variables QX , QY and QR are disjoint.

⇒ P(X |Y ,V, . . . ) = P(X ,Y ,V, . . . )
P(Y ,V, . . . ) =

1
Z gX (X ,VX ,QX )gY (Y ,VY ,QY )gR(QR ,VR)∑

X ′
1
Z gX (X ′,VX ,QX )gY (Y ,VY ,QY )gR(QR ,VR)

=
gX (X ,VX ,QX )∑
X ′ gX (X ′,VX ,QX )

Since the RHS does not depend on Y , it follows that X⊥⊥Y |V .
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Factor graphs: neighbourhoods and Markov boundaries
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I Variables are neighbours if they share a common factor; the neighbourhood ne(X) is the
set of all neighbours of X .

I Each variable X is conditionally independent of all non-neighbours given its
neighbours: X⊥⊥Y | ne(X), ∀Y /∈ {X ∪ ne(X)}
⇒ ne(X) is a Markov blanket for X .

I In fact, the neighbourhood is the minimal such set: the Markov boundary.
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Undirected graphical models: Markov networks
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An undirected graphical model is a direct representation of conditional independence
structure. Nodes are connected iff they are conditionally dependent given all others.

⇒ neighbours (connected nodes) in a Markov net share a factor.

⇒ non-neighbours (disconnected nodes) in a Markov net cannot share a factor.

⇒ the joint probability factors over the maximal cliques Cj of the graph:

P(X ) = 1
Z

∏
j

fj(XCj )

It may also factor more finely (as we will see in a moment).

[Cliques are fully connected subgraphs, maximal cliques are cliques not contained in other cliques.]



Undirected graphical models: Markov networks

A B

C

D

E

An undirected graphical model is a direct representation of conditional independence
structure. Nodes are connected iff they are conditionally dependent given all others.

⇒ neighbours (connected nodes) in a Markov net share a factor.

⇒ non-neighbours (disconnected nodes) in a Markov net cannot share a factor.

⇒ the joint probability factors over the maximal cliques Cj of the graph:

P(X ) = 1
Z

∏
j

fj(XCj )

It may also factor more finely (as we will see in a moment).

[Cliques are fully connected subgraphs, maximal cliques are cliques not contained in other cliques.]



Undirected graphical models: Markov networks

A B

C

D

E

An undirected graphical model is a direct representation of conditional independence
structure. Nodes are connected iff they are conditionally dependent given all others.

⇒ neighbours (connected nodes) in a Markov net share a factor.

⇒ non-neighbours (disconnected nodes) in a Markov net cannot share a factor.

⇒ the joint probability factors over the maximal cliques Cj of the graph:

P(X ) = 1
Z

∏
j

fj(XCj )

It may also factor more finely (as we will see in a moment).

[Cliques are fully connected subgraphs, maximal cliques are cliques not contained in other cliques.]



Undirected graphs: Markov boundaries
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I X⊥⊥Y |V if every path between X and Y contains some node V ∈ V
I Each variable X is conditionally independent of all non-neighbours given its neighbours:

X⊥⊥Y | ne(X), ∀Y /∈ {X ∪ ne(X)}
I V is a Markov blanket for X iff X⊥⊥Y |V for all Y /∈ {X ∪ V}.
I Markov boundary: minimal Markov blanket. For undirected graphs (like factor graphs)

this is the set of neighbours of X .



Undirected graphs and factor graphs
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I Each node has the same neighbours in each graph, so (a), (b) and (c) represent exactly
the same conditional independence relationships.

I The implied maximal factorisations differ: (b) has two three-way factors; (c) has only
pairwise factors; (a) cannot distinguish between these (so we have to adopt factorisation
(b) to be safe).

I Suppose all variables are discrete and can take on K possible values. Then the
functions in (a) and (b) are tables with O(K 3) cells, whereas in (c) they are O(K 2).

I Factor graphs have richer expressive power than undirected graphical models.
I Factors cannot be determined solely by testing for conditional independence.



Some examples of undirected graphical models

I Markov random fields (used in computer vision)

I Maximum entropy language models (used in speech and language modelling)

P(X ) = 1
Z

p0(X ) exp

{∑
j

λj gj(X )

}
I Conditional random fields are undirected graphical models (conditioned on the input

variables).

I Boltzmann machines (a kind of neural network/Ising model)



Limitations of undirected and factor graphs

Undirected and factor graphs fail to capture some useful independencies—a pair of variables
may be connected merely because some other variable depends on them:

The classic example (due to Pearl):

Rain Sprinkler

Ground wet

Rain Sprinkler

Ground wet

I Most sprinklers switch on come rain or shine; and certainly the weather pays no heed to
the state of the spinklers.

I Explaining away: Damp ground suggests that it has rained; but if we also see a running
sprinkler this explains away the damp, returning our belief about rain to the prior.

I R⊥⊥S|∅ but R 6⊥⊥S|G.

This highlights the difference between marginal and conditional independence.
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Directed acyclic graphical models
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A directed acyclic graphical (DAG) model represents a factorization of the joint probability
distribution in terms of conditionals:

P(A,B,C,D,E) = P(A)P(B)P(C|A,B)P(D|B,C)P(E |C,D)

In general:

P(X1, . . . ,Xn) =
n∏

i=1

P(Xi |Xpa(i))

where pa(i) are the parents of node i .

DAG models are also known as Bayesian networks or Bayes nets.



Conditional independence in DAGs
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Reading conditional independence from DAGs is more complicated than in undirected graphs.

• A⊥⊥E | {B,C}: conditioning nodes block paths

• A⊥⊥B | ∅: other nodes block reflected paths

• A 6⊥⊥B | C: conditioning node creates a reflected path by explaining away

• A 6⊥⊥E | C: the created path extends to E via D

• A⊥⊥E | {C,D}: but is blocked by observing D

So conditioning on (i.e. observing) nodes can both create and remove dependencies.
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The Bayes-ball algorithm
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Game: can you get a ball from X to Y without being blocked by V? If so, X 6⊥⊥Y |V .

Rules: ball follow edges, and are passed on or bounced back from nodes according to:

I Nodes V /∈ V pass balls down or up chains: →V→ or←V←.
I Nodes V /∈ V , bounce balls from children to children.
I Nodes V ∈ V , bounce balls from parents to parents (including returning the ball

whence it came).

Otherwise the ball is blocked. (So V ∈ V blocks all balls from children, and stops balls from
parents reaching children.)
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D-separation
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So when is X⊥⊥Y |V?

Consider every undirected path (i.e. ignoring arrows) between X and Y . The path is blocked
by V if there is a node V on the path such that either:

I V has convergent arrows (→V←) on the path (i.e., V is a “collider node”) and neither
V nor its descendents ∈ V .

I V does not have convergent arrows on the path (→V→ or←V→) and V ∈ V . This is
similar to the undirected graph semantics.

If all paths are blocked, we say V d-separates X from Y (d for directed), and X⊥⊥Y |V .

Markov boundary for X : {pa(X) ∪ ch(X) ∪ pa(ch(X))}.
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Expressive power of directed and undirected graphs

A B

E

D

No DAG can represent these and only
these independencies

No matter how we direct the arrows there will always be two non-adjacent parents sharing a
common child⇒ dependence in DAG but independence in undirected graph.

A B

C

No undirected or factor graph can rep-
resent these and only these indepen-
dencies

One three-way factor, but this does not encode marginal independence.



Graphs, conditional independencies, and families of distributions

Each graph G implies a set of conditional independence statements C(G) = {Xi⊥⊥Yi |Vi}.

Each such set C, defines a family of distributions that satisfy all the statements in C:

PC(G) = {P(X ) : P(Xi ,Yi |Vi) = P(Xi |Vi)P(Yi |Vi) for all Xi⊥⊥Yi |Vi in C }

G may also encode a family of distributions by their functional form, e.g. for a factor graph

PG = {P(X ) : P(X ) = 1
Z

∏
j fj(XCj ), for some non-negative functions fj }

I For directed graphs, PG = PC(G).
I For undirected graphs, PG = PC(G) if all distributions are positive, i.e. P(X ) > 0 for all

values of X (Hammersley-Clifford Theorem).
I There are factor graphs for which PG 6= PCG .
I Factor graphs are more expressive than undirected graphs: for every undirected graph

G1 there is a factor graph G2 with PG1 = PG2 but not vice versa.
I Adding edges to graph⇒ removing conditional independency statements⇒ enlarging

the family of distributions (converse true for removing edges).
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Graphs, conditional independencies, and families of distributions

{p(X) =
∏

i p(Xi|Xpa(i))}

{Xi⊥⊥Yi|Vi}

{p(X) : p(Xi, Yi|Vi)
=p(Xi|Vi)p(Yi|Vi)}



Tree-structured graphical models
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Rooted directed tree Directed polytree
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Undirected tree Tree-structured factor graph

These are all tree-structured or “singly-connected” graphs.



Polytrees to tree-structured factor graphs
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⇒ A

B

C

D

E

F

G

Polytrees are tree-structured DAGs that may have more than one root.

P(X ) =
∏

i

P(Xi |Xpa(i))

=
∏

i

fi(XCi )

where Ci = i ∪ pa(i) and fi(XCi ) = P(Xi |Xpa(i)).

Marginal distribution on roots P(Xr ) absorbed into an adjacent factor.



Undirected trees and factor graphs
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F

G

In an undirected tree all maximal cliques are of size 2, and so the equivalent factor graph has
only pairwise factors.

P(X ) = 1
Z

∏
edges (ij)

f(ij)(Xi ,Xj)



Rooted directed trees to undirected trees
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The distribution for a single-rooted directed tree can be written as a product of pairwise
factors⇒ undirected tree.

P(X ) = P(Xr )
∏
i 6=r

P(Xi |Xpa(i))

=
∏

edges (ij)

f(ij)(Xi ,Xj)



Undirected trees to rooted directed trees
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⇒ A

B

C

D

E

F

G

This direction is slightly trickier:

I Choose an arbitrary node Xr to be the root and point all the arrows away from it
I Compute the marginal distributions on single nodes P(Xi) and on edges P(Xi ,Xj)

implied by the undirected graph.
I Compute the conditionals in the DAG:

P(X ) = P(Xr )
∏
i 6=r

P(Xi |Xpa(i)) = P(Xr )
∏
i 6=r

P(Xi ,Xpa(i))

P(Xpa(i))

=

∏
edges (ij) P(Xi ,Xj)∏
nodes i P(Xi)deg(i)-1

How do we compute P(Xi) and P(Xi ,Xj)? ⇒ Belief propagation.
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Finding marginals in undirected trees

XjXi

Undirected tree⇒ pairwise factored joint distribution: P(X ) = 1
Z

∏
(ij)∈ET

f(ij)(Xi ,Xj)

Each neigbour Xj of Xi defines a disjoint subtree Tj→i . So we can split up the product:

P(Xi) =
∑
X\{Xi}

P(X ) ∝
∑
X\{Xi}

∏
(ij)∈ET

f(ij)(Xi ,Xj)

=
∑
X\{Xi}

∏
Xj∈ne(Xi )

f(ij)(Xi ,Xj)
∏

(i′ j′)∈ETj→i

f(i′ j′)(Xi′ ,Xj′)

=
∏

Xj∈ne(Xi )

( ∑
XTj→i

f(ij)(Xi ,Xj)
∏

(i′ j′)∈ETj→i

f(i′ j′)(Xi′ ,Xj′)
)

︸ ︷︷ ︸
Mj→i(Xi)

=
∏

Xj∈ne(Xi )

Mj→i(Xi)
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BP for inference

Xi

Xa

XaXa

Xb

Xj

Xk

Messages from observed leaf nodes are conditioned rather than marginalised:

To compute P(Xi) : Ma→i =
∑

Xa

fai(Xa,Xi)

To compute P(Xi |Xa = a) : Ma→i= fai(Xa = a,Xi)

Observed internal nodes partition the graph, and so messages propagate independently.

Mb→j= fbj(Xb = b,Xj) Mb→k= fbk(Xb = b,Xk)

Messages Mi→j are proportional to the likelihood based on any observed variables (O) within
the messages subtree Ti→j , possibly scaled by a prior factor (depending on factorisation)

Mi→j(Xj) ∝ P(XTi→j ∩ O|Xi)P(Xi)
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BP for latent chain models

s1 s2 s3 sT

x1 x2 x3 xT

• • •

A latent chain model is a rooted directed tree⇒ an undirected tree.

The forward-backward algorithm is just BP on this graph.

αt(i)⇔ Mst−1→st (st =i) ∝ P(x1:t , st)

βt(i)⇔ Mst+1→st (st =i) ∝ P(xt+1:T |st)

αt(i)βt(i) =
∏

j∈ne(st )

Mj→st (st =i) ∝ P(st =i|O)

Algorithms like BP extend the power of graphical models beyond just encoding of
independence and factorisation. A single derivation serves for a wide array of models.



BP in non-trees?

D

A

CE

B

B

Can we find P(D) easily?

I Neighbours do not belong to disjoint subtrees, so influence of other nodes cannot be
separated into messages.

I Observed nodes may break loops and make subtrees independent,

but may not resolve
all loops.

Possible strategies:

I Propagate local messages anyway, and hope for the best

I loopy belief propagation — actually an approximation which we will study later.

I Group variables together into multivariate nodes until the resulting graph is a tree.

I Junction tree
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Graph transformations

For exact inference in arbitrary graphical models we need to transform the given graph into
one that will be easier to handle (specifically a tree: the junction or join tree).

The original graph G encoded a distribution P(X ) with a certain factorisation or
independence structure.

I Transformation from G to an easy-to-handle G′ will only be valid if P(X ) can also be
represented by G′.

I This can be ensured if every step of the graph transformation only removes conditional
independencies, never adds them.

I Thus the family of possible encoded distributions grows or stays the same at each step,
and P(X ) will be in the family of distributions represented by G′.

I The factor potentials on the new graph G′ are built from those given on G, so as to
encode the same distribution.

I Then inference on G′ with the appropriate potentials acts on P(X ).
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The Junction Tree algorithm
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DAG to factor graph

C

A B

D

E C

A B

D

E

Factors are simply the conditional distributions in the DAG.

P(X ) =
∏

i

P(Xi |Xpa(i))

=
∏

i

fi(XCi )

where Ci = i ∪ pa(i) and fi(XCi ) = P(Xi |Xpa(i)).

Marginal distribution on root(s) P(Xr ) absorbed into an adjacent factor.



Observations in a factor graph

C

A B

D

E C

A B

D

E

Inference usually targets a posterior marginal given a set of observed values P(XI |O)
e.g. P(A|D = wet,C = rain).

Formally, we can either modify the factors linked to observed nodes, or add singleton factors
adjacent to the observed nodes, e.g.

fD(D) =

{
1 if D =wet;

0 otherwise.

fC(C) =

{
1 if C =rain;

0 otherwise.



Factor graph to undirected graph
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A B

D
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D

E

The next step (triangulation) will depend on an undirected graph. Every factor from the DAG
must be contained within a maximal clique of the undirected graph.

I Replace each factor by an undirected clique (i.e. place edge between every pair of
nodes in the factor).

I Construct the potentials on each maximal clique by multiplying together factor potentials
that fall within it; ensuring each factor potential only appears once.

The transformation from DAG⇒ undirected graph is called moralization:
I “marry” all parents of each node by adding an edge to connect them
I drop arrows on all the edges



Triangulating the undirected graph
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The undirected graph may have loops, which would interfere with belief propagation.

I Could join loops into cliques, but this is inefficient.
I Triangulation: add edges to the graph so every loop of size ≥ 4 has at least one chord.
I Recursive: new edges may create new loops; ensure new loops ≥ 4 have chords too.
I An undirected graph where every loop of size ≥ 4 has at least one chord is called

chordal or triangulated.
I Adding edges always removes conditional independencies, enlarging the family of

distributions that the graph can encode.
I Many ways to add chords; in general finding the best triangulation is NP-complete.
I One approach: variable elimination.



Variable elimination

Imagine marginalising the distribution one variable at a time (eliminating each from the graph).
Let the order of elimination be Xσ(1),Xσ(2), . . . ,Xσ(n):

P(Xσ(n)) =
∑

Xσ(n−1)

· · ·
∑
Xσ(1)

P(X ) = 1
Z

∑
Xσ(n−1)

· · ·
∑
Xσ(2)

∑
Xσ(1)

∏
i

fi(XCi )

=
1
Z

∑
Xσ(n−1)

· · ·
∑
Xσ(2)

∏
j:Ci 63σ(1)

fj(XCj )
∑
Xσ(1)

∏
i:Ci3σ(1)

fi(XCi )

=
1
Z

∑
Xσ(n−1)

· · ·
∑
Xσ(2)

∏
j:Ci 63σ(1)

fj(XCj )fnew(XCnew)

where Cnew = ne(Xσ(1)), and edges are added to the graph connecting all nodes in Cnew.



Variable elimination

Theorem: a graph including all edges that would be induced by elimination is chordal.

Finding a good triangulation depends on finding a good order of elimination σ(1), . . . , σ(n).
This is also NP-complete.

Heuristics: pick next variable to eliminate by

I Minimum deficiency search: choose variable that induces the fewest new edges.
I Maximum cardinality search: choose variable with most previously visited neighbours.

Minimum deficiency search seems (empirically) to be better.



Triangulation may not be obvious by inpection

Is this graph triangulated?

No. Chords must be direct connections — they cannot step through an intermediate node.

Detecting unchorded loops by inspection rapidly becomes difficult in large graphs,
necessitating automated algorithms such as variable elimination.
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Chordal graph to the junction tree
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A junction tree (or join tree) is a tree whose nodes and edges are labelled with sets of
variables.

Each node represents a clique; edges are labelled by the intersections of cliques, called
separators.

I Cliques contain all adjacent separators.
I Running intersection property: if two cliques contain variable X , all cliques and

separators on the path between the two cliques contain X .

The running intersection property is required for consistency.



Chordal graph to the junction tree
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I Find the maximal cliques C1, . . . ,Ck of the chordal undirected graph (each clique
consists of an eliminated variable and its neighbours, so finding maximal cliques is
easy).

I Construct a weighted graph, with nodes labelled by the maximal cliques and edges
connecting each pair of cliques that shares variables (labelled by the variables in the
intersection).

I Define the weight of an edge to be the size of the separator.
I Find the maximum-weight spanning tree of the weighted graph.



Messages on the junction tree

A B

C

D

E

⇒ BCE

ABE

CDE

BE

CE

We’ve now completed the transformation from a general model to a tree-structured graph.

I Belief propagation on the junction tree should allow us to efficiently compute posterior
marginals for inference and learning.



Recall: BP on undirected trees

XjXi Xj

XjXi

Mj→i(Xi) =
∑
XTj→i

f(ij)(Xi ,Xj)
∏

(i′ j′)∈ETj→i

f(i′ j′)(Xi′ ,Xj′)

=
∑

Xj

f(ij)(Xi ,Xj)
∑

XTj→i
\Xj

∏
(i′ j′)∈ETj→i

f(i′ j′)(Xi′ ,Xj′)

︸ ︷︷ ︸
∝ PTj→i (Xj) ∝

∏
Xk∈ne(Xj )\Xi

Mk→j(Xj)

=
∑

Xj

f(ij)(Xi ,Xj)
∏

Xk∈ne(Xj )\Xi

Mk→j(Xj)



Message passing on junction trees

ABC BCDBC

Maximal cliques in the chordal graph are nodes of the junction tree. Thus, the joint
distribution factors over the JT nodes:

P(X ) = 1
Z

∏
i

fi(XCi ) = . . . fABC(A,B,C)fBCD(B,C,D) . . .

This appears to violate the usual undirected tree semantics of a factor per edge.

However: the appearance of the same variables in multiple nodes introduces dependencies:

I Introduce copy variables on each side of the separator.
I Factors on nodes no longer overlap.
I New delta-function factors on separators enforce consistency amongst copies:

P(X ) = . . . fABC(A,B
(1),C(1)) δ(B(1) − B(2))δ(C(1) − C(2))︸ ︷︷ ︸

fsep(B(1),C(1),B(2),C(2))

fBCD(B
(2),C(2),D) . . .
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Message passing on junction trees
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Maximal cliques in the chordal graph are nodes of the junction tree. Thus, the joint
distribution factors over the JT nodes:
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Message passing on junction trees
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We can use this view to define BP messages on the junction tree:

I Copy and partition clique variables XCi :

I Unshared variables: X (-)
Ci

= XCi\
⋃

Sik

I Variables in incoming separators: X (2)
Ski

(matching variables X (1)
Ski

in k ∈ ne(i)\j).

I Variables in outgoing separator: X (1)
Sij

(matching variables X (2)
Sij

in clique j).
I (Variables that appear in more than one separator will need additional copies.)
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Message passing on junction trees
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Messages become:

Mi→j(X
(2)
Sij

) =
∑

X (-)
Ci
,{X (2)

Ski
},X (1)

Sij

fi(X
(-)
Ci
, {X (2)

Ski
},X (1)

Sij
)fij(X

(1)
Sij
,X (2)

Sij
)
∏

k∈ne(i)\j

Mk→i(X
(2)
Ski

)

=
∑

XCi\Sij

fi(XCi )
∏

k∈ne(i)\j

Mk→i(XSki )



Shafer-Shenoy propagation
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Messages computed recursively by:

Mi→j(XSij ) =
∑

XCi\Sij

fi(XCi )
∏

k∈ne(i)\j

Mk→i(XSki )

And marginal distributions on cliques and separators are:

P(XCi ) = fi(XCi )
∏

k∈ne(i)

Mk→i(XSki )

P(XSij ) = Mi→j(XSij )Mj→i(XSij )

This is called Shafer-Shenoy propagation.



Consistency

The running intersection property and tree structure of the junction trees implies that local
consistency between cliques and separator marginals guarantees global consistency.

If qi(XCi ), rij(XSij ) are distributions such that∑
XCi\Sij

qi(XCi ) = rij(XSij )

Then the following

P(X ) =

∏
cliques i

qi(XCi )∏
separators (ij)

rij(XSij )

Ck

Ci Cj

Ski

Sij

Cl

Sli

is also a distribution (non-negative and sums to one) such that:

qi(XCi ) =
∑
X\XCi

P(X ) rij(XSij ) =
∑
X\XSij

P(X )



Reparameterisation for message passing
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Hugin propagation is a different (but equivalent) message passing algorithm.
It is based upon the idea of reparameterisation. Initialize:

qi(XCi ) ∝ fi(XCi ) rij(XSij ) ∝ 1

Then our probability distribution is initially

P(X ) ∝
∏

cliques i qi(XCi )∏
separators (ij) rij(XSij )

A Hugin propagation update for i → j is:

r new
ij (XSij ) =

∑
XCi\Sij

qi(XCi ) qnew
j (XCj ) = qj(XCj )

r new
ij (XSij )

rij(XSij )



Hugin propagation
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Some properties of Hugin propagation:
I The defined distribution P(X ) is unchanged by the updates.
I Each update introduces a local consistency constaint:∑

XCj\Sij

qj(XCj ) = rij(XSij )

I If each update i → j is carried out only after incoming updates k → i have been carried
out, then each update needs only be carried out once.

I Each Hugin update is equivalent to the corresponding Shafer-Shenoy update.



Computational Costs of the Junction Tree Algorithm

I Most of the computational cost of the junction tree algorithm is incurred during the
message passing phase.

I The running and memory costs of the message passing phase are both O(
∑

i |XCi |).
This can be significantly (exponentially) more efficient than brute force.

I The variable elimination ordering heuristic can have very significant impact on the
message passing costs.

I For certain classes of graphical models (e.g. 2D lattice Markov random field) it is
possible to hand-craft an efficient ordering.



Other Inference Algorithms

There are other approaches to inference in graphical models which may be more efficient
under specific conditions:

Cutset conditioning: or “reasoning by assumptions”. Find a small set of variables which, if
they were given (i.e. known) would render the remaining graph “simpler”. For each value of
these variables run some inference algorithm on the simpler graph, and average the resulting
beliefs with the appropriate weights.

Loopy belief propagation: just use belief propagation even though there are loops. No
guarantee of convergence, but often works well in practice. Some (weak) guarantees about
the nature of the answer if the message passing does converge.

Second half of course: we will learn about a variety of approximate inference algorithms when
the graphical model is so large/complex that no exact inference algorithm can work efficiently.



Learning in Graphical Models

We have discussed inference at length — what about learning? The factored structure
implied by the graph also makes learning easy.

Consider data points comprising observations of a subset of variables.
ML learning⇒ adjust parameters to maximise:

L = P(Xobs|θ)

=
∑

Xunobs

P(Xobs,Xunobs|θ)

by EM, need to maximise

F(q, θ) = 〈log P(Xobs,Xunobs|θ)− log q(Xunobs)〉q(Xunobs)

=
〈∑

i log fi(XCi |θi)− log Z(θ)
〉

q(Xunobs)
+ H(q)

=
∑

i

〈log fi(XCi |θi)〉q(XCi
\Xobs)

− log Z(θ) + H(q)

A B

C

D

E

So learning only requires posterior marginals on cliques (obtained by messaging passing)
and updates on cliques; c.f. the Baum-Welch procedure for HMMs.
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