Intractabilities and approximations

» Inference — computational intractability
> Gibbs sampling, other MCMC

Factored variational approx

Loopy BP/EP/Power EP

Recognition models

Probabilistic & Unsupervised Learning
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» Inference — analytic intractability

> Laplace approximation (global)
(Sequential) Monte-Carlo
Parametric variational approx (for special cases).
Message approximations (linearised, sigma-point, Laplace)
Assumed-density methods and Expectation-Propagation
Recognition models

Expectation Propagation
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» Posterior estimation and model selection

Laplace approximation / BIC
Monte-Carlo
(Annealed) importance sampling
Reversible jump MCMC
Variational Bayes
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Not a complete list!

Nonlinear state-space model (NLSSM) Other message approximations

Consider the forward messages on a latent chain:
\ \ B B; _ 1
m ?\ \ Vi1 = f(yr, ur) +wy P(}/t|X1:t) = —P(x,‘yt) /d}/t—1 P(YI‘Yt—1)P(Yt—1|X1:t—1)
yz . V4

5 Xt = g(yz, Us) + Vi
% C ! ) ) We want to approximate the messages to retain a tractable form (i.e. Gaussian).
w;, v; usually still Gaussian.

- 1 -
P(yi| 1) = EP(XtD/t) /d}’t—1 P(yilye1)  P(Vit |X1:01)
Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, y': —
f(yr) N(f(y1*1 )1 Q) N (yt—ﬁ VY*1)
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~ Fot or ot
Vit & f(y~h Urz + By: (ye —¥:) +wy » Linearisation at the peak (EKF) is only one approach.
Byu —— » Laplace filter: use mode and curvature of integrand.

A » Sigma-point (“unscented”) filter:

gl Evaluate f(¥,_4), f(¥,_4 = V/Av) for eigenvalues, eigenvectors V;_1v = Av.
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—— > “Fit” Gaussian to these 2K + 1 points.
Dyuy —_—— 7 e > Equivalent to numerical evaluation of mean and covariance by Gaussian quadrature.
C Y: > One form of “Assumed Density Filtering” and EP.
Run the Kalman filter (smoother) on non-stationary linearised system (A;, Bf, C,, Dy): » Parametric variational: argmin KL[J\/’ (?,7 ‘A/t) HfdyH .. ] Requires Gaussian
» Adaptively approximates non-Gaussian messages by Gaussians. expectations of log [ = may be challenging.
> Lgcgl linearisation depends on central point of distribution = appro?<imation degrades » The other KL: argmin KL [ [dy:s HN (V. \“/t)] needs only first and second moments of
with increased state uncertainty. May work acceptably for close-to-linear systems. nonlinear message = EP.

Can base EM-like algorithm on EKF/EKS (or alternatives).



Variational learning

Free energy:

F(3,0) = (109 P(X, Y16)) ., + HId] = log P(X10) — KL[a(¥)[| P(V]X, 0)] < £(0)

E-steps:
» Exact EM: g()) = argmax F = P(Y|X, 0)
q

» Saturates bound: converges to local maximum of likelihood.

> (Factored) variational approximation:

aY) = agmax F= agmin Kilgi(31)@(%)|POIY,0)
G1(V1)a2(Y2) q1(V1)a2(Y2)

> Increases bound: converges, but not necessarily to ML.

» Other approximations: q()’) ~ P(Y|X, 6)

» Usually no guarantees, but if learning converges it may be more accurate than the
factored approximation

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argqmin KL[P(MX)HH q,-(y,-|X)] = argqmin—/dy P(JJ\X)Ioqu,-(yAX)

= argmin—Z/dy P(Y|X)log g;(Y)|X)
)

qi

= argmin — / dY; P(Yi|X)log gi(Vi|X)
qi

= P X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best q for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate g that is closest to P in some sense.

q = argmin D(P < q)
qeQ

Open choices:

» form of the metric D
» nature of the constraint space Q

» Variational methods: D = KL[q||P].
» Choosing Q = {tree-factored distributions} leads to efficient message passing.

» Can we use other divergences?

Approximate optimisation

The posterior distribution in a graphical model is a (normalised) product of factors:

P10 = Py = 1T PCvleatv) < [ 10

where the ); are not necessarily disjoint. In the language of EP the f; are called sites.

N
Consider g with the same factorisation, but potentially approximated sites: q()) def H?,-(y,-).
We would like to minimise (at least in some sense) KL[P||q].

Possible optimisations:

N
min KL [Hf, () HHf(y, ] (global: intractable)
{f’ i=1
min KL [n(y,)Hﬁ(y,)} (local, fixed: simple, inaccurate)
7

min KL [f,-(y,)H?/(y,)H?,(y,-) H?,(y/)] (local, contextual: iterative, accurate) < EP
! #i j#i



Expectation? Propagation?

EP is really two ideas:

» Approximation of factors.
» Usually by “projection” to exponential families.

» This involves finding expected sufficient statistics, hence expectation.

» Local divergence minimization in the context of other factors.

> This leads to a message passing approach, hence propagation.

Expectation Propagation (EP)

Input f; (JA) fee fN(yN)
Initialize /; (V1) = argmin KL[f; (V1) ||A(W1)], (Vi) = 1fori > 1, q(V) oc [[,5())

fe{f
repeat

fori=1...Ndo

Delete: g-i()) ;_7((;); = H?j(yf)
i j#i

Project: /" () « argmin KL[f;(V,)q-/(V) /(¥ a-i(2)]
fe{r}

Include: q(V) « £"(V) q-i())

end for

until convergence

Local updates

Each EP update involves a KL minimisation:

P () srgmin KL{1(3)a-()()a-()] [a-() < TT7O))]
re{f j#i

Write g-1()) = g1()1)q-i(V-|))). Then: V- €\

min KL[()) g~ (V) 1V q-i(D)]

max / dYidY-i (V) g-i(Y) log (V) g-i(Y)

max / dYidY-i (V) q-i(V1)q-i(Y-i| V) (log f(Vi)a-i(Vi) + log g-i(V-i| V1))

= max / dYi (V) q-i(V) (log f(¥1)q-i(3)) / dY-i q-i(V-ilVi)
= min KL[#()q-(V) 1P g-1()]

q-i();) is sometimes called the cavity distribution.

Message Passing

» The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

a-(V) = [ M=i(Vn¥)

jene()

» Once the ith site has been approximated, the messages can be passed on to

neighbouring cliques by marginalising to the shared variables (SSM example follows).
= belief propagation.

> In loopy graphs, we can use loopy belief propagation. In that case

q-i(YV) = H Mi=i(Yin )

jene(i)

becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages = later lecture).

» For some approximations (e.g. Gaussian) may be able to compute true loopy cavity

using approximate sites, even if computing exact message would have been intractable.

» In either case, message updates can be scheduled in any order.
» No guarantee of convergence (but see “power-EP” methods).



EP for a NLSSM

P(yilyi-1) = ¢i(¥i, Vi-1) e.g. exp(—|ly; — hs(yi-1)[%/20°)
P(xilyi) = i(yi) e.g. exp(—|1x — ho(y))||*/20°)
Then fi(yi,Yi—1) = @i(Yi, Yi—1)¥i(Yi)- As ¢; and 1; are non-linear, inference is not generally
tractable.
Assume f;(yi, yi—1) is Gaussian. Then,

q-i(Yi,Yi-1) / Hf (yir,yir—1) / Hf (yir,Yir—1) / Hf (yir,yir—1)

Yi..Yi_o i' i 2 i"<i i">i

Yit1--
V/'+1 Vi

oj—1(¥i—1) Bilyi)
with both o and 3 Gaussian.

fi(yi,yio1) = aff%rjf\}in KL [6i(yi, Yi1)Wi(yi) i1 (Y1) Bily) | F(yi, Yimt) i1 (yi1) Bilyi)]

Moment Matching
Each EP update involves a KL minimisation:

) argf{Tj}in KL[7(Y1)g-i(D)[f(V)a-1(V)]

Usually, both g-()7) and 7 are in the same exponential family. Let q(x) = g€ €' Then

argmin KL [p(x)||q(x)] = argmin KL {p(x)
q )

1 1x6
2(6)° }

. 1 1006
= argmin— [ dx p(x)log =——e€
or / p(x)log ()

= argmin — / dx p(x)T(x) - 0 + log Z(0)

ﬁ _ 1 0 T(x)-0
90— /dxp(x)T(x)JrZ(e) 70 dx e

— (T, + ﬁ / ox €™ 0T(x)
= —(T(x)), + (T(x))q

So minimum is found by matching sufficient stats. This is usually moment matching.

NLSSM EP message updates

fi(yi, yi—1) = argmin KL[£(y;, yi—1)q-i(yi. Vi 1) || F(¥i Yie1)g-i(vi, yi1)] = argmin KL [¢i(yi,yi— 1)y

feN feN —_—

_Pyiy)
ai—1(Yi—1)Bi(yi)

ai(yi) = / H fr(yir,yir—1) /ui—1(Y/71)f/(yf,Vf7w): % /ﬁ(y,q,y/)

I5(vff17v)—argmmKL[ (Vi1 V|| PYi—1,¥)]  Tyi,yi1) =

Vi I<I+1 Vi1
1 '~
Bi—1 yr 1 /Hf Y/’ i’ — 1 /ﬁ/ V/ y17YI 1) 7//3(\/,;17%)
061‘—1(yi—1)
Yit1-- yll > Yi
Vi Yi
Bi
I
N
Qi—1
\ Yi—1 Yi—1

Numerical issues
How do we calculate (T(x)),?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:

» Quadrature methods.

» Classical Gaussian quadrature
gives an iterative version of Sigma-point methods.
» Positive definite joints, but not guaranteed to give positive definite messages.
» Heuristics include skipping non-positive-definite steps, or damping messages by
interpolation or exponentiating to power < 1.
» Other quadrature approaches (e.g. GP quadrature) may be more accurate, and
may allow formal constraint to pos-def cone.

» Laplace approximation.

» Equivalent to Laplace propagation.
> As long as messages remain positive definite will converge to global Laplace
approximation.



EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

Recall:

> A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{91 ...9gn} drawn from a (usually uncountable) potential set indexed by “inputs” x;.
The Gaussian parameters depend on the inputs: (1 = [u(xi)], T = [K(xi, X;)])-
If we think of the gs as function values, a GP provides a prior over functions.
In a GP regression model, noisy observations y; are conditionally independent given g;.
No parameters to learn (though often hyperparameters); instead, we make predictions
on test data directly: [assuming p = 0, and matrix X incorporates diagonal noise]

P(y'|X', D) =N (Zo xTx XY, T — Tur xEx X Zxx’)

vV vy VvVYyy

EP GP prediction

» Once appoximate site potentials have stabilised, they can be used to make predictions.

» Introducing a test point changes K/, but does not affect the marginal P(gs . . . gn) (by
consistency of the GP).

» The unobserved output factor provides no information about g’ (= constant factor on g’)
» Thus no change is needed to the approximating potentials 7.
» Predictions are obtained by marginalising the approximation: [let U= diag[u“jf o ’z/jﬁ]]

PWY/IX, D) = [dg' Py I9 W (0" | Ko x(Ko + 9) '

Kx’,x’ — Kx’,X(KX,X + \]})_1ny)(/)

GP EP updates

» We can write the GP joint on g; and y; as a factor graph:

P(Gi--Gnyts---Yo) =N (g1 aal0,K) [N (vilgi,of)

f(G) fi(gi)
The same factorisation applies to non-Gaussian P(yi|gi) (e.g. P(yi=1) = 1/(1 + e~ 9%)).
» EP: approximate non-Gaussian f(g;) by Gaussianf(g;) = N (/li, z/‘??).

v

v

g-i(g;) can be constructed by the usual GP marginalisation. If © = K + diag ['zﬁf . z[,%]

q-i(g)) =N (Z;‘.ﬁ/‘zi:ﬁ,ﬁﬁh Kij— Zi~Z) i)

- =i, =i

v

The EP updates thus require calculating Gaussian expectations of f,-(g)g{“z}:

(9) =N (/dg 9-i(9)f(9)9, /dg 9-1(9)(9)9° — (/7?9"”)2) /a-i(g)

Normalisers

» Approximate sites determined by moment matching are naturally normalised.

» For posteriors, sufficient to normalise product after convergence.
» Often straightforward for exponential family approximations.

» To compute likelihood need to keep track of site integrals:

> minimising “unnormalised KL":

Kilpla] = [ dxp(x)iog 259 + [ a (a(x) p(x)

incorporates normaliser into each f (match zeroth moment, along with suff stats).

as well as the overall normaliser of [ ], /().



Alpha divergences and Power EP

> Alpha divergences D.[p||q] = m / dx ap(x) + (1 — a)q(x) — p(x)*q(x)'

D-ifplal = | dx%
lim Da[pllq] = KL[q]|p] Note: lim W

a—0

—1oq PX)
=109 q(x)

Dy pllal =2 [ ax (p(x)} — q(x)¢)?
lim Dapllq] = KL[pl|q]

Ds[pllq] = %/dxw

» Local (EP) minimisation gives fixed-point updates that blend messages (to power «) with
previous site approximations.

i = argmin KL[#(V)F(V)' ™ q-i(D) || F(P) a-4(D)]
fe{f}

» Small changes (for o < 1) lead to more stable updates, and more reliable convergence.
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