
Assignment 2

Unsupervised & Probabilistic Learning

Maneesh Sahani

Due: Monday Nov 5, 2018

Note: Assignments are due at 11:00 AM (the start of lecture) on the date above. The usual College late
assignments policy will apply.

You must make a credible attempt at the main questions to receive credit for the bonus ones.

1. [65 marks + 5 BONUS] EM for Binary Data.

Consider the data set of binary (black and white) images used in the previous assignment. Each image
is arranged into a vector of pixels by concatenating the columns of pixels in the image. The data set
has N images {x(1), . . . , x(N)} and each image has D pixels, where D is (number of rows × number of

columns) in the image. For example, image x(n) is a vector (x
(n)
1 , . . . , x

(n)
D ) where x

(n)
d ∈ {0, 1} for all

n ∈ {1, . . . , N} and d ∈ {1, . . . , D}.

(a) Write down the likelihood for a model consisting of a mixture of K multivariate Bernoulli distribu-
tions. Use the parameters π1, . . . , πK to denote the mixing proportions (0 ≤ πk ≤ 1;

∑
k πk = 1)

and arrange the K Bernoulli parameter vectors into a matrix P with elements pkd denoting
the probability that pixel d takes value 1 under mixture component k. Assume the images are
iid under the model, and that the pixels are independent of each other within each component
distribution. [5 marks]

Just as we can for a mixture of Gaussians, we can formulate this mixture as a latent variable model,
introducing a discrete hidden variable s(n) ∈ {1, . . . ,K} where P (s(n) = k|π) = πk.

(b) Write down the expression for the responsibility of mixture component k for data vector x(n),
i.e. rnk ≡ P (s(n) = k|x(n),π,P). This computation provides the E-step for an EM algorithm. [5
marks]

(c) Find the maximizing parameters for the expected log-joint

argmax
π,P

〈∑
n

logP (x(n), s(n)|π,P)

〉
q({s(n)})

thus obtaining an iterative update for the parameters π and P in the M-step of EM. [10 marks]

(d) Implement the EM algorithm for a mixture of K multivariate Bernoullis.

Your code should take as input the number K, a matrix X containing the data set, and a
maximum number of iterations to run. The algorithm should run for that number of iterations
or until the log likelihood converges (does not increase by more than a very small amount).

Hand in clearly commented code and a description of how the code works.

Run your algorithm on the data set for values of K in {2, 3, 4, 7, 10}. Report the log likelihoods
obtained and display the parameters found.

[30 marks]

[Hints: Although the implementation may seem simple enough given the equations, there are
many numerical pitfalls (that are common in much of probabilistic learning). A few suggestions:

• Likelihoods can be very small; it is often better to work with log-likelihoods.

• You may still encounter numerical issues computing responsibilities. Consider scaling the
numerator and denominator of the equation by a suitable constant while still in the log
domain.



• It may also help to introduce (weak) priors on P and π and use EM to find the MAP
estimates, rather than ML.

• If working in MATLAB, consider “vectorizing” your code, avoiding for loops where possible.
This often [though not always] makes the code more readable and lets it run faster.

• It is always useful to plot the log-likelihood after every iteration. If it ever decreases (when
implementing EM for ML) you have a bug! The same is true for the log-joint when imple-
menting MAP.

(e) Express the log-likelihoods obtained in bits and relate these numbers to the length of the naive
encoding of these binary data. How does your number compare to gzip (or another compression
algorithm)? Why the difference? [5 marks]

(f) Run the algorithm a few times starting from randomly chosen initial conditions. Do you obtain
the same solutions (up to permutation)? Does this depend on K?

Comment on how well the algorithm works, whether it finds good clusters (look at the cluster
means and responsibilities and try to interpret them), and how you might improve the model.
[10 marks]

(g) [BONUS] Consider the total cost of encoding both the model parameters and the data given the
model. How does this total cost compare to gzip (or similar)? How does it depend on K? What
might this tell you? [5 marks]

2. [20 marks] Modelling Data.

(a) Download the data file called geyser.txt from the course web site. This is a sequence of 295
consecutive measurements of two variables from Old Faithful geyser in Yellowstone National Park:
the duration of the current eruption in minutes (rounded to the nearest second), and the waiting
time since the last eruption in minutes (to the nearest minute).

Examine the data by plotting the variables within (plot(geyser(:,1),geyser(:,2),’o’);)
and between (e.g. plot(geyser(1:end-n,1),geyser(n+1:end,1 or 2),’o’); for various n)
time steps. Discuss and justify based on your observations what kind of model might be most
appropriate for this data set. Consider each of the models we have encountered in the course
through week 3: a multivariate normal, a mixture of Gaussians, a Markov chain, a hidden Markov
model, an observed stochastic linear dynamical system and a linear-Gaussian state-space model.
Can you guess how many discrete states or (continuous) latent dimensions the model might have?
[10 marks]

(b) Consider a data set consisting of the following string of 160 symbols from the alphabet {A, B, C}:

AABBBACABBBACAAAAAAAAABBBACAAAAABACAAAAAABBBBACAAAAAAAAAAAABACABACAABBACAAABBBBA

CAAABACAAAABACAABACAAABBACAAAABBBBACABBACAAAAAABACABACAAABACAABBBACAAAABACABBACA

Study this string and suggest the structure of an HMM model that may have generated it.
Specify the number of hidden states in the HMM, the transition matrix with any constraints and
estimates of the transition probabilities and the output or emission matrix probalities, and the
intial state probabilities. You need to provide some description/justification for how you arrived
at these numbers. We do not expect you to implement the Baum-Welch algorithm—you should
be able to answer this question just by examining the sequence carefully. [10 marks]

3. [15 marks] Zero-temperature EM. In the automatic speech recognition community HMMs are
sometimes trained by using the Viterbi algorithm in place of the forward–backward algorithm. In other
words, in the E step of EM (Baum–Welch), instead of computing the expected sufficient statistics from
the posterior distribution over hidden states: p(s1:T |x1:T , θ), the sufficient statistics are computed using
the single most probable hidden state sequence: s∗1:T = arg maxs1:T p(s1:T |x1:T , θ).

(a) Is this algorithm guaranteed to converge (in the sense that the free-energy or some other reaches
an asymptote)? To answer this you might want to consider the discussion of the real EM algorithm
and what happens if we constrain q(s) to put all its mass on one setting of the hidden variables.
Support your arguments. [10 marks]

http://www.gatsby.ucl.ac.uk/teaching/courses/ml1-2012/geyser.txt


(b) If it converges, will it converge to a maximum of the likelihood? If it does not converge what will
happen? Support your arguments. [5 marks]

(c) [Bonus (just for culture)] Why do you think this question is labelled “Zero-temperature EM”
Hint: think about where temperature would appear in the the free-energy. [no marks]



BONUS QUESTION: attempt the questions above before anwering this one.

4. [Bonus: 55 marks] BONUS question: LGSSMs, EM and SSID.

Download the datafiles ssm_spins.txt and ssm_spins_test.txt. Both have been generated by an
LGSSM:

yt ∼ N (Ayt−1, Q) [t = 2 . . . T ] y1 ∼ N (0, I)

xt ∼ N (Cyt, R) [t = 1 . . . T ]

using the parameters:

A = 0.99


cos( 2π

180) − sin( 2π
180) 0 0

sin( 2π
180) cos( 2π

180) 0 0
0 0 cos(2π90 ) − sin(2π90 )
0 0 sin(2π90 ) cos(2π90 )

 Q = I −AAT

C =


1 0 1 0
0 1 0 1
1 0 0 1
0 0 1 1

0.5 0.5 0.5 0.5

 R = I

but different random seeds. We shall use the first as a training data set and the second as a test set.

(a) Run the function ssm_kalman.m or ssm_kalman.py that we have provided (or a re-implementation
in your favourite language if you prefer) on the training data. Warning (for MATLAB version):
the function expects data vectors in columns; you will need to transpose the loaded matrices!

Make the following plots (or equivelent):

logdet = @(A)(2*sum(log(diag(chol(A)))));

[Y,V,~,L] = ssm_kalman(X’,Y0,Q0,A,Q,C,R, ’filt’);

plot(Y’):

plot(cellfun(logdet,V));

[Y,V,Vj,L] = ssm_kalman(X’,Y0,Q0,A,Q,C,R, ’smooth’);

plot(Y’):

plot(cellfun(logdet,V));

Explain the behaviour of Y and V in both cases (and the differences between them).

[5 marks]

(b) Write a function to learn the parameters A, Q, C and R using EM (we will assume that the
distribution on the first state is known a priori). The M-step update equations for A and C were
derived in lecture. You should show that the updates for R and Q can be written:

Rnew =
1

T

[ T∑
t=1

xtx
T
t −

( T∑
t=1

xt
〈
yTt
〉)
CT
new

]

Qnew =
1

T − 1

[ T∑
t=2

〈
yty

T
t

〉
−
( T∑
t=2

〈
yty

T
t−1
〉)
AT

new

]
where Cnew and Anew are as in the lecture notes. Store the log-likelihood at every step (easy to
compute from the fourth value returned by ssm_kalman) and check that it increases.

[Hint: the matlab code
cellsum=@(C)(sum(cat(3,C{:}),3))

defines an inline function cellsum() that sums the entries of a cell array of matrices.]



Run at least 50 iterations of EM starting from a number of different initial conditions: (1) the
generating parameters above (why does EM not terminate immediately?) and (2) 10 random
choices.

Show how the likelihood increases over the EM iterations (hand in a plot showing likelihood vs
iteration for each run, plotted in the same set of axes). Explain the features of this plot that you
think are salient.

[If your code and/or computer is fast enough, try running more EM iterations. What happens?]

[25 marks]

(c) Write a function to learn A, Q, C and R using Ho-Kalman SSID. You should provide options
to specify the maximum lag to include in the future-past Hankel matrix (H), and the latent
dimensionality. You may like to plot the singular value spectrum of H to see how good a clue it
provides to dimensionality.

[Hints: if M is a cell array of the lagged correlation matrices Mτ , you can build the Hankel matrix
using:

H = cell2mat(M(hankel([1:maxlag], [maxlag:2*maxlag-1])));

The matrices Ξ (Xi) and Υ (Ups) are found using SVD (assuming K latent dimensions):

[Xi,SV,Ups] = svds(H, K);

Xi = Xi*sqrt(SV);

Ups = sqrt(SV)*Ups’;

and these can be used to find Ĉ and Â and Π̂ by regression ( / or \ in MATLAB), e.g.:

Ahat = Xi(1:end-DD,:)\Xi(DD+1:end,:);

(The code for C and Π will take a little more thought!).

To find Q̂ and R̂ recall that, as Π is the stationary (prior) latent covariance:

AΠAT +Q = Π

and
CΠCT +R = Et→∞

[
xtx

T
t

]
Run your code on the training data using a maximum lag of 10 and the true latent dimensionality.
Evaluate the likelihood of this model using ssm_kalman.m and show it on the likelihood figure.
Now use the SSID parameters as initial values for EM and show the resulting likelihood curve.

Comment on the advantages and disadvantanges of SSID as compared to EM.

(If you have time and inclination, you might like to explore how your results vary with different
choices of lag and dimensionality)

[20 marks]

(d) Evaluate the likelihood of the test data under the true parameters, and all of the parameters found
above (EM initialised at the true parameters, random parameters and the SSID parameters, as
well as the SSID parameters without EM). Show these numbers on or next to the training data
likelihoods plotted above. Comment on the results.

[5 marks]


