Assignment 6
Probabilistic and Unsupervised Learning / Approximate Inference

Maneesh Sahani
Due: Friday Jan 18, 2019

Note: As usual, please attempt the main questions before the bonus ones.

1. [20 marks] EP for sign constraints

Consider a linear dynamical system:

y1 ~ N(0,0%) (1)
Yilyio1 ~ N (yi1,0%) fori =2,3,... 2)
zilyi ~ N (yi, %) fori=1,2,... (3)

with each random variable being scalar. Suppose we observe only the signs s; = 41 of the out-
puts z;, rather than their magnitudes. Derive two different expectation propagation algorithms to
approximate the resulting posterior over the y;s.

(a) To incorporate the sign observations, we could include additional factors of the form:

1 if six; > 0,
fi(w;) = {

0 otherwise

Derive an expectation propagation algorithm to estimate the marginal distributions over all z;
and y; in the joint distribution given by the (normalized) product of these factors with the dis-
tribution of equations (1-3). Approximate each factor with a Gaussian. You may assume access
to a function which can compute the mean E(m,v?) and variance V(m,v?) of the truncated
Gaussian:

_ (z—m)2

e 202 if z > 0;

P(zlm,v) x
0 otherwise

(b) An alternative approach would be to first compute the probabilities:

gi(y:) = P(sign(z;) = silyi),

and then use expectation propagation to estimate the marginals of y;’s in the joint distribution
given by the product of the g; factors with the prior P(y,...,¥y:) given in equations (1-2). Show
that both EP algorithms are equivalent in that they should have the same fixed points.

2. [30 marks] EP for the binary factor model
Now derive an EP algorithm to infer the marginals on the source variables in the binary latent factor

model of question 1 of assignment 5.

(a) First, write down the log-joint probability for a single observation-source pair log(p(s, x)). Re-
arrange the terms to form a sum of log-factors on s (assuming x is observed), each defined either
on a single source variable, or on a pair:

log(p(s,x)) = Zlog fi(si) + Zloggij(sia 8)-



Relate your result to the Boltzmann Machine. [Remember that, since the sources s are binary,
s? = s;.] [5 marks]

(b) Next, derive a message passing scheme to find iterative approximations fz and g;; to each factor.
Start your derivation from the KL divergence KL[p||¢] and identify clearly each time you make
an approximate step. You don’t need to make all of the EP approximations: which one(s) is(are)
missing?

Give the final message-passing scheme in terms of updates to the natural parameters of the site
approximations. There will be two different types of update: for the fz and the g;; respectively.
[10 marks]

(c) Rewrite your message passing approximation to use factored approximate messages. Explain
how this leads to a loopy BP algorithm. [5 marks]

(d) Describe a Bayesian method for selecting K, the number of hidden binary variables using EP.
Does your method pose any computational difficulties and if so how would you tackle them?
[10 marks]

3. [Bonus: 50 marks| Implement the EP/loopy-BP algorithm that you derived in the previous ques-
tion, and compare your results to those of the variational mean-field algorithm.

4. [Bonus 10 marks| Inconsistency of Local Marginals Loopy belief propagation approximates
the distribution over a pairwise MRF using a set of locally consistent beliefs {b;(x;), bi;(zi, z;)}:

sz(xz) =1 for all 4;
T
Zbij(xiawj) = bj(x;) for all 7,j and x;.
i
(a) Give an example set of beliefs that are locally consistent but not globally consistent. That is,

there is no distribution p(X) over all variables such that

p(Xs = x;) = bi(x;) for all i, z;;

p(XZ' = T, Xj = Jjj) = bij(a;i, .CC]‘) fOI‘ all i,j, xi,xj.

Explain why this set of beliefs is not globally consistent. [5 marks]

(b) Construct a graphical model with specific parameter settings, such that the local marginals
you came up with in the previous question form a fixed point of the loopy belief propagation
algorithm run on this model. [5 marks]



