Probabilistic & Unsupervised Learning

Parametric Variational Methods and Recognition Models

Maneesh Sahani

maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

Term 1, Autumn 2018

Optimising the variational parameters

$$\mathcal{F}(
ho, heta) = \left\langle \log P(\mathcal{X}, \mathcal{Z} | heta^{(k-1)})
ight
angle_{q(\mathcal{Z};
ho)} + \mathbf{H}[
ho]$$

- In some special cases, the expectations of the log-joint under $q(\mathcal{Z}; \rho)$ can be expressed in closed form, but these are rare.
- ▶ Otherwise we might seek to follow $\nabla_{\rho}\mathcal{F}$.
- Naively, this requires evaluting a high-dimensional expectation wrt $q(\mathcal{Z}, \rho)$ as a function of ρ not simple.
- At least three solutions:
 - "Score-based" gradient estimate, and Monte-Carlo (Ranganath et al. 2014).
 - Recognition network trained in separate phase not strictly variational (Dayan et al. 1995).
 - Recognition network trained simultaneously with generative model using "frozen" samples (Kingma and Welling 2014; Rezende et al. 2014).

Variational methods

- Our treatment of variational methods has (except EP) emphasised 'natural' choices of variational family – most often factorised using the same functional (ExpFam) form as joint.
 - mostly restricted to joint exponential families facilitates hierarchical and distributed models, but not non-linear/non-conjugate.
- Parametric variational methods might extend our reach.
 Define a parametric family of posterior approximations q(Z; ρ).
 The constrained (approximate) variational E-step becomes:

$$q(\mathcal{Z}) := \underset{q \in \{q(\mathcal{Z}; \rho)\}}{\operatorname{argmax}} \ \mathcal{F}\big(q(\mathcal{Z}), \frac{\rho^{(k-1)}}{\rho}\big) \quad \Rightarrow \quad \rho^{(k)} := \underset{\rho}{\operatorname{argmax}} \ \mathcal{F}\big(q(\mathcal{Z}; \rho), \frac{\rho^{(k-1)}}{\rho}\big)$$

and so we can replace constrained optimisation of $\mathcal{F}(q,\theta)$ with unconstrained optimisation of a constrained $\mathcal{F}(\rho,\theta)$:

$$\mathcal{F}(
ho, heta) = \left\langle \log P(\mathcal{X},\mathcal{Z}| heta^{(k-1)})
ight
angle_{q(\mathcal{Z};
ho)} + \mathbf{H}[
ho]$$

It might still be valuable to use coordinate ascent in ρ and θ , although this is no longer necessary.

Score-based gradient estimate

We have:

$$egin{aligned}
abla_{
ho}\mathcal{F}(
ho, heta) &=
abla_{
ho}\int\!\!d\mathcal{Z}\,q(\mathcal{Z};
ho)(\log P(\mathcal{X},\mathcal{Z}| heta) - \log q(\mathcal{Z};
ho)) \ &= \int\!\!d\mathcal{Z}\,[
abla_{
ho}q(\mathcal{Z};
ho)](\log P(\mathcal{X},\mathcal{Z}| heta) - \log q(\mathcal{Z};
ho)) \ &+ q(\mathcal{Z};
ho)
abla_{
ho}[\log P(\mathcal{X},\mathcal{Z}| heta) - \log q(\mathcal{Z};
ho)] \end{aligned}$$

Now.

$$\begin{split} &\nabla_{\rho} \log P(\mathcal{X}, \mathcal{Z} | \theta) = 0 & \text{(no direct dependence)} \\ &\int d\mathcal{Z} \, q(\mathcal{Z}; \rho) \nabla_{\rho} \log q(\mathcal{Z}; \rho) = \nabla_{\rho} \int \!\! d\mathcal{Z} \, q(\mathcal{Z}; \rho) = 0 & \text{(always normalised)} \\ &\nabla_{\rho} q(\mathcal{Z}; \rho) = q(\mathcal{Z}; \rho) \nabla_{\rho} \log q(\mathcal{Z}; \rho) \end{split}$$

So,

$$abla_{
ho}\mathcal{F}(
ho, heta) = \Big\langle [
abla_{
ho}\log q(\mathcal{Z};
ho)](\log P(\mathcal{X},\mathcal{Z}| heta) - \log q(\mathcal{Z};
ho))\Big
angle_{q(\mathcal{Z};
ho)}$$

Reduced gradient of expectation to expectation of gradient – easier to compute.

Factorisation

$$abla_{
ho}\mathcal{F}(
ho, heta) = \Big\langle [
abla_{
ho}\log q(\mathcal{Z};
ho)] (\log P(\mathcal{X},\mathcal{Z}| heta) - \log q(\mathcal{Z};
ho)) \Big
angle_{q(\mathcal{Z};
ho)}$$

- Still requires a high-dimensional expectation, but can now be evaluated by Monte-Carlo.
- ▶ Dimensionality reduced by factorisation (particularly where $P(\mathcal{X}, \mathcal{Z})$ is factorised). Let $q(\mathcal{Z}) = \prod_i q(\mathcal{Z}_i | \rho_i)$ factor over disjoint cliques; let $\bar{\mathcal{Z}}_i$ be the minimal Markov blanket of \mathcal{Z}_i in the joint; $P_{\bar{\mathcal{Z}}_i}$ be the product of joint factors that include any element of \mathcal{Z}_i (so the union of their arguments is $\bar{\mathcal{Z}}_i$); and $P_{\neg \bar{\mathcal{Z}}_i}$ the remaining factors. Then,

$$\begin{split} \nabla_{\rho_{i}}\mathcal{F}(\{\rho_{j}\},\theta) &= \left\langle [\nabla_{\rho_{i}} \sum_{j} \log q(\mathcal{Z}_{j};\rho_{j})] (\log P(\mathcal{X},\mathcal{Z}|\theta) - \sum_{j} \log q(\mathcal{Z}_{j};\rho_{j})) \right\rangle_{q(\mathcal{Z})} \\ &= \left\langle [\nabla_{\rho_{i}} \log q(\mathcal{Z}_{i};\rho_{i})] (\log P_{\bar{\mathcal{Z}}_{i}}(\mathcal{X},\bar{\mathcal{Z}}_{i}) - \log q(\mathcal{Z}_{i};\rho_{i}) \right\rangle_{q(\bar{\mathcal{Z}}_{i})} \\ &+ \left\langle [\nabla_{\rho_{i}} \log q(\mathcal{Z}_{i};\rho_{i})] \underbrace{(\log P_{\neg \bar{\mathcal{Z}}_{i}}(\mathcal{X},\mathcal{Z}_{\neg_{i}}) - \sum_{j \neq i} \log q(\mathcal{Z}_{j};\rho_{j})}_{\text{constant wrt } \mathcal{Z}_{i}} \right\rangle_{q(\mathcal{Z})} \end{split}$$

So the second term is proportional to $\langle \nabla_{\rho_i} \log q(\mathcal{Z}_i; \rho_i) \rangle_{q(\mathcal{Z}_i)}$, which = 0 as before. So expectations are only needed wrt $q(\bar{\mathcal{Z}}_i) \to \mathsf{Message}$ passing!

Recognition Models

We have not generally distinguished between multivariate models and iid data instances, grouping all variables together in \mathcal{Z} .

However, even for large models (such as HMMs), we often work with multiple data draws (e.g. multiple strings) and each instance requires a separate variational optimisation.

Suppose that we have fixed length vectors $\{(\mathbf{x}_i, \mathbf{z}_i)\}$ (\mathbf{z} is still latent).

- ▶ Optimal variational distribution $q^*(\mathbf{z}_i)$ depends on \mathbf{x}_i .
- Learn this mapping (in parametric form): $q(\mathbf{z}_i; \rho = f(\mathbf{x}_i; \phi))$.
- Now ρ is the output of a general function approximator f (a GP, neural network or similar) parametrised by ϕ , trained to map \mathbf{x}_i to the variational parameters of $q(\mathbf{z}_i)$.
- ▶ The mapping function *f* is called a recognition model.
- ► This is approach is now sometimes called amortised inference.

How to learn f?

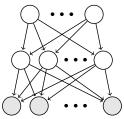
Sampling

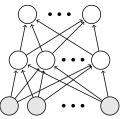
So the "black-box" variational approach is as follows:

- ▶ Choose a parametric (factored) variational family $q(\mathcal{Z}) = \prod_i q(\mathcal{Z}_i; \rho_i)$.
- Initialise factors.
- Repeat to convergence:
 - ▶ Stochastic VE-step. For each *i*:
 - ▶ Sample from $q(\bar{z}_i)$ and estimate expected gradient $\nabla_{a_i} \mathcal{F}$.
 - ▶ Update ρ_i along gradient.
 - ▶ Stochastic M-step. For each *i*:
 - ▶ Sample from each $q(\bar{Z}_i)$.
 - Update corresponding parameters.
- Stochastic gradient steps may employ a Robbins-Munro step-size sequence to promote convergence.
- Variance of the gradient estimators can also be controlled by clever Monte-Carlo techniques (orginal authors used a "control variate" method that we have not studied).

The Helmholtz Machine

Dayan et al. (1995) originally studied binary sigmoid belief net, with parallel recognition model:





Two phase learning:

► Wake phase: given current *f*, estimate mean-field representation from data (mean sufficient stats for Bernoulli are just probabilities):

$$q(\mathbf{z}_i) = \text{Bernoulli}[\hat{\mathbf{z}}_i] \qquad \hat{\mathbf{z}}_i = f(\mathbf{x}_i; \phi)$$

Update generative parameters θ according to $\nabla_{\theta} \mathcal{F}(\{\hat{\mathbf{z}}_i\}, \theta)$.

▶ Sleep phase: sample $\{\mathbf{z}_s, \mathbf{x}_s\}_{s=1}^S$ from current generative model. Update recognition parameters ϕ to direct $f(\mathbf{x}_s)$ towards \mathbf{z}_s (simple gradient learning).

$$\Delta\phi\propto\sum_{s}(\mathbf{z}_{s}-f(\mathbf{x}_{s};\phi))\nabla_{\phi}f(\mathbf{x}_{s};\phi)$$

The Helmholtz Machine

- ► Can sample **z** from recognition model rather than just evaluate means.
 - Expectations in free-energy can be computed directly rather than by mean substitution
 - In hierarchical models, output of higher recognition layers then depends on samples at previous stages, which introduces correlations between samples at different layers.
- ▶ Recognition model structure need not exactly echo generative model.
- ▶ More general approach is to train f to yield mean parameters of ExpFam $q(\mathbf{z})$:

$$q(\mathbf{z}; \rho) \propto e^{\eta(\rho)^{\mathsf{T}} \mathbf{s}_{\mathbf{q}}(\mathbf{z})} \qquad \rho = \langle \mathbf{z} \rangle_{q} = f(\mathbf{x}; \phi)$$

$$\Delta \phi \propto \sum_{s} (\mathbf{s}_{q}(\mathbf{z}_{s}) - f(\mathbf{x}_{s}; \phi)) \nabla_{\phi} f(\mathbf{x}_{s}; \phi)$$

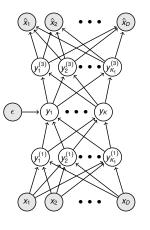
Current work uses flexible (but non-normalisable) exponential families (the "DDC-Helmholtz machine")

Sleep phase learning minimises $KL[p_{\theta}(\mathbf{z}|\mathbf{x})||q(\mathbf{z};f(\mathbf{x},\phi))]$. Opposite to variational objective, but may not matter if divergence is small enough.

Variational Autoencoders

- Frozen samples e^s can be redrawn to avoid overfitting.
- May be possible to evaluate entropy and log P(z) without sampling, reducing variance.
- ▶ Differentiable reparametrisations are available for a number of different distributions.
- Conditional P(x|z, 0) is often implemented as a neural network with additive noise at output, or at transitions. If at transitions recognition network must estimate each noise input.
- ▶ In practice, hierarchical models appear difficult to learn.

Variational Autoencoders



- Fuses the wake and sleep phases.
- Generate recognition samples using deterministic transformations of external random variates (reparametrisation trick).
 - ▶ E.g. if **f** gives marginal μ_i and σ_i for latents y_i and $\epsilon_i^s \sim \mathcal{N}(0, 1)$, then $y_i^s = \mu_i + \sigma_i \epsilon_i^s$.
- Now generative and recognition parameters can be trained together by gradient descent (backprop), holding ε^s fixed.

$$\begin{split} \mathcal{F}_i(\theta, \phi) &= \sum_s \log P(\mathbf{x}_i, \mathbf{z}_i^s; \theta) - \log q(\mathbf{z}_i^s; \mathbf{f}(\mathbf{x}_i, \phi)) \\ &\frac{\partial}{\partial \theta} \mathcal{F}_i = \sum_s \nabla_{\theta} \log P(\mathbf{x}_i, \mathbf{z}_i^s; \theta) \\ &\frac{\partial}{\partial \phi} \mathcal{F}_i = \sum_s \frac{\partial}{\partial \mathbf{z}_i^s} (\log P(\mathbf{x}_i, \mathbf{z}_i^s; \theta) - \log q(\mathbf{z}_i^s; \mathbf{f}(\mathbf{x}_i))) \frac{d\mathbf{z}_i^s}{d\phi} \\ &+ \frac{\partial}{\partial \mathbf{f}(\mathbf{x}_i)} \log q(\mathbf{z}_i^s; \mathbf{f}(\mathbf{x}_i)) \frac{d\mathbf{f}(\mathbf{x}_i)}{d\phi} \end{split}$$

More recent work

- Dynamical VAE (to train RNNs) "draw" network.
- Train proposal networks for particle filtering.
- Importance weighted VAE.
- DDC Helmholtz machines.
- **...**