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Variational methods

I Our treatment of variational methods has (except EP) emphasised ‘natural’ choices of
variational family – most often factorised using the same functional (ExpFam) form as
joint.

I mostly restricted to joint exponential families – facilitates hierarchical and distributed models,
but not non-linear/non-conjugate.

I Parametric variational methods might extend our reach.
Define a parametric family of posterior approximations q(Z; ρ).
The constrained (approximate) variational E-step becomes:

q(Z) := argmax
q∈{q(Z;ρ)}

F
(
q(Z), θ(k−1)) ⇒ ρ(k) := argmax

ρ
F
(
q(Z; ρ), θ(k−1))

and so we can replace constrained optimisation of F(q, θ) with unconstrained
optimisation of a constrained F(ρ, θ) :

F(ρ, θ) =
〈

log P(X ,Z|θ(k−1))
〉

q(Z;ρ)
+ H[ρ]

It might still be valuable to use coordinate ascent in ρ and θ, although this is no longer
necessary.



Optimising the variational parameters

F(ρ, θ) =
〈

log P(X ,Z|θ(k−1))
〉

q(Z;ρ)
+ H[ρ]

I In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

I Otherwise we might seek to follow∇ρF .

I Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

I At least three solutions:

I “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

I Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

I Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).
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Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ

∫
dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ [∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[log P(X ,Z|θ)− log q(Z; ρ)]

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) = ∇ρ

∫
dZ q(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ)

So,

∇ρF(ρ, θ) =
〈

[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))
〉

q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute.
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Factorisation

∇ρF(ρ, θ) =
〈

[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))
〉

q(Z;ρ)

I Still requires a high-dimensional expectation, but can now be evaluated by Monte-Carlo.
I Dimensionality reduced by factorisation (particularly where P(X ,Z) is factorised).

Let q(Z) =
∏

i q(Zi |ρi ) factor over disjoint cliques; let Z̄i be the minimal Markov
blanket of Zi in the joint; PZ̄i

be the product of joint factors that include any element of
Zi (so the union of their arguments is Z̄i ); and P¬Z̄i

the remaining factors. Then,

∇ρiF({ρj}, θ) =
〈

[∇ρi

∑
j log q(Zj ; ρj )](log P(X ,Z|θ)−

∑
j log q(Zj ; ρj ))

〉
q(Z)

=
〈

[∇ρi log q(Zi ; ρi )](log PZ̄i
(X , Z̄i )− log q(Zi ; ρi )

〉
q(Z̄i )

+
〈

[∇ρi log q(Zi ; ρi )] (log P¬Z̄i
(X ,Z¬i )−

∑
j 6=i

log q(Zj ; ρj )︸ ︷︷ ︸
constant wrtZi

〉
q(Z)

So the second term is proportional to 〈∇ρi log q(Zi ; ρi )〉q(Zi )
, which = 0 as before. So

expectations are only needed wrt q(Z̄i )→ Message passing!



Sampling

So the “black-box” variational approach is as follows:

I Choose a parametric (factored) variational family q(Z) =
∏

i q(Zi ; ρi ).
I Initialise factors.
I Repeat to convergence:

I Stochastic VE-step. For each i :
I Sample from q(Z̄i ) and estimate expected gradient∇ρiF .
I Update ρi along gradient.

I Stochastic M-step. For each i :
I Sample from each q(Z̄i ).
I Update corresponding parameters.

I Stochastic gradient steps may employ a Robbins-Munro step-size sequence to promote
convergence.

I Variance of the gradient estimators can also be controlled by clever Monte-Carlo
techniques (orginal authors used a “control variate” method that we have not studied).



Recognition Models

We have not generally distinguished between multivariate models and iid data instances,
grouping all variables together in Z .

However, even for large models (such as HMMs), we often work with multiple data draws (e.g.
multiple strings) and each instance requires a separate variational optimisation.

Suppose that we have fixed length vectors {(xi , zi )} (z is still latent).

I Optimal variational distribution q∗(zi ) depends on xi .
I Learn this mapping (in parametric form): q

(
zi ; ρ = f (xi ;φ)

)
.

I Now ρ is the output of a general function approximator f (a GP, neural network or similar)
parametrised by φ, trained to map xi to the variational parameters of q(zi ).

I The mapping function f is called a recognition model.
I This is approach is now sometimes called amortised inference.

How to learn f?



The Helmholtz Machine
Dayan et al. (1995) originally studied binary sigmoid belief net, with parallel recognition
model:

• • •

• • •

• • •

• • •

• • •

• • •

Two phase learning:
I Wake phase: given current f , estimate mean-field representation from data (mean

sufficient stats for Bernoulli are just probabilities):

q(zi ) = Bernoulli[ẑi ] ẑi = f (xi ;φ)

Update generative parameters θ according to∇θF({ẑi}, θ).
I Sleep phase: sample {zs, xs}S

s=1 from current generative model. Update recognition
parameters φ to direct f (xs) towards zs (simple gradient learning).

∆φ ∝
∑

s

(zs − f (xs;φ))∇φf (xs;φ)



The Helmholtz Machine

I Can sample z from recognition model rather than just evaluate means.
I Expectations in free-energy can be computed directly rather than by mean

substitution.
I In hierarchical models, output of higher recognition layers then depends on

samples at previous stages, which introduces correlations between samples at
different layers.

I Recognition model structure need not exactly echo generative model.

I More general approach is to train f to yield mean parameters of ExpFam q(z):

q(z;ρ) ∝ eη(ρ)Tsq (z) ρ = 〈z〉q = f (x;φ)

∆φ ∝
∑

s

(sq(zs)− f (xs;φ))∇φf (xs;φ)

Current work uses flexible (but non-normalisable) exponential families (the
“DDC-Helmholtz machine”)

I Sleep phase learning minimises KL[pθ(z|x)‖q(z; f (x, φ))]. Opposite to variational
objective, but may not matter if divergence is small enough.



Variational Autoencoders

x1 x2 xD• • •

y (1)
1 y (1)

2 y (1)
K1

• • •

y1 yK• • •

y (3)
1 y (3)

2 y (3)
K1

• • •

x̂1 x̂2 x̂D• • •

ε

I Fuses the wake and sleep phases.
I Generate recognition samples using deterministic

transformations of external random variates
(reparametrisation trick).

I E.g. if f gives marginal µi and σi for latents yi and
εs

i ∼ N (0, 1), then ys
i = µi + σiε

s
i .

I Now generative and recognition parameters can be trained
together by gradient descent (backprop), holding εs fixed.

Fi (θ, φ) =
∑

s

log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi , φ))

∂

∂θ
Fi =

∑
s

∇θ log P(xi , z
s
i ; θ)

∂

∂φ
Fi =

∑
s

∂

∂zs
i

(log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi )))
dzs

i

dφ

+
∂

∂f(xi )
log q(zs

i ; f(xi ))
df(xi )

dφ



Variational Autoencoders

I Frozen samples εs can be redrawn to avoid overfitting.
I May be possible to evaluate entropy and log P(z) without sampling, reducing variance.
I Differentiable reparametrisations are available for a number of different distributions.
I Conditional P(x|z, θ) is often implemented as a neural network with additive noise at

output, or at transitions. If at transitions recognition network must estimate each noise
input.

I In practice, hierarchical models appear difficult to learn.



More recent work

I Dynamical VAE (to train RNNs) – “draw” network.
I Train proposal networks for particle filtering.
I Importance weighted VAE.
I DDC Helmholt machines – arbitrary (non-normalisable) ExpFam posteriors.
I . . .
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