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Latent variable models

Explain correlations in x by assuming dependence on latent variables z

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

Z~ P[ez]
x|z~ P[b,]
(e.g. edges) p(x, Z; 9)(, 02) = p(X | Z; Gx)p(z; 92)

pl(xi6.02) = [ dz plx| z:09p(zi )

(retinal image, i.e. pixels)

Exponential family models

» Simple, 'single-stage’ generative models.
» Easy, often closed-form expressions for learning and model comparison.

> ...but limited in expressiveness.

What about distributions like these?

In each case, data may be generated by combining and transforming latent exponential
family variates.

Latent variable models

» Describe structured distributions.
» Correlations in high-dimensional x may be captured by fewer parameters.

» Capture an underlying generative process.

> z may describe causes of x.
> help to separate signal from noise.

» Combine exponential family distributions into richer, more flexible forms.
> P(z), P(x|z) and even P(x,z) may be in the exponential family
> P(x) rarely is. (Exception: Linear Gaussian models).



Latent variables and Gaussians Probabilistic Principal Components Analysis (PPCA)

Gaussian correlation can be composed from latent components and uncorrelated noise. o ) ) ) )
If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {X1,Xz,...,Xn}; X; € R?

Latents: Z = {z1,22,...,2n};2 € RF
K

Linear generative model: x4 = E Aok 2k + €q
k=1

> z are independent A/ (0, 1) Gaussian factors

> €4 are independent N (0, ) Gaussian noise
» K<D

Model for observations x is a correlated Gaussian:
p(z) =N (0,1) Note: Ex [f(x)] = Ez [Ex [f(x)]]
p(x[z) = N (Az, 1) Vi [x] = Bz [V [xl2]] + Vz [E [x[2]]

p(x) = /p(z)p(x|z)dz = N(]Ez [Az] ,E, [/\zzTAT] + wl) =N (0, AN + z/)l)

where Ais a D x K matrix.

(o 7))

Multivariate Gaussians and latent variables PPCA likelihood

The marginal distribution on x gives us the PPCA likelihood:

Two models: N ’
o p(X|A, ) = — 7 log [2r(ANT + ¢/)) L {(/\/\T ol ZxxT}
pz) = N (0,)) e
p(x) = N (0,X) p(x|z) = N (Az, 1)
=p(x) =N (O,A/\T + wl) ) - . )
To find the ML values of (A, 1)) we could optimise numerically (gradient ascent / Newton’s
method), or we could use a different iterative algorithm called EM which we’ll introduce soon.
» Descriptive density model: correlations > Interpretable causal model: correlations
are captured by off-diagonal elements of captured by common influence of latent In fact, however, ML for PPCA is more straightforward in principle, as we will see by first
Y. variable. considering the limit ¢» — 0.
» Y has @ free parametersl > /\/\T + ’l/)l has DK +1 free parametel’s.
» Only constrained to be positive definite. » For K < D covariance structure is
Simole ML esti constrained (“blurry pancake”)
> oimple estimate. [Note: We may also add a constant mean p to the output, so as to model data that are not

> ML estimation is more complex. distributed around 0. In this case, the ML estimate zi = + >, X, and we can define

S= 1>, (x—p@)(x— i)' in the likelihood above.]



The ¥ — 0 limit

As ¢ — 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K-dimensional space of most variance.

Eigendecomposition of a covariance matrix
The eigendecomposition of a covariance matrix makes finding the PCs easy.
Recall that u is an eigenvector, with scalar eigenvalue w, of a matrix S if

Su=uwu
u can have any norm, but we will define it to be unity (i.e., u'u = 1).

For a covariance matrix S = <xxT> (which is D x D, symmetric, positive semi-definite):

> In general there are D eigenvector-eigenvalue pairs (u(;,w(; ), except if two or more
eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate
— any linear combination is also an eigenvector).

» The D eigenvectors are orthogonal (or orthogonalisable, if w(;) = wy;). Thus, they form
an orthonormal basis. Zi u(,-)u(,-)T = /.

» Any vector v can be written as
T T
v= (E ug)ue) )V =D _(upVuy = v
i i i
» The original matrix S can be written:

S= ZW(,)U(,)U = UWU

where U = [ug), U, - - -, U(p)] collects the eigenvectors and
W= diag [(w(1),w(2), NN ,W(D))

Principal Components Analysis

This leads us to an (old) algorithm called Principal Components Analysis (PCA).

Assume data D = {x;} have zero mean (if not, subtract it).

» Find direction of greatest variance — A(y).

A1) = argmax Z(xn

lvll=1 5

» Find direction orthogonal to Ay with greatest variance —

A@)
» Find direction orthogonal to {A(1), A2, - - -, A(n—1)} with
“ greatest variance — A(,).

» Terminate when remaining variance drops below a
threshold.

PCA and eigenvectors

» The variance in direction u(;) is

<(XTU</'))2> = <U(f)TXXT“(f)> = ug)" Sug) = ug "W = w

» The variance in an arbitrary direction v is

(o) = ((x (Zv ))2>:Zv(i)u(,)TSu
=D 0w VU ZV

P
> Ifviv =1, then >, vy = 1 and so argmax_; ((X'V)?) = U(may)
The direction of greatest variance is the eigenvector the largest eigenvalue.

» In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,
ordered by decreasing eigenvalue.

» The eigenspectrum shows how the variance
is distributed across dimensions; can iden-
tify transitions that might separate signal from
noise, or the number of PCs that capture a pre-

eigenvalue (variance)

fractional variance remaining

determined fraction of variance.

(] 10 E)
................... eigenvalue number

£



PCA subspace

The K principle components define the K-dimensional subspace of greatest variance.

» Each data point x, is associated with a projection X, into the principle subspace.

K
R0 =Y XA
k=1

» This can be used for lossy compression, denoising, recognition, . ..

Example of PCA: Genetic variation within Europe

North-south in PC1-PC2 space
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Example of PCA: E

igenfaces

vismod.media.mit.edu/vismod/demos/facerec/basic.html

Example of PCA: Genetic variation within Europe
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Equivalent definitions of PCA

v

Find K directions of greatest variance in data.

» Find K-dimensional orthogonal projection that preserves greatest
variance.

v

Find K-dimensional vectors z; and matrix A so that X; = Az, is as
close as possible (in squared distance) to x;.

> ...(many others)

Linear autoencoders: From supervised learning to PCA

output units @ @ T )

decoder
“generation”

hidden units

encoder
“recognition”

input units

Learning:argmin ||x — x||° %= Qz z=Px
P

s

At the optimum, P and Q perform the projection and reconstruction steps of PCA. (Baldi &
Hornik 1989).

Another view of PCA: Mutual information

Problem: Given x, find z = Ax with columns of A unit vectors, s.t. /(z; x) is maximised
(assuming that P(x) is Gaussian).

I(z;x) = H(z) + H(x) — H(z,x) = H(z)

So we want to maximise the entropy of z. What is the entropy of a Gaussian?

Ha) = - [ dzp@mp) = 3 in[E] + F(1+n2n)

Therefore we want the distribution of z to have largest volume (i.e. det of covariance matrix).

Y, =AY A = AUWU'AT

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).

Projection to the principal component subspace preserves the most information about the
(Gaussian) data.

ML learning for PPCA

N N
¢ =~ log[2nC| — ~Tr [c's] where C = AAT + o/
N b3} i)
— =—(—-=log|C|— —=Tr[c7'S] ) =N(—C A+ C'sC™'A
on =3 (~gnlo0lCl = (e8] ) =N(-C A+ )
So at the stationary points we have SC~'A = A. This implies either:
» A = 0, which turns out to be a minimum.

> C =S = AA\T =S — 1l Now rank(AAT) < K = rank(S — /) < K
= Shas D — K eigenvalues = v and A aligns with space of remaining eigenvectors.

> or, taking the SVD: A = ULV™:

S(ULVTVLUT + 1)~ uLvT = uLv? x VL
= S(ULRUT + 9 'u=U U(L2 + 1) = (ULRUT + 9h)U
= (ULPUT + o) 'U = UL+ 1)
= SU(L+ o) =U X (L% + )
= SU = U (L% + )
N e
diagonal

= columns of U are eigenvectors of S with eigenvalues given by /,.2 + .

Thus, A = ULVT spans a space defined by K eigenvectors of S; and the lengths of the column

vectors of L are given by the eigenvalues —1) (V selects an arbitrary basis in the latent space).
Remains to show (we won't, but it’s intuitively reasonable) that the global ML solution is attained when A
aligns with the K leading eigenvectors.



PPCA latents PPCA latents

» In PCA the “noise” is orthogonal to the subspace, and we can project x, — X, trivially.
» In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value z, = E [z,|x,] and then take X, = AZ,.

» Tactic: write p(zn, Xn|0), consider X, to be fixed. What is this as a function of z,? .
. 4
(20, Xr) = P(2r)P(Xo|20) PPCA posterior _.
L4
_kK 1 1 1 — ] - ot
= (2m)" 2 exp{—Ez;zn} 2|2 exp{— 5 (xs — Nzp) W (x5 — Azn)} PPCA noiIS(e.,”, ~PCA projection
v ¥
1 _ . .
=cx exp{fé[zzzn + (Xn — Azn) W (X, — AZ))]} i3 i ":' R PPCA projection
1 i A oy -
o x eXp{—E[Z;(H— A Nz, — 22ATW " x,]} PPCA latent pl’iO'I', "o
11 _ _ 504
=c"x exp{fé[zzz 'z —22)Y 4 " ) S ','
L4
2
SoYX =(/+ANV A" =/—FANand u = ATV "'x, = Bx,. Where 8 = TATU . "o
> Thus, %, = A(/ + ATV TIA)TIATU %, = x, — W(AAT + W) 'x, ,}'
4
» This is not the same projection. PPCA takes into account noise in the principal R
subspace. L~ principal subspace
» As 1) — 0, the PPCA estimate — the PCA value. e
Factor Analysis Factor Analysis (cont.)

If dimensions are not equivalent, equal variance assumption is inappropriate.

Data: D = X = {X1,X,...,Xn}; X; € R?
Latents: Z = {z1,2s,...,2nv};2i € RF
K

Linear generative model: x4 = Z/\dk Zx + €4
k=1
> 2z are independent A/ (0, 1) Gaussian factors

> ¢4 are independent (0, V44) Gaussian noise @ @ oo

» K<D

Model for observations x is still a correlated Gaussian:
» ML learning finds A (“common factors”) and W (“unique factors” or “uniquenesses”)

p(z) =N (0,1) given data
p(x|2) = N (Az, W) » parameters (corrected for symmetries): DK + D — (=1

» |f number of parameters > @ model is not identifiable (even after accounting for
p(x) = /P(Z)P(X|Z)d2 =N (07 AT+ “’) rotational degeneracy discussed later)

» no closed form solution for ML params: A(0, AAT + W)
where Aisa D x K, and V is D x D and diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data that
captures the correlation structure of the data.



Factor Analysis projections

Our analysis for PPCA still applies:
% = NI+ AN VUTA)TATU T X, = x, — W(AAT + W) 'x,
but now V is diagonal but not spherical.

Note, though, that A is generally different from that found by PPCA.

And A is not unique: the latent space may be transformed by an arbitrary orthogonal
transform U (U™U = UU" = I) without changing the likelihood.

3=Uz and A=AU" = AZ=AU"Uz=Az

1

—{=—log ‘ZW(AUTU/\T + w)‘ + %XT(/\UTU/\T + W) "x

N = N

log ‘27r(/~\/N\T + \ll)‘ + %XT(i\/N\T + W) 'x

FA vs PCA

» PCA and PPCA are rotationally invariant; FA is not
If x — Ux for unitary U, then )\(P,();A — UAE’,():A

» FA is measurement scale invariant; PCA and PPCA are not
If x — Sx for diagonal S, then /\(Fﬁ — S)\(FS

» FA and PPCA define a probabilistic model; PCA does not

[Note: it may be tempting to try to eliminate the scale-dependence of (P)PCA by
pre-processing data to equalise total variance on each axis. But P(PCA) assume equal noise
variance. Total variance has contributions from both AAT and noise, so this approach does
not exactly solve the problem.]

Gradient methods for learning FA

Optimise negative log-likelihood:
—0 = % log [27(AAT + )| + %xT(/\/\T + W) 'x

w.r.t. A and W (need matrix calculus) subject to constraints.

» No spectral short-cut exists.

» Likelihood can have more than one (local) optimum, making it difficult to find the global
value.

» For some data (“Heywood cases”) likelihood may grow unboundedly by taking one or
more W4y — 0. Can eliminate by assuming a prior on W with zero density at W4y = 0,
but results sensitive to precise choice of prior.

Expectation maximisation (next lecture) provides an alternative approach to maximisation, but
doesn’t solve these issues.

Canonical Correlations Analysis
Data vector pairs: D = {(u1, Vv1), (uz,V2) ...} in spaces U and V.

Classic CCA

» Find unit vectors vy € U, ¢4 € V such that the correlation of u] v and v} ¢4 is
maximised.

» As with PCA, repeat in orthogonal subspaces.

Probabilistic CCA

» Generative model with latent z; € R¥:
z~N(0,0)

un N(TZ, wu) wu #

v N (Pz, W) W,

» Block diagonal noise.



Limitations of Gaussian, FA and PCA models

» Gaussian, FA and PCA models are easy to understand and use in practice.

» They are a convenient way to find interesting directions in very high dimensional data

sets, eg as preprocessing
» However, they make strong assumptions about the distribution of the data: only the
mean and variance of the data are taken into account.

The class of densities which can be modelled is too restrictive.

X2
°

By using mixtures of simple distributions, such as Gaussians, we can expand the class of
densities greatly.

The Mixture Likelihood

The mixture model is

s s Discrete[r]
Xi | si ~ Ps[05]

Under the discrete distribution
k
P(si=m) =7m; ﬂ‘mZO,Zﬂ'm=1
m=1

Thus, the probability (density) at a single data point x; is
k
P(xi) =Y P(xi| s =m)P(s; = m)
m=1

k
= Z TFum(X,'; em)
m=1

The mixture distribution (density) is a convex combination (or weighted average) of the
component distributions (densities).

Mixture Distributions

Xz
°

A mixture distribution has a single discrete latent variable:
iid A,
s; ~ Discrete[n]
X; | si ~ Ps[0s]

Mixtures arise naturally when observations from different sources have been collated.
They can also be used to approximate arbitrary distributions.

Approximation with a Mixture of Gaussians (MoG)

The component densities may be viewed as elements of a basis which can be combined to
approximate arbitrary distributions.

Here are examples where non-Gaussian densities are modelled (aproximated) as a mixture
of Gaussians. The red curves show the (weighted) Gaussians, and the blue curve the
resulting density.

Uniform Triangle Heavy tails

1 2 1

0.5 1 0.5

0

0 0
-05 0 051 15-05 0 05 1 15 -2 0 2

Given enough mixture components we can model (almost) any density (as accurately as
desired), but still only need to work with the well-known Gaussian form.



Clustering with a MoG

The MoG likelihood

Each component of a MoG is a Gaussian, with mean p, and covariance matrix ¥ . Thus,
the probability density evaluated at a set of n iid observations, D = {X1 ... X} (i.e. the
likelihood) is

n k
=TI 7N (% | ptm, )

i=1 m=1

P(D [ {pm} {Zm}, )

H Z ﬁe*%(xi*umfi?(xﬁ“m)
|27 m]

=1 m=1

The log of the likelihood is

logp(D | {m}, {Zm}, 7

l(Xi_l»ifl7)-rz’;1(xl_lllm)
ZlogZﬂm |27rZ e 2

Note that the logarithm fails to simplify the component density terms. A mixture distribution
does not lie in the exponential family. Direct optimisation is not easy.

Clustering with a MoG

In clustering applications, the latent variable s; represents the (unknown) identity of the
cluster to which the ith observation belongs.

Thus, the latent distribution gives the prior probability of a data point coming from each
cluster.

P(si=m|n)=mn
Data from the mth cluster are distributed according to the mth component:
P(xi | si=m) = Pn(x)

Once we observe a data point, the posterior probability distribution for the cluster it belongs to
is

Pm(Xi)Tm
> m P(Xi)7m

This is often called the responsibility of the mth cluster for the ith data point.

P(si=m|x;) =

Maximum Likelihood for a Mixture Model
The log likelihood is:

n k
L= Z log Z 7Tum(xi; em)
i=1 m=1

Its partial derivative wrt 0, is

oL _ Xn: Tm OPm(Xi; Om)
90m S TmPm(Xi;0m)  O0m

i=1

or, using OP/96 = P x dlog P/d6),

_ Z 7rmP,,, (xi; 0m) 0log Pm(xi; 0m)
m 1 7Tum(X,, Gm) 80,"

- Xn: " 0 log Pr(Xi; Om)
- 4 im 89,11

And its partial derivative wrt 7, is
n

8£ _ Pm(xl ] gm rlm
drn ~ 25 %—gm

= —1 7Tum(X/,




MoG Derivatives

For a MoG, with 6, = {ptm, £} we get

a’um i=1
oo = 5 >t (B = (= )6 — )

i=1

These equations can be used (along with Lagrangian derivatives wrt 7, that enforce
normalisation) for gradient based learning; e.g., taking small steps in the direction of the
gradient (or using conjugate gradients).

A preview of the EM algorithm

We wrote the k-means algorithm in terms of binary responsibilities. Suppose, instead, we
used the fractional responsibilities from the full (non-limiting) MoG, but still neglected the
dependence of the responsibilities on the parameters. We could then solve for both @, and
m.

The EM algorithm for MoGs iterates these two steps:
» Evaluate the responsibilities for each point given the current parameters.
» Optimise the parameters assuming the responsibilities stay fixed:

s — > fimXi and T — S rim(Xi — pm)(Xi — pam)"
m — m —
Zi lim Zi lim

Although this appears ad hoc, we will see (later) that it is a special case of a general
algorithm, and is actually guaranteed to increase the likelihood at each iteration.

The K-means Algorithm

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA and Factor
Analysis).

Take m = 1/k and ¥, = o?/, with o® — 0. Then the responsibilities become binary
fim — &(m, argmin ||x; — ||%)
!

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:
» assign each point to its closest mean (set im = 6(m, argmin ||x; — N,HZ))
!

— 2o rfmxi)

» update the means to the average of their assigned points (set Bm = S
i Tim

This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for p,. The algorithm has no learning rate, but the assumptions are quite
limiting.

Issues

There are several problems with these algorithms:
» slow convergence for the gradient based method
» gradient based method may develop invalid covariance matrices
» local minima; the end configuration may depend on the starting state
» how do you adjust k? Using the likelihood alone is no good.

» singularities; components with a single data point will have their covariance going to
zero and the likelihood will tend to infinity.

We will attempt to address many of these as the course goes on.
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