Probabilistic & Unsupervised Learning

Expectation Maximisation

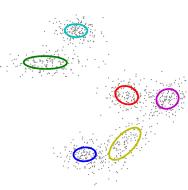
Maneesh Sahani

maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

Term 1, Autumn 2018

Example: mixture of Gaussians



Data:
$$\mathcal{X} = \{\mathbf{x}_1 \dots \mathbf{x}_N\}$$

Latent process:

$$s_i \overset{ ext{iid}}{\sim} \; \mathsf{Disc}[\pi]$$

Component distributions:

$$\mathbf{x}_i \mid (\mathbf{s}_i = m) \sim \mathcal{P}_m[\theta_m] = \mathcal{N}\left(\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m\right)$$

Marginal distribution:

$$P(\mathbf{x}_i) = \sum_{m=1}^k \pi_m P_m(\mathbf{x}; \theta_m)$$

Log-likelihood:

$$\ell(\{\mu_m\}, \{\Sigma_m\}, \pi) = \sum_{i=1}^n \log \sum_{m=1}^k \frac{\pi_m}{\sqrt{|2\pi\Sigma_m|}} e^{-\frac{1}{2}(\mathbf{x}_i - \mu_m)^\mathsf{T} \Sigma_m^{-1}(\mathbf{x}_i - \mu_m)}$$

Log-likelihoods

• Exponential family models: $p(\mathbf{x}|\theta) = f(\mathbf{x})e^{\theta^T T(\mathbf{x})}/Z(\theta)$

$$\ell(\theta) = \theta^{\mathsf{T}} \sum_{n} T(\mathbf{x}_{n}) - N \log Z(\theta) \ \ (+ \text{ constants})$$

- Concave function.
- Maximum may be closed-form.
- If not, numerical optimisation is still generally straightforward.

Latent variable models:
$$p(\mathbf{x}|\theta_x,\theta_z) = \int d\mathbf{z} \underbrace{\frac{f_x(\mathbf{x})}{Z_x(\phi(\theta_x,\mathbf{z}))}}_{p(\mathbf{x}|z,\theta_x)} \underbrace{\frac{f_z(\mathbf{z})}{Z_z(\theta_z)}}_{p(\mathbf{z}|\theta_z)} \underbrace{\frac{e^{\theta^T_z}T_z(\mathbf{z})}{Z_z(\theta_z)}}_{p(\mathbf{z}|\theta_z)}$$

$$\ell(\theta_x, \theta_z) = \sum_n \log \int d\mathbf{z} \, f_x(\mathbf{x}) \frac{e^{\phi(\theta_x, \mathbf{z})^\mathsf{T}} \mathsf{T}_x(\mathbf{x})}{Z_x(\phi(\theta_x, \mathbf{z}))} \, f_z(\mathbf{z}) \frac{e^{\theta_z^\mathsf{T}} \mathsf{T}_z(\mathbf{z})}{Z_z(\theta_z)}$$

- Usually no closed form optimum.
- Often multiple local maxima.
- Direct numerical optimisation may be possible but infrequently easy.

The joint-data likelihood and EM

► For many models, maximisation might be straightforward if **z** were not latent, and we could just maximise the joint-data likelihood:

$$\ell(\theta_x, \theta_z) = \sum_n \phi(\theta_x, \mathbf{z}_n)^\mathsf{T} \mathbf{T}_x(\mathbf{x}_n) + \theta_z^\mathsf{T} \sum_n \mathbf{T}_z(\mathbf{z}_n) - \sum_n \log Z_x(\phi(\theta_x, \mathbf{z}_n)) - N \log Z_z(\theta_z)$$

- \triangleright Conversely, if we knew θ , we might easily compute (the posterior over) the values of z.
- Idea: update θ and (the distribution on) z in alternation, to reach a self-consistent answer. Will this yield the right answer?
- Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.

The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

- Decomposes difficult problems into series of tractable steps.
- An alternative to gradient-based iterative methods.
- No learning rate.
- ▶ In ML, the E step is called inference, and the M step learning. In stats, these are often imputation and inference or estimation.
- Not essential for simple models (like MoGs/FA), though often more efficient than alternatives. Crucial for learning in complex settings.
- Provides a framework for principled approximations.

The lower bound for EM – "free energy"

Observed data $\mathcal{X} = \{\mathbf{x}_i\}$; Latent variables $\mathcal{Z} = \{\mathbf{z}_i\}$; Parameters $\theta = \{\theta_x, \theta_z\}$.

Log-likelihood:

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Z} \ P(\mathcal{Z}, \mathcal{X}|\theta)$$

By Jensen, any distribution, $q(\mathcal{Z})$, over the latent variables generates a lower bound:

$$\ell(\theta) = \log \int \! d\mathcal{Z} \; \frac{q(\mathcal{Z})}{q(\mathcal{Z})} \frac{P(\mathcal{Z}, \mathcal{X}|\theta)}{q(\mathcal{Z})} \geq \int \! d\mathcal{Z} \; q(\mathcal{Z}) \log \frac{P(\mathcal{Z}, \mathcal{X}|\theta)}{q(\mathcal{Z})} \; \stackrel{\text{def}}{=} \mathcal{F}(q, \theta).$$

$$\int d\mathcal{Z} \; q(\mathcal{Z}) \log rac{P(\mathcal{Z}, \mathcal{X} | heta)}{q(\mathcal{Z})} = \int d\mathcal{Z} \; q(\mathcal{Z}) \log P(\mathcal{Z}, \mathcal{X} | heta) - \int d\mathcal{Z} \; q(\mathcal{Z}) \log q(\mathcal{Z})$$

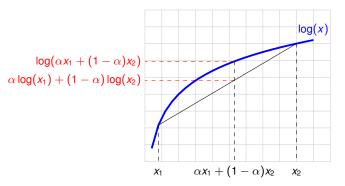
$$= \int d\mathcal{Z} \; q(\mathcal{Z}) \log P(\mathcal{Z}, \mathcal{X} | heta) + \mathbf{H}[q],$$

where $\mathbf{H}[q]$ is the entropy of $q(\mathcal{Z})$.

$$\mathcal{F}(q, \theta) = \langle \log P(\mathcal{Z}, \mathcal{X} | \theta) \rangle_{q(\mathcal{Z})} + \mathbf{H}[q]$$

Jensen's inequality

One view: EM iteratively refines a lower bound on the log-likelihood.



In general:

For
$$\alpha_i \ge 0$$
, $\sum \alpha_i = 1$ (and $\{x_i > 0\}$):

For probability measure α and concave f

$$\log\left(\sum_{i}\alpha_{i}x_{i}\right)\geq\sum_{i}\alpha_{i}\log(x_{i}) \qquad f\left(\mathbb{E}_{\alpha}\left[x\right]\right)\geq\mathbb{E}_{\alpha}\left[f(x)\right]$$

$$f\left(\mathbb{E}_{\alpha}\left[x\right]\right) \geq \mathbb{E}_{\alpha}\left[f(x)\right]$$

Equality (if and) only if f(x) is almost surely constant or linear on (convex) support of α .

The E and M steps of EM

The free-energy lower bound on $\ell(\theta)$ is a function of θ and a distribution q:

$$\mathcal{F}(q, \theta) = \langle \log P(\mathcal{Z}, \mathcal{X} | \theta)
angle_{q(\mathcal{Z})} + \mathbf{H}[q],$$

The EM steps can be re-written:

E step: optimize $\mathcal{F}(q,\theta)$ wrt distribution over hidden variables holding parameters fixed:

$$q^{(k)}(\mathcal{Z}) := \underset{q(\mathcal{Z})}{\operatorname{argmax}} \ \mathcal{F}(q(\mathcal{Z}), \theta^{(k-1)}).$$

▶ **M step:** maximize $\mathcal{F}(q,\theta)$ wrt parameters holding hidden distribution fixed:

$$\theta^{(k)} := \underset{\theta}{\operatorname{argmax}} \ \mathcal{F}(\mathbf{q}^{(k)}(\mathcal{Z}), \theta) = \underset{\theta}{\operatorname{argmax}} \ \langle \log P(\mathcal{Z}, \mathcal{X} | \theta) \rangle_{\mathbf{q}^{(k)}(\mathcal{Z})}$$

The second equality comes from the fact that $\mathbf{H}\left[q^{(k)}(\mathcal{Z})\right]$ does not depend directly on θ .

The E Step

The free energy can be re-written

$$\begin{split} \mathcal{F}(q,\theta) &= \int q(\mathcal{Z}) \log \frac{P(\mathcal{Z},\mathcal{X}|\theta)}{q(\mathcal{Z})} \ d\mathcal{Z} \\ &= \int q(\mathcal{Z}) \log \frac{P(\mathcal{Z}|\mathcal{X},\theta)P(\mathcal{X}|\theta)}{q(\mathcal{Z})} \ d\mathcal{Z} \\ &= \int q(\mathcal{Z}) \log P(\mathcal{X}|\theta) \ d\mathcal{Z} + \int q(\mathcal{Z}) \log \frac{P(\mathcal{Z}|\mathcal{X},\theta)}{q(\mathcal{Z})} \ d\mathcal{Z} \\ &= \ell(\theta) - \mathsf{KL}[q(\mathcal{Z}) \| P(\mathcal{Z}|\mathcal{X},\theta)] \end{split}$$

The second term is the Kullback-Leibler divergence.

This means that, for fixed θ , \mathcal{F} is bounded above by ℓ , and achieves that bound when $\mathbf{KL}[q(\mathcal{Z})||P(\mathcal{Z}|\mathcal{X},\theta)]=0$.

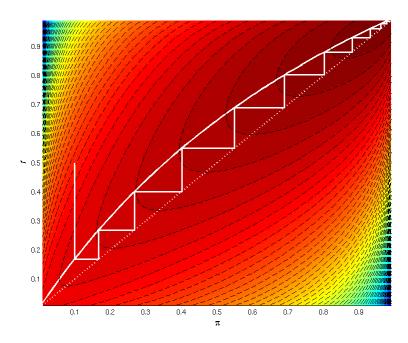
But KL[q||p] is zero if and only if q = p (see appendix.)

So, the E step sets

$$q^{(k)}(\mathcal{Z}) = P(\mathcal{Z}|\mathcal{X}, \theta^{(k-1)})$$
 [inference / imputation]

and, after an E step, the free energy equals the likelihood.

Coordinate Ascent in \mathcal{F} (Demo)



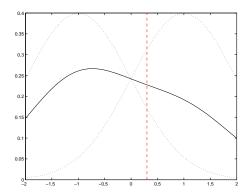
Coordinate Ascent in \mathcal{F} (Demo)

To visualise, we consider a one parameter / one latent mixture:

$$s \sim \mathsf{Bernoulli}[\pi]$$
 $x|s=0 \sim \mathcal{N}[-1,1]$ $x|s=1 \sim \mathcal{N}[1,1]$.

Single data point $x_1 = .3$.

q(s) is a distribution on a single binary latent, and so is represented by $r_1 \in [0, 1]$.



EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$\ell(\boldsymbol{\theta}^{(k-1)}) = \mathcal{F}(\boldsymbol{q}^{(k)}, \boldsymbol{\theta}^{(k-1)}) \leq \mathcal{F}(\boldsymbol{q}^{(k)}, \boldsymbol{\theta}^{(k)}) \leq \mathcal{F}(\boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^{(k)})$$

- ▶ The E step brings the free energy to the likelihood.
- ▶ The M-step maximises the free energy wrt θ .
- $ightharpoonup \mathcal{F} \leq \ell$ by Jensen or, equivalently, from the non-negativity of KL

If the M-step is executed so that $\theta^{(k)} \neq \theta^{(k-1)}$ iff \mathcal{F} increases, then the overall EM iteration will step to a new value of θ iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see appendices).

EM Summary

 An iterative algorithm that finds (local) maxima of the likelihood of a latent variable model

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Z} P(\mathcal{X}|\mathcal{Z}, \theta) P(\mathcal{Z}|\theta)$$

Increases a variational lower bound on the likelihood by coordinate ascent.

$$\mathcal{F}(q,\theta) = \langle \log P(\mathcal{Z}, \mathcal{X} | \theta) \rangle_{q(\mathcal{Z})} + \mathbf{H}[q] = \ell(\theta) - \mathbf{KL}[q(\mathcal{Z}) || P(\mathcal{Z} | \mathcal{X})] \leq \ell(\theta)$$

► E step:

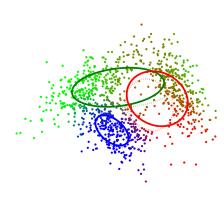
$$q^{(k)}(\mathcal{Z}) := \underset{q(\mathcal{Z})}{\operatorname{argmax}} \ \mathcal{F}(q(\mathcal{Z}), \theta^{(k-1)}) = P(\mathcal{Z}|\mathcal{X}, \theta^{(k-1)})$$

M step:

$$\theta^{(k)} := \underset{\theta}{\operatorname{argmax}} \ \mathcal{F}(q^{(k)}(\mathcal{Z}), \theta) = \underset{\theta}{\operatorname{argmax}} \ \langle \log P(\mathcal{Z}, \mathcal{X} | \theta) \rangle_{q^{(k)}(\mathcal{Z})}$$

• After E-step $\mathcal{F}(q,\theta) = \ell(\theta) \Rightarrow$ maximum of free-energy is maximum of likelihood.

EM for MoGs



Evaluate responsibilities

$$r_{im} = rac{P_m(\mathbf{x})\pi_m}{\sum_{m'}P_{m'}(\mathbf{x})\pi_{m'}}$$

Update parameters

$$\mu_{m} \leftarrow \frac{\sum_{i} r_{im} \mathbf{x}_{i}}{\sum_{i} r_{im}}$$

$$\Sigma_{m} \leftarrow \frac{\sum_{i} r_{im} (\mathbf{x}_{i} - \mu_{m}) (\mathbf{x}_{i} - \mu_{m})^{\mathsf{T}}}{\sum_{i} r_{im}}$$

$$\pi_{m} \leftarrow \frac{\sum_{i} r_{im}}{N}$$

Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just *increase* \mathcal{F} wrt θ rather than maximize. (Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step

$$\left. \frac{\partial}{\partial \theta} \right|_{\theta^{(k-1)}} \langle \log P(\mathcal{X}, \mathcal{Z} | \theta) \rangle_{q^{(k)}(\mathcal{Z})[=P(\mathcal{Z} | \mathcal{X}, \theta^{(k-1)})]} = \left. \frac{\partial}{\partial \theta} \right|_{\theta^{(k-1)}} \log P(\mathcal{X} | \theta)$$

[cf. mixture gradients from last lecture.] So E-step (inference) can be used to construct other gradient-based optimisation schemes (e.g. "Expectation Conjugate Gradient", Salakhutdinov et al. *ICML* 2003).

Partial E steps: We can also just *increase* \mathcal{F} wrt to some of the qs.

For example, sparse or online versions of the EM algorithm would compute the posterior for a subset of the data points or as the data arrives, respectively. One might also update the posterior over a subset of the hidden variables, while holding others fixed...

The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

$$p(x|\theta) = \sum_{m=1}^k p(s=m|\theta)p(x|s=m,\theta) \propto \sum_{m=1}^k \frac{\pi_m}{\sigma_m} \exp\left\{-\frac{1}{2\sigma_m^2}(x-\mu_m)^2\right\},\,$$

where θ is the collection of parameters: means μ_m , variances σ_m^2 and mixing proportions $\pi_m = p(s = m|\theta)$.

The hidden variable s_i indicates which component generated observation x_i .

The E-step computes the posterior for s_i given the current parameters:

$$\begin{split} q(s_i) &= p(s_i|x_i,\theta) \propto p(x_i|s_i,\theta) p(s_i|\theta) \\ r_{im} &\stackrel{\mathrm{def}}{=} q(s_i=m) \propto \frac{\pi_m}{\sigma_m} \exp\big\{-\frac{1}{2\sigma_m^2} (x_i-\mu_m)^2\big\} \quad \text{(responsibilities)} \quad \leftarrow \left\langle \delta_{s_i=m} \right\rangle_q \end{split}$$

with the normalization such that $\sum_{m} r_{im} = 1$.

The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

$$\begin{aligned} E &= \langle \log p(x, s | \theta) \rangle_{q(s)} = \sum_{i,m} q(s) \log[p(s | \theta) \ p(x | s, \theta)] \\ &= \sum_{i,m} r_{im} \left[\log \pi_m - \log \sigma_m - \frac{1}{2\sigma_m^2} (x_i - \mu_m)^2 \right]. \end{aligned}$$

Optimum is found by setting the partial derivatives of *E* to zero:

$$\begin{split} \frac{\partial}{\partial \mu_{m}} E &= \sum_{i} r_{im} \frac{(x_{i} - \mu_{m})}{2\sigma_{m}^{2}} = 0 \quad \Rightarrow \quad \mu_{m} = \frac{\sum_{i} r_{im} x_{i}}{\sum_{i} r_{im}}, \\ \frac{\partial}{\partial \sigma_{m}} E &= \sum_{i} r_{im} \left[-\frac{1}{\sigma_{m}} + \frac{(x_{i} - \mu_{m})^{2}}{\sigma_{m}^{3}} \right] = 0 \quad \Rightarrow \quad \sigma_{m}^{2} = \frac{\sum_{i} r_{im} (x_{i} - \mu_{m})^{2}}{\sum_{i} r_{im}}, \\ \frac{\partial}{\partial \pi_{m}} E &= \sum_{i} r_{im} \frac{1}{\pi_{m}}, \qquad \frac{\partial E}{\partial \pi_{m}} + \lambda = 0 \quad \Rightarrow \quad \pi_{m} = \frac{1}{n} \sum_{i} r_{im}, \end{split}$$

where λ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.

The E step for Factor Analysis

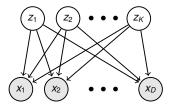
E step: For each data point \mathbf{x}_n , compute the posterior distribution of hidden factors given the observed data: $q_n(\mathbf{z}_n) = \rho(\mathbf{z}_n|\mathbf{x}_n, \theta) = \rho(\mathbf{z}_n, \mathbf{x}_n|\theta)/\rho(\mathbf{x}_n|\theta)$

Tactic: write $p(\mathbf{z}_n, \mathbf{x}_n | \theta)$, consider \mathbf{x}_n to be fixed. What is this as a function of \mathbf{z}_n ?

$$\begin{split} \rho(\mathbf{z}_{n}, \mathbf{x}_{n}) &= \rho(\mathbf{z}_{n}) \rho(\mathbf{x}_{n} | \mathbf{z}_{n}) \\ &= (2\pi)^{-\frac{K}{2}} \exp\{-\frac{1}{2} \mathbf{z}_{n}^{\mathsf{T}} \mathbf{z}_{n}\} | 2\pi \Psi|^{-\frac{1}{2}} \exp\{-\frac{1}{2} (\mathbf{x}_{n} - \Lambda \mathbf{z}_{n})^{\mathsf{T}} \Psi^{-1} (\mathbf{x}_{n} - \Lambda \mathbf{z}_{n})\} \\ &= c \times \exp\{-\frac{1}{2} [\mathbf{z}_{n}^{\mathsf{T}} \mathbf{z}_{n} + (\mathbf{x}_{n} - \Lambda \mathbf{z}_{n})^{\mathsf{T}} \Psi^{-1} (\mathbf{x}_{n} - \Lambda \mathbf{z}_{n})]\} \\ &= c' \times \exp\{-\frac{1}{2} [\mathbf{z}_{n}^{\mathsf{T}} (\mathbf{I} + \Lambda^{\mathsf{T}} \Psi^{-1} \Lambda) \mathbf{z}_{n} - 2\mathbf{z}_{n}^{\mathsf{T}} \Lambda^{\mathsf{T}} \Psi^{-1} \mathbf{x}_{n}]\} \\ &= c'' \times \exp\{-\frac{1}{2} [\mathbf{z}_{n}^{\mathsf{T}} \Sigma^{-1} \mathbf{z}_{n} - 2\mathbf{z}_{n}^{\mathsf{T}} \Sigma^{-1} \mu_{n} + \mu_{n}^{\mathsf{T}} \Sigma^{-1} \mu_{n}]\} \end{split}$$

So $\Sigma = (I + \Lambda^T \Psi^{-1} \Lambda)^{-1} = I - \beta \Lambda$ and $\mu_n = \Sigma \Lambda^T \Psi^{-1} \mathbf{x}_n = \beta \mathbf{x}_n$. Where $\beta = \Sigma \Lambda^T \Psi^{-1}$. Note that μ_n is a linear function of \mathbf{x}_n and Σ does not depend on \mathbf{x}_n .

EM for Factor Analysis



The model for x:

$$p(\mathbf{x}|\theta) = \int p(\mathbf{z}|\theta)p(\mathbf{x}|\mathbf{z},\theta)d\mathbf{z} = \mathcal{N}(0,\Lambda\Lambda^{\mathsf{T}} + \Psi)$$

Model parameters: $\theta = \{\Lambda, \Psi\}$.

E step: For each data point \mathbf{x}_n , compute the posterior distribution of hidden factors given the observed data: $q_n(\mathbf{z}_n) = p(\mathbf{z}_n|\mathbf{x}_n, \theta_t)$.

M step: Find the θ_{t+1} that maximises $\mathcal{F}(q,\theta)$:

$$\mathcal{F}(q,\theta) = \sum_{n} \int q_{n}(\mathbf{z}_{n}) \left[\log p(\mathbf{z}_{n}|\theta) + \log p(\mathbf{x}_{n}|\mathbf{z}_{n},\theta) - \log q_{n}(\mathbf{z}_{n}) \right] d\mathbf{z}_{n}$$

$$= \sum_{n} \int q_{n}(\mathbf{z}_{n}) \left[\log p(\mathbf{z}_{n}|\theta) + \log p(\mathbf{x}_{n}|\mathbf{z}_{n},\theta) \right] d\mathbf{z}_{n} + c.$$

The M step for Factor Analysis

M step: Find θ_{t+1} by maximising $\mathcal{F} = \sum_{n} \left\langle \log p(\mathbf{z}_n | \theta) + \log p(\mathbf{x}_n | \mathbf{z}_n, \theta) \right\rangle_{q_n(\mathbf{z}_n)} + c$

$$\begin{split} \log p(\mathbf{z}_n|\theta) + \log p(\mathbf{x}_n|\mathbf{z}_n,\theta) \\ &= \mathbf{c} - \frac{1}{2}\mathbf{z}_n^\mathsf{T}\mathbf{z}_n - \frac{1}{2}\log |\Psi| - \frac{1}{2}(\mathbf{x}_n - \Lambda\mathbf{z}_n)^\mathsf{T}\Psi^{-1}(\mathbf{x}_n - \Lambda\mathbf{z}_n) \\ &= \mathbf{c}' - \frac{1}{2}\log |\Psi| - \frac{1}{2}\left[\mathbf{x}_n^\mathsf{T}\Psi^{-1}\mathbf{x}_n - 2\mathbf{x}_n^\mathsf{T}\Psi^{-1}\Lambda\mathbf{z}_n + \mathbf{z}_n^\mathsf{T}\Lambda^\mathsf{T}\Psi^{-1}\Lambda\mathbf{z}_n\right] \\ &= \mathbf{c}' - \frac{1}{2}\log |\Psi| - \frac{1}{2}\left[\mathbf{x}_n^\mathsf{T}\Psi^{-1}\mathbf{x}_n - 2\mathbf{x}_n^\mathsf{T}\Psi^{-1}\Lambda\mathbf{z}_n + \mathsf{Tr}\left[\Lambda^\mathsf{T}\Psi^{-1}\Lambda\mathbf{z}_n\mathbf{z}_n^\mathsf{T}\right]\right] \end{split}$$

Taking expectations wrt $q_n(\mathbf{z}_n)$:

$$= \mathbf{c}' - \frac{1}{2}\log|\Psi| - \frac{1}{2}\left[\mathbf{x}_n^\mathsf{T} \Psi^{-1} \mathbf{x}_n - 2\mathbf{x}_n^\mathsf{T} \Psi^{-1} \boldsymbol{\Lambda} \underline{\boldsymbol{\mu}_n} + \mathsf{Tr}\left[\boldsymbol{\Lambda}^\mathsf{T} \Psi^{-1} \boldsymbol{\Lambda} (\underline{\boldsymbol{\mu}_n \boldsymbol{\mu}_n^\mathsf{T}} + \boldsymbol{\Sigma})\right]\right]$$

Note that we don't need to know everything about $q(\mathbf{z}_n)$, just the moments $\langle \mathbf{z}_n \rangle$ and $\langle \mathbf{z}_n \mathbf{z}_n^\mathsf{T} \rangle$. These are the expected sufficient statistics.

The M step for Factor Analysis (cont.)

$$\mathcal{F} = c' - \frac{\textit{N}}{2}\log|\Psi| - \frac{1}{2}\sum_{n}\left[\mathbf{x}_{n}^{\mathsf{T}}\Psi^{-1}\mathbf{x}_{n} - 2\mathbf{x}_{n}^{\mathsf{T}}\Psi^{-1}\boldsymbol{\Lambda}\boldsymbol{\mu}_{n} + \mathsf{Tr}\left[\boldsymbol{\Lambda}^{\mathsf{T}}\Psi^{-1}\boldsymbol{\Lambda}(\boldsymbol{\mu}_{n}\boldsymbol{\mu}_{n}^{\mathsf{T}} + \boldsymbol{\Sigma})\right]\right]$$

Taking derivatives wrt Λ and Ψ^{-1} , using $\frac{\partial \text{Tr}[AB]}{\partial B} = A^T$ and $\frac{\partial \log |A|}{\partial A} = A^{-\top}$:

$$\frac{\partial \mathcal{F}}{\partial \Lambda} = \Psi^{-1} \sum_{n} \mathbf{x}_{n} \boldsymbol{\mu}_{n}^{\mathsf{T}} - \Psi^{-1} \Lambda \left(N \Sigma + \sum_{n} \boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\mathsf{T}} \right) = 0$$

$$\Rightarrow \widehat{\Lambda} = \left(\sum_{n} \mathbf{x}_{n} \boldsymbol{\mu}_{n}^{\mathsf{T}} \right) \left(N \Sigma + \sum_{n} \boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\mathsf{T}} \right)^{-1}$$

$$\frac{\partial \mathcal{F}}{\partial \Psi^{-1}} = \frac{N}{2} \Psi - \frac{1}{2} \sum_{n} \left[\mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} - \Lambda \boldsymbol{\mu}_{n} \mathbf{x}_{n}^{\mathsf{T}} - \mathbf{x}_{n} \boldsymbol{\mu}_{n}^{\mathsf{T}} \Lambda^{\mathsf{T}} + \Lambda (\boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\mathsf{T}} + \Sigma) \Lambda^{\mathsf{T}} \right]$$

$$\Rightarrow \widehat{\Psi} = \frac{1}{N} \sum_{n} \left[\mathbf{x}_{n} \mathbf{x}_{n}^{\mathsf{T}} - \Lambda \boldsymbol{\mu}_{n} \mathbf{x}_{n}^{\mathsf{T}} - \mathbf{x}_{n} \boldsymbol{\mu}_{n}^{\mathsf{T}} \Lambda^{\mathsf{T}} + \Lambda (\boldsymbol{\mu}_{n} \boldsymbol{\mu}_{n}^{\mathsf{T}} + \Sigma) \Lambda^{\mathsf{T}} \right]$$

$$\widehat{\Psi} = \Lambda \Sigma \Lambda^{\mathsf{T}} + \frac{1}{N} \sum_{n} (\mathbf{x}_{n} - \Lambda \boldsymbol{\mu}_{n}) (\mathbf{x}_{n} - \Lambda \boldsymbol{\mu}_{n})^{\mathsf{T}} \qquad \text{(squared residuals)}$$

Note: we should actually only take derivatives w.r.t. Ψ_{dd} since Ψ is diagonal. As $\Sigma \to 0$ these become the equations for ML linear regression

EM for exponential families

EM is often applied to models whose **joint** over $\boldsymbol{\xi} = (\mathbf{z}, \mathbf{x})$ has exponential-family form:

$$p(\boldsymbol{\xi}|\theta) = f(\boldsymbol{\xi}) \exp\{\theta^{\mathsf{T}}\mathsf{T}(\boldsymbol{\xi})\}/Z(\theta)$$

(with $Z(\theta) = \int f(\xi) \exp\{\theta^T T(\xi)\} d\xi$) but whose marginal $p(\mathbf{x}) \notin ExpFam$. The free energy dependence on θ is given by:

$$\mathcal{F}(q, \theta) = \int q(\mathbf{z}) \log p(\mathbf{z}, \mathbf{x} | \theta) d\mathbf{z} + \mathbf{H}[q]$$

$$= \int q(\mathbf{z}) [\theta^{\mathsf{T}} \mathsf{T}(\mathbf{z}, \mathbf{x}) - \log Z(\theta)] d\mathbf{z} + \text{const wrt } \theta$$

$$= \theta^{\mathsf{T}} \langle \mathsf{T}(\mathbf{z}, \mathbf{x}) \rangle_{q(\mathbf{z})} - \log Z(\theta) + \text{const wrt } \theta$$

So, in the **E step** all we need to compute are the expected sufficient statistics under *q*. We also have:

$$\begin{split} \frac{\partial}{\partial \theta} \log Z(\theta) &= \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} \int f(\xi) \exp\{\theta^{\mathsf{T}} \mathsf{T}(\xi)\} \\ &= \int \frac{1}{Z(\theta)} f(\xi) \exp\{\theta^{\mathsf{T}} \mathsf{T}(\xi)\} \cdot \mathsf{T}(\xi) = \langle \mathsf{T}(\xi) \rangle_{\rho(\xi|\theta)} \end{split}$$

Thus, the **M step** solves:
$$\frac{\partial \mathcal{F}}{\partial \theta} = \langle \mathsf{T}(\mathbf{z}, \mathbf{x}) \rangle_{q(\mathbf{z})} - \langle \mathsf{T}(\mathbf{z}, \mathbf{x}) \rangle_{p(\boldsymbol{\xi}|\theta)} = 0$$

Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

$$p(\mathbf{x}|\theta) = \sum_{k} \pi_{k} \, \mathcal{N}(\boldsymbol{\mu}_{k}, \boldsymbol{\Lambda}_{k} \boldsymbol{\Lambda}_{k}^{\mathsf{T}} + \boldsymbol{\Psi})$$

where π_k is the mixing proportion for FA k, μ_k is its centre, Λ_k is its "factor loading matrix", and Ψ is a common sensor noise model. $\theta = \{\{\pi_k, \mu_k, \Lambda_k\}_{k=1...K}, \Psi\}$ We can think of this model as having *two* sets of hidden latent variables:

- ▶ A discrete indicator variable $s_n \in \{1, ..., K\}$
- ▶ For each factor analyzer, a continous factor vector $\mathbf{z}_{n,k} \in \mathcal{R}^{D_k}$

$$p(\mathbf{x}|\theta) = \sum_{s_n=1}^{K} p(s_n|\theta) \int p(\mathbf{z}|s_n,\theta) p(\mathbf{x}_n|\mathbf{z},s_n,\theta) \ d\mathbf{z}$$

As before, an EM algorithm can be derived for this model:

E step: We need moments of $p(\mathbf{z}_n, s_n | \mathbf{x}_n, \theta)$, specifically: $\langle \delta_{s_n = m} \mathbf{z}_n \rangle$, $\langle \delta_{s_n = m} \mathbf{z}_n \rangle$ and $\langle \delta_{s_n = m} \mathbf{z}_n \mathbf{z}_n^\mathsf{T} \rangle$.

M step: Similar to M-step for FA with responsibility-weighted moments. See http://www.learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

EM for exponential family mixtures

To derive EM formally for models with discrete latents (including mixtures) it is useful to introduce an indicator vector **s** in place of the discrete *s*.

$$s_i = m \Leftrightarrow \mathbf{s}_i = [0, 0, \dots, \underbrace{1}_{m, th \text{ position}}, \dots 0]$$

Collecting the *M* component distributions' natural params into a matrix $\Theta = [\theta_m]$:

$$\log P(\mathcal{X}, \mathcal{S}) = \sum_{i} \left[(\log \pi)^{\mathsf{T}} \mathbf{s}_{i} + \mathbf{s}_{i}^{\mathsf{T}} \Theta^{\mathsf{T}} T(\mathbf{x}_{i}) - \mathbf{s}_{i}^{\mathsf{T}} \log \mathbf{Z}(\Theta) \right] + const$$

where $\log \mathbf{Z}(\Theta)$ collects the log-normalisers for all components into an M-element vector. Then, the expected sufficient statistics (E-step) are:

$$\sum_{i} \left\langle \mathbf{s}_{i} \right\rangle_{q} \qquad \text{(responsibilities } r_{im}\text{)}$$

$$\sum_{i} T(\mathbf{x}_{i}) \left\langle \mathbf{s}_{i}^{\mathsf{T}} \right\rangle_{q} \qquad \text{(responsibility-weighted sufficient stats)}$$

And maximisation of the expected log-joint (M-step) gives:

$$\boldsymbol{\pi}^{(k+1)} \propto \sum_{i} \langle \mathbf{s}_{i} \rangle_{q}$$

$$\left\langle T(\mathbf{x}) | \boldsymbol{\theta}_{m}^{(k+1)} \right\rangle = \left(\sum_{i} T(\mathbf{x}_{i}) \langle [\mathbf{s}_{i}]_{m} \rangle_{q} \right) / \left(\sum_{i} \langle [\mathbf{s}_{i}]_{m} \rangle_{q} \right)$$

EM for MAP

What if we have a prior?

$$p(\boldsymbol{\xi}|\boldsymbol{\theta}) = f(\boldsymbol{\xi}) \exp\{\boldsymbol{\theta}^{\mathsf{T}} \mathsf{T}(\boldsymbol{\xi})\} / Z(\boldsymbol{\theta}) \qquad p(\boldsymbol{\theta}) = F(\nu, \boldsymbol{\tau}) \exp\{\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{\tau}\} / Z(\boldsymbol{\theta})^{\nu}$$

Augment the free energy by adding the log prior:

$$\begin{split} \mathcal{F}_{\mathsf{MAP}}(q,\theta) &= \int q(\mathcal{Z}) \log p(\mathcal{Z},\mathcal{X},\theta) d\mathcal{Z} + \mathbf{H}[q] \quad \leq \log P(\mathcal{X}|\theta) + \log P(\theta) \\ &= \int q(\mathcal{Z}) \big[\theta^\mathsf{T} \big(\sum_i \mathsf{T}(\boldsymbol{\xi}_i) + \boldsymbol{\tau} \big) - (N+\nu) \log Z(\theta) \big] d\mathcal{Z} + \mathsf{const} \ \mathsf{wrt} \ \theta \\ &= \theta^\mathsf{T} \big(\langle \mathsf{T}(\boldsymbol{\xi}) \rangle_{q(\mathbf{z})} + \boldsymbol{\tau} \big) - (N+\nu) \log Z(\theta) + \mathsf{const} \ \mathsf{wrt} \ \theta \end{split}$$

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy maxima are log-joint maxima (i.e. MAP values).

Can we find posteriors? Only approximately – we'll return to this later as "Variational Bayes".

Proof of the Matrix Inversion Lemma

$$(A + XBX^{\mathsf{T}})^{-1} = A^{-1} - A^{-1}X(B^{-1} + X^{\mathsf{T}}A^{-1}X)^{-1}X^{\mathsf{T}}A^{-1}$$

Need to prove:

$$\left(A^{-1} - A^{-1}X(B^{-1} + X^{\mathsf{T}}A^{-1}X)^{-1}X^{\mathsf{T}}A^{-1}\right)(A + XBX^{\mathsf{T}}) = I$$

Expand:

$$I + A^{-1}XBX^{T} - A^{-1}X(B^{-1} + X^{T}A^{-1}X)^{-1}X^{T} - A^{-1}X(B^{-1} + X^{T}A^{-1}X)^{-1}X^{T}A^{-1}XBX^{T}$$

Regroup:

$$= I + A^{-1}X \left(BX^{\mathsf{T}} - (B^{-1} + X^{\mathsf{T}}A^{-1}X)^{-1}X^{\mathsf{T}} - (B^{-1} + X^{\mathsf{T}}A^{-1}X)^{-1}X^{\mathsf{T}}A^{-1}XBX^{\mathsf{T}} \right)$$

$$= I + A^{-1}X \left(BX^{\mathsf{T}} - (B^{-1} + X^{\mathsf{T}}A^{-1}X)^{-1}B^{-1}BX^{\mathsf{T}} - (B^{-1} + X^{\mathsf{T}}A^{-1}X)^{-1}X^{\mathsf{T}}A^{-1}XBX^{\mathsf{T}} \right)$$

$$= I + A^{-1}X \left(BX^{\mathsf{T}} - (B^{-1} + X^{\mathsf{T}}A^{-1}X)^{-1}(B^{-1} + X^{\mathsf{T}}A^{-1}X)BX^{\mathsf{T}} \right)$$

$$= I + A^{-1}X(BX^{\mathsf{T}} - BX^{\mathsf{T}}) = I$$

References

 A. P. Dempster, N. M. Laird and D. B. Rubin (1977).
 Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1 (1977), pp. 1-38.

http://www.jstor.org/stable/2984875

R. M. Neal and G. E. Hinton (1998).
A view of the EM algorithm that justifies incremental, sparse, and other variants.
In M. I. Jordan (editor) Learning in Graphical Models, pp. 355-368, Dordrecht: Kluwer Academic Publishers.

http://www.cs.utoronto.ca/~radford/ftp/emk.pdf

R. Salakhutdinov, S. Roweis and Z. Ghahramani, (2003).
 Optimization with EM and expectation-conjugate-gradient.
 In ICML (pp. 672-679).

http://www.cs.utoronto.ca/~rsalakhu/papers/emecg.pdf

Z. Ghahramani and G. E. Hinton (1996).
 The EM Algorithm for Mixtures of Factor Analyzers.
 University of Toronto Technical Report CRG-TR-96-1.

http://learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

$\mathsf{KL}[q(x) || p(x)] \ge 0$, with equality iff $\forall x : p(x) = q(x)$

First consider discrete distributions: the Kullback-Liebler divergence is:

$$\mathsf{KL}[q \| p] = \sum_i q_i \log \frac{q_i}{p_i}.$$

To minimize wrt distribution q we need a Lagrange multiplier to enforce normalisation:

$$E \stackrel{\text{def}}{=} \mathbf{KL}[q||p] + \lambda (1 - \sum_{i} q_{i}) = \sum_{i} q_{i} \log \frac{q_{i}}{\rho_{i}} + \lambda (1 - \sum_{i} q_{i})$$

Find conditions for stationarity

$$\frac{\partial E}{\partial q_i} = \log q_i - \log p_i + 1 - \lambda = 0 \Rightarrow q_i = p_i \exp(\lambda - 1)$$

$$\frac{\partial E}{\partial \lambda} = 1 - \sum_i q_i = 0 \Rightarrow \sum_i q_i = 1$$

$$\Rightarrow q_i = p_i.$$

Check sign of curvature (Hessian):

$$\frac{\partial^2 E}{\partial q_i \partial q_i} = \frac{1}{q_i} > 0, \qquad \frac{\partial^2 E}{\partial q_i \partial q_i} = 0,$$

so unique stationary point $q_i = p_i$ is indeed a minimum. Easily verified that at that minimum, KL[q||p] = KL[p||p] = 0.

A similar proof holds for continuous densities, using functional derivatives.

Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^* . Then:

$$\left. \frac{\partial}{\partial \theta} \langle \log P(\mathcal{Z}, \mathcal{X} \mid \theta) \rangle_{P(\mathcal{Z} \mid \mathcal{X}, \theta^*)} \right|_{\theta^*} = 0$$

Now,
$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \langle \log P(\mathcal{X}|\theta) \rangle_{P(\mathcal{Z}|\mathcal{X},\theta^*)}$$

$$= \left\langle \log \frac{P(\mathcal{Z},\mathcal{X}|\theta)}{P(\mathcal{Z}|\mathcal{X},\theta)} \right\rangle_{P(\mathcal{Z}|\mathcal{X},\theta^*)}$$

$$= \left\langle \log P(\mathcal{Z},\mathcal{X}|\theta) \right\rangle_{P(\mathcal{Z}|\mathcal{X},\theta^*)} - \left\langle \log P(\mathcal{Z}|\mathcal{X},\theta) \right\rangle_{P(\mathcal{Z}|\mathcal{X},\theta^*)}$$

so,
$$\frac{d}{d\theta}\ell(\theta) = \frac{d}{d\theta}\langle \log P(\mathcal{Z}, \mathcal{X}|\theta)\rangle_{P(\mathcal{Z}|\mathcal{X}, \theta^*)} - \frac{d}{d\theta}\langle \log P(\mathcal{Z}|\mathcal{X}, \theta)\rangle_{P(\mathcal{Z}|\mathcal{X}, \theta^*)}$$

The second term is 0 at θ^* if the derivative exists (minimum of $KL[\cdot||\cdot|]$), and thus:

$$\left. \frac{d}{d\theta} \ell(\theta) \right|_{\theta^*} = \left. \frac{d}{d\theta} \langle \log P(\mathcal{Z}, \mathcal{X} | \theta) \rangle_{P(\mathcal{Z} | \mathcal{X}, \theta^*)} \right|_{\theta^*} = 0$$

So, EM converges to a stationary point of $\ell(\theta)$.

Maxima in ${\mathcal F}$ correspond to maxima in ℓ

Let θ^* now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)

Differentiating the previous expression wrt θ again we find

$$\frac{d^2}{d\theta^2}\ell(\theta) = \frac{d^2}{d\theta^2}\langle \log P(\mathcal{Z}, \mathcal{X}|\theta) \rangle_{P(\mathcal{Z}|\mathcal{X}, \theta^*)} - \frac{d^2}{d\theta^2}\langle \log P(\mathcal{Z}|\mathcal{X}, \theta) \rangle_{P(\mathcal{Z}|\mathcal{X}, \theta^*)}$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum). Thus the curvature of the likelihood is negative and

 θ^* is a maximum of ℓ .

[... as long as the derivatives exist. They sometimes don't (zero-noise ICA)].