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Log-likelihoods

I Exponential family models: p(x|θ) = f (x)eθTT(x)/Z(θ)

`(θ) = θT
∑

n

T (xn)− N log Z(θ) (+ constants)

I Concave function.
I Maximum may be closed-form.
I If not, numerical optimisation is still generally straightforward.

I Latent variable models: p(x|θx ,θz) =

∫
dz fx (x)

eφ(θx ,z)TTx (x)

Zx (φ(θx , z))︸ ︷︷ ︸
p(x|z,θx )

fz(z)
eθT

z Tz (z)

Zz(θz)︸ ︷︷ ︸
p(z|θz )

`(θx , θz) =
∑

n

log
∫

dz fx (x)
eφ(θx ,z)TTx (x)

Zx (φ(θx , z))
fz(z)

eθT
z Tz (z)

Zz(θz)

I Usually no closed form optimum.
I Often multiple local maxima.
I Direct numerical optimisation may be possible but infrequently easy.
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Example: mixture of Gaussians

Data: X = {x1 . . . xN}

Latent process:
si

iid∼ Disc[π]

Component distributions:
xi | (si = m) ∼ Pm[θm] = N (µm,Σm)

Marginal distribution:

P(xi ) =
k∑

m=1

πmPm(x; θm)

Log-likelihood:

`({µm}, {Σm},π) =
n∑

i=1

log
k∑

m=1

πm√
|2πΣm|

e−
1
2 (xi−µm)TΣ−1

m (xi−µm)



The joint-data likelihood and EM

I For many models, maximisation might be straightforward if z were not latent, and we
could just maximise the joint-data likelihood:

`(θx , θz) =
∑

n

φ(θx , zn)TTx (xn)+θT
z

∑
n

Tz(zn)−
∑

n

log Zx (φ(θx , zn))−N log Zz(θz)

I Conversely, if we knew θ, we might easily compute (the posterior over) the values of z.

I Idea: update θ and (the distribution on) z in alternation, to reach a self-consistent
answer.

Will this yield the right answer?

I Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.
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The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a
(local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

I Decomposes difficult problems into series of tractable steps.
I An alternative to gradient-based iterative methods.
I No learning rate.
I In ML, the E step is called inference, and the M step learning. In stats, these are often

imputation and inference or estimation.
I Not essential for simple models (like MoGs/FA), though often more efficient than

alternatives. Crucial for learning in complex settings.
I Provides a framework for principled approximations.
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Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.

log(x)

x1 x2αx1 + (1− α)x2

log(αx1 + (1− α)x2)

α log(x1) + (1− α) log(x2)

In general:

For αi ≥ 0,
∑
αi = 1 (and {xi > 0}):

log
(∑

i

αi xi

)
≥
∑

i

αi log(xi )

For probability measure α and concave f

f (Eα [x]) ≥ Eα [f (x)]

Equality (if and) only if f (x) is almost surely constant or linear on (convex) support of α.
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The lower bound for EM – “free energy”

Observed data X = {xi}; Latent variables Z = {zi}; Parameters θ = {θx , θz}.
Log-likelihood:

`(θ) = log P(X|θ) = log
∫

dZ P(Z,X|θ)

By Jensen, any distribution, q(Z), over the latent variables generates a lower bound:

`(θ) = log
∫

dZ

q(Z)
P(Z,X|θ)

q(Z)
≥
∫

dZ q(Z) log
P(Z,X|θ)

q(Z)
def
= F(q, θ).

Now,

∫
dZ q(Z) log

P(Z,X|θ)

q(Z)
=

∫
dZ q(Z) log P(Z,X|θ)−

∫
dZ q(Z) log q(Z)

=

∫
dZ q(Z) log P(Z,X|θ) + H[q],

where H[q] is the entropy of q(Z).

So:
F(q, θ) = 〈log P(Z,X|θ)〉q(Z) + H[q]
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The E and M steps of EM

The free-energy lower bound on `(θ) is a function of θ and a distribution q:

F(q, θ) = 〈log P(Z,X|θ)〉q(Z) + H[q],

The EM steps can be re-written:

I E step: optimize F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Z) := argmax
q(Z)

F
(
q(Z), θ(k−1)).

I M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

〈log P(Z,X|θ)〉q(k)(Z)

The second equality comes from the fact that H
[
q(k)(Z)

]
does not depend directly on θ.



The E and M steps of EM

The free-energy lower bound on `(θ) is a function of θ and a distribution q:

F(q, θ) = 〈log P(Z,X|θ)〉q(Z) + H[q],

The EM steps can be re-written:
I E step: optimize F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Z) := argmax
q(Z)

F
(
q(Z), θ(k−1)).

I M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

〈log P(Z,X|θ)〉q(k)(Z)

The second equality comes from the fact that H
[
q(k)(Z)

]
does not depend directly on θ.



The E and M steps of EM

The free-energy lower bound on `(θ) is a function of θ and a distribution q:

F(q, θ) = 〈log P(Z,X|θ)〉q(Z) + H[q],

The EM steps can be re-written:
I E step: optimize F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Z) := argmax
q(Z)

F
(
q(Z), θ(k−1)).

I M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

〈log P(Z,X|θ)〉q(k)(Z)

The second equality comes from the fact that H
[
q(k)(Z)

]
does not depend directly on θ.



The E Step

The free energy can be re-written

F(q, θ) =

∫
q(Z) log

P(Z,X|θ)

q(Z)
dZ

=

∫
q(Z) log

P(Z|X , θ)P(X|θ)

q(Z)
dZ

=

∫
q(Z) log P(X|θ) dZ +

∫
q(Z) log

P(Z|X , θ)

q(Z)
dZ

= `(θ)− KL[q(Z)‖P(Z|X , θ)]

The second term is the Kullback-Leibler divergence.

This means that, for fixed θ, F is bounded above by `, and achieves that bound when
KL[q(Z)‖P(Z|X , θ)] = 0.

But KL[q‖p] is zero if and only if q = p (see appendix.)

So, the E step sets

q(k)(Z) = P(Z|X , θ(k−1)) [inference / imputation]

and, after an E step, the free energy equals the likelihood.
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Coordinate Ascent in F (Demo)

To visualise, we consider a one parameter / one latent mixture:

s ∼ Bernoulli[π]

x |s = 0 ∼ N [−1, 1] x |s = 1 ∼ N [1, 1] .

Single data point x1 = .3.
q(s) is a distribution on a single binary latent, and so is represented by r1 ∈ [0, 1].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



Coordinate Ascent in F (Demo)



EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

`
(
θ(k−1))

=
E step

F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
`
(
θ(k)),

I The E step brings the free energy to the likelihood.
I The M-step maximises the free energy wrt θ.
I F ≤ ` by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that θ(k) 6= θ(k−1) iff F increases, then the overall EM iteration
will step to a new value of θ iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see
appendices).
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EM Summary

I An iterative algorithm that finds (local) maxima of the likelihood of a latent variable
model.

`(θ) = log P(X|θ) = log
∫

dZ P(X|Z, θ)P(Z|θ)

I Increases a variational lower bound on the likelihood by coordinate ascent.

F(q, θ) = 〈log P(Z,X|θ)〉q(Z) + H[q] = `(θ)− KL[q(Z)‖P(Z|X )] ≤ `(θ)

I E step:

q(k)(Z) := argmax
q(Z)

F
(
q(Z), θ(k−1)) = P(Z|X , θ(k−1))

I M step:

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

〈log P(Z,X|θ)〉q(k)(Z)

I After E-step F(q, θ) = `(θ)⇒ maximum of free-energy is maximum of likelihood.
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Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase F wrt θ rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step

∂

∂θ

∣∣∣∣∣
θ(k−1)

〈log P(X ,Z|θ)〉q(k)(Z)[=P(Z|X ,θ(k−1))] =
∂

∂θ

∣∣∣∣∣
θ(k−1)

log P(X|θ)

[cf. mixture gradients from last lecture.] So E-step (inference) can be used to construct other
gradient-based optimisation schemes (e.g. “Expectation Conjugate Gradient”, Salakhutdinov
et al. ICML 2003).

Partial E steps: We can also just increase F wrt to some of the qs.

For example, sparse or online versions of the EM algorithm would compute the posterior for a
subset of the data points or as the data arrives, respectively. One might also update the
posterior over a subset of the hidden variables, while holding others fixed...



EM for MoGs

I Evaluate responsibilities

rim =
Pm(x)πm∑

m′ Pm′(x)πm′

I Update parameters

µm ←
∑

i rimxi∑
i rim

Σm ←
∑

i rim(xi − µm)(xi − µm)T∑
i rim

πm ←
∑

i rim

N



The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

p(x |θ) =
k∑

m=1

p(s = m|θ)p(x |s = m, θ) ∝
k∑

m=1

πm

σm
exp
{
− 1

2σ2
m

(
x − µm)2},

where θ is the collection of parameters: means µm, variances σ2
m and mixing proportions

πm = p(s = m|θ).

The hidden variable si indicates which component generated observation xi .

The E-step computes the posterior for si given the current parameters:

q(si ) = p(si |xi , θ) ∝ p(xi |si , θ)p(si |θ)

rim
def
= q(si = m) ∝ πm

σm
exp
{
− 1

2σ2
m

(xi − µm)2} (responsibilities) ← 〈δsi =m〉q

with the normalization such that
∑

m rim = 1.
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The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

E = 〈log p(x , s|θ)〉q(s) =
∑

q(s) log[p(s|θ) p(x |s, θ)]

=
∑
i,m

rim
[

logπm − logσm −
1

2σ2
m

(xi − µm)2].

Optimum is found by setting the partial derivatives of E to zero:

∂

∂µm
E =

∑
i

rim
(xi − µm)

2σ2
m

= 0 ⇒ µm =

∑
i rimxi∑

i rim
,

∂

∂σm
E =

∑
i

rim

[
− 1
σm

+
(xi − µm)2

σ3
m

]
= 0 ⇒ σ2

m =

∑
i rim(xi − µm)2∑

i rim
,

∂

∂πm
E =

∑
i

rim
1
πm
,

∂E
∂πm

+ λ = 0 ⇒ πm =
1
n

∑
i

rim,

where λ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.
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EM for Factor Analysis

x1 x2 xD

z1 z2 zK• • •

• • •

The model for x:

p(x|θ) =

∫
p(z|θ)p(x|z, θ)dz = N (0,ΛΛT + Ψ)

Model parameters: θ = {Λ,Ψ}.

E step: For each data point xn, compute the posterior distribution of hidden factors given the
observed data: qn(zn) = p(zn|xn, θt ).

M step: Find the θt+1 that maximises F(q, θ):

F(q, θ) =
∑

n

∫
qn(zn) [log p(zn|θ) + log p(xn|zn, θ)− log qn(zn)] dzn

=
∑

n

∫
qn(zn) [log p(zn|θ) + log p(xn|zn, θ)] dzn + c.



The E step for Factor Analysis

E step: For each data point xn, compute the posterior distribution of hidden factors given the
observed data: qn(zn) = p(zn|xn, θ) = p(zn, xn|θ)/p(xn|θ)

Tactic: write p(zn, xn|θ), consider xn to be fixed. What is this as a function of zn?

p(zn, xn) = p(zn)p(xn|zn)

= (2π)−
K
2 exp{−1

2
zT

nzn} |2πΨ|−
1
2 exp{−1

2
(xn − Λzn)TΨ−1(xn − Λzn)}

= c× exp{−1
2

[zT
nzn + (xn − Λzn)TΨ−1(xn − Λzn)]}

= c’× exp{−1
2

[zT
n(I + ΛTΨ−1Λ)zn − 2zT

nΛTΨ−1xn]}

= c”× exp{−1
2

[zT
nΣ−1zn − 2zT

nΣ−1µn + µT
nΣ−1µn]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µn = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
Note that µn is a linear function of xn and Σ does not depend on xn.



The M step for Factor Analysis

M step: Find θt+1 by maximising F =
∑

n

〈log p(zn|θ) + log p(xn|zn, θ)〉qn(zn) + c

log p(zn|θ) + log p(xn|zn, θ)

= c− 1
2

zT
nzn −

1
2

log |Ψ| − 1
2

(xn − Λzn)TΨ−1(xn − Λzn)

= c’− 1
2

log |Ψ| − 1
2

[
xT

nΨ−1xn − 2xT
nΨ−1Λzn + zT

nΛTΨ−1Λzn

]
= c’− 1

2
log |Ψ| − 1

2

[
xT

nΨ−1xn − 2xT
nΨ−1Λzn + Tr

[
ΛTΨ−1ΛznzT

n

]]
Taking expectations wrt qn(zn):

= c’− 1
2

log |Ψ| − 1
2

[
xT

nΨ−1xn − 2xT
nΨ−1Λµn + Tr

[
ΛTΨ−1Λ(µnµ

T
n + Σ)

]]

Note that we don’t need to know everything about q(zn), just the moments 〈zn〉 and
〈
znzT

n

〉
.

These are the expected sufficient statistics.
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The M step for Factor Analysis (cont.)

F = c′ − N
2

log |Ψ| − 1
2

∑
n

[
xT

nΨ−1xn − 2xT
nΨ−1Λµn + Tr

[
ΛTΨ−1Λ(µnµ

T
n + Σ)

]]

Taking derivatives wrt Λ and Ψ−1, using ∂Tr[AB]
∂B = AT and ∂ log |A|

∂A = A−>:

∂F
∂Λ

= Ψ−1
∑

n

xnµ
T
n −Ψ−1Λ

(
NΣ +

∑
n

µnµ
T
n

)
= 0

⇒ Λ̂=

(∑
n

xnµ
T
n

)(
NΣ+

∑
n

µnµ
T
n

)−1

∂F
∂Ψ−1

=
N
2

Ψ− 1
2

∑
n

[
xnxT

n − ΛµnxT
n − xnµ

T
nΛT + Λ(µnµ

T
n + Σ)ΛT

]
⇒ Ψ̂ =

1
N

∑
n

[
xnxT

n − ΛµnxT
n − xnµ

T
nΛT + Λ(µnµ

T
n + Σ)ΛT

]
Ψ̂= ΛΣΛT+

1
N

∑
n

(xn − Λµn)(xn − Λµn)T (squared residuals)

Note: we should actually only take derivatives w.r.t. Ψdd since Ψ is diagonal.
As Σ→ 0 these become the equations for ML linear regression



The M step for Factor Analysis (cont.)
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Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(x|θ) =
∑

k

πk N (µk ,Λk ΛT
k + Ψ)

where πk is the mixing proportion for FA k , µk is its centre, Λk is its “factor loading matrix”,
and Ψ is a common sensor noise model. θ = {{πk ,µk ,Λk}k=1...K ,Ψ}
We can think of this model as having two sets of hidden latent variables:

I A discrete indicator variable sn ∈ {1, . . .K}
I For each factor analyzer, a continous factor vector zn,k ∈ RDk

p(x|θ) =
K∑

sn=1

p(sn|θ)

∫
p(z|sn, θ)p(xn|z, sn, θ) dz

As before, an EM algorithm can be derived for this model:

E step: We need moments of p(zn, sn|xn, θ), specifically: 〈δsn=m〉, 〈δsn=mzn〉 and〈
δsn=mznzT

n

〉
.

M step: Similar to M-step for FA with responsibility-weighted moments.
See http://www.learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf



EM for exponential families
EM is often applied to models whose joint over ξ = (z, x) has exponential-family form:

p(ξ|θ) = f (ξ) exp{θTT(ξ)}/Z(θ)(
with Z(θ) =

∫
f (ξ) exp{θTT(ξ)}dξ

)
but whose marginal p(x) 6∈ ExpFam.

The free energy dependence on θ is given by:

F(q, θ) =

∫
q(z) log p(z, x|θ)dz + H[q]

=

∫
q(z)

[
θTT(z, x)− log Z(θ)

]
dz + const wrt θ

= θT〈T(z, x)〉q(z) − log Z(θ) + const wrt θ

So, in the E step all we need to compute are the expected sufficient statistics under q.
We also have:

∂

∂θ
log Z(θ) =

1
Z(θ)

∂

∂θ
Z(θ) =

1
Z(θ)

∂

∂θ

∫
f (ξ) exp{θTT(ξ)}

=

∫
1

Z(θ)
f (ξ) exp{θTT(ξ)}︸ ︷︷ ︸

p(ξ|θ)

· T(ξ) = 〈T(ξ)〉p(ξ|θ)

Thus, the M step solves:
∂F
∂θ

= 〈T(z, x)〉q(z) − 〈T(z, x)〉p(ξ|θ) = 0
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EM for exponential family mixtures
To derive EM formally for models with discrete latents (including mixtures) it is useful to
introduce an indicator vector s in place of the discrete s.

si = m ⇔ si = [0, 0, . . . , 1︸︷︷︸
mth position

, . . . 0]

Collecting the M component distributions’ natural params into a matrix Θ = [θm]:

log P(X ,S) =
∑

i

[
(logπ)Tsi + sT

i ΘTT (xi )− sT
i log Z(Θ)

]
+ const

where log Z(Θ) collects the log-normalisers for all components into an M-element vector.
Then, the expected sufficient statistics (E-step) are:∑

i

〈si〉q (responsibilities rim)

∑
i

T (xi )
〈

sT
i

〉
q

(responsibility-weighted sufficient stats)

And maximisation of the expected log-joint (M-step) gives:

π(k+1) ∝
∑

i

〈si〉q〈
T (x)|θ(k+1)

m

〉
=
(∑

i

T (xi )
〈
[si ]m

〉
q

)/(∑
i

〈
[si ]m

〉
q

)
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log P(X ,S) =
∑

i

[
(logπ)Tsi + sT

i ΘTT (xi )− sT
i log Z(Θ)

]
+ const

where log Z(Θ) collects the log-normalisers for all components into an M-element vector.
Then, the expected sufficient statistics (E-step) are:∑

i

〈si〉q (responsibilities rim)

∑
i

T (xi )
〈

sT
i

〉
q

(responsibility-weighted sufficient stats)

And maximisation of the expected log-joint (M-step) gives:

π(k+1) ∝
∑

i

〈si〉q〈
T (x)|θ(k+1)

m

〉
=
(∑

i

T (xi )
〈
[si ]m

〉
q

)/(∑
i

〈
[si ]m

〉
q

)
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EM for MAP

What if we have a prior?

p(ξ|θ) = f (ξ) exp{θTT(ξ)}/Z(θ) p(θ) = F(ν, τ ) exp{θTτ}/Z(θ)ν

Augment the free energy by adding the log prior:

F(q, θ) =

∫
q(Z) log p(Z,X| θ)dZ + H[q]

≤ log P(X|θ)

+ log P(θ)

=

∫
q(Z)

[
θT(
∑

i

T(ξi ) + τ )− (N + ν) log Z(θ)
]
dZ + const wrt θ

= θT(〈T(ξ)〉q(z) + τ )− (N + ν) log Z(θ) + const wrt θ

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy
maxima are log-joint maxima (i.e. MAP values).

Can we find posteriors? Only approximately – we’ll return to this later as “Variational Bayes”.
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Proof of the Matrix Inversion Lemma

(A + XBX T)−1 = A−1 − A−1X(B−1 + X TA−1X)−1X TA−1

Need to prove:(
A−1 − A−1X(B−1 + X TA−1X)−1X TA−1

)
(A + XBX T) = I

Expand:

I + A−1XBX T − A−1X(B−1 + X TA−1X)−1X T − A−1X(B−1 + X TA−1X)−1X TA−1XBX T

Regroup:

= I + A−1X
(

BX T − (B−1 + X TA−1X)−1X T − (B−1 + X TA−1X)−1X TA−1XBX T
)

= I + A−1X
(

BX T − (B−1 + X TA−1X)−1B−1BX T − (B−1 + X TA−1X)−1X TA−1XBX T
)

= I + A−1X
(

BX T − (B−1 + X TA−1X)−1(B−1 + X TA−1X)BX T
)

= I + A−1X(BX T − BX T) = I



KL[q(x)‖p(x)] ≥ 0, with equality iff ∀x : p(x) = q(x)
First consider discrete distributions; the Kullback-Liebler divergence is:

KL[q‖p] =
∑

i

qi log
qi

pi
.

To minimize wrt distribution q we need a Lagrange multiplier to enforce normalisation:

E
def
= KL[q‖p] + λ

(
1−

∑
i

qi
)

=
∑

i

qi log
qi

pi
+ λ

(
1−

∑
i

qi
)

Find conditions for stationarity

∂E
∂qi

= log qi − log pi + 1− λ = 0⇒ qi = pi exp(λ− 1)

∂E
∂λ

= 1−
∑

i

qi = 0⇒
∑

i

qi = 1

⇒ qi = pi .

Check sign of curvature (Hessian):

∂2E
∂qi∂qi

=
1
qi
> 0,

∂2E
∂qi∂qj

= 0,

so unique stationary point qi = pi is indeed a minimum. Easily verified that at that minimum,
KL[q‖p] = KL[p‖p] = 0.
A similar proof holds for continuous densities, using functional derivatives.



Fixed Points of EM are Stationary Points in `

Let a fixed point of EM occur with parameter θ∗. Then:

∂

∂θ
〈log P(Z,X | θ)〉P(Z|X ,θ∗)

∣∣∣∣
θ∗

= 0

Now,

`(θ) = log P(X|θ) = 〈log P(X|θ)〉P(Z|X ,θ∗)

=

〈
log

P(Z,X|θ)

P(Z|X , θ)

〉
P(Z|X ,θ∗)

= 〈log P(Z,X|θ)〉P(Z|X ,θ∗) − 〈log P(Z|X , θ)〉P(Z|X ,θ∗)

so, d
dθ
`(θ) =

d
dθ
〈log P(Z,X|θ)〉P(Z|X ,θ∗) −

d
dθ
〈log P(Z|X , θ)〉P(Z|X ,θ∗)

The second term is 0 at θ∗ if the derivative exists (minimum of KL[·‖·]), and thus:

d
dθ
`(θ)

∣∣∣∣
θ∗

=
d
dθ
〈log P(Z,X|θ)〉P(Z|X ,θ∗)

∣∣∣∣
θ∗

= 0

So, EM converges to a stationary point of `(θ).
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Maxima in F correspond to maxima in `

Let θ∗ now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt θ again we find

d2

dθ2
`(θ) =

d2

dθ2
〈log P(Z,X|θ)〉P(Z|X ,θ∗) −

d2

dθ2
〈log P(Z|X , θ)〉P(Z|X ,θ∗)

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

θ∗ is a maximum of `.

[. . . as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].
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