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A Generative Model for Generative Models
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Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural

Comput. 11(2).

Tractable Models

v

Factor analysis, principle components analysis, probabilistic PCA.
» Linear regression, Gaussian processes.

» Mixture of Gaussians, mixture of experts.

v

Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
» Linear Gaussian,
» Discrete variables,
» Chains and trees (or junction trees),

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:
> hierarchical models,
» distributed models,
» nonlinear models,
» non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.



Why We Need ... Hierarchical (Deep) Models

Why We Need ... Nonlinear/Non-Gaussian Models
Many generative processes can be naturally described at different levels of detail.

Much of the world is neither linear nor Gaussian

(e.g. objects, illumination, pose)

—— Response histogram
— — Gaussian density

(e.g. object parts, surfaces)

Probability
5‘

(e.g. edges)

0
Filter Response

(retinal image, i.e. pixels)

...and most interesting structure we would like to learn about is not either.

Biology seems to have developed hierarchical representations.

Why We Need ... Distributed Models A Generative Model for Generative Models
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. tisation
Mixture of
Gaussians
(vQ)
/| \ —> Discrete Latent (mixture)
Lo . . . . . - —> Linear-Gaussian Latent
In a distributed representation each observation is characterised by a vector of (discrete or Gavssian Mixture of —S Latent Dynamics
continous) attibutes. Some of these attributes might be latent. Analysers jgglﬂ‘i;sz{;itzﬂ'::‘ﬁ“’m
. . . . _— \ /‘ Hierarch,
» Unitary representation: categorise voters into small groups who (may) vote similarly e.g.: ——— > Horarety
London-based university professors of Asian descent. (PCA)
» Distributed respresentation: consider contributions from a group of attributes, e.g.: Y Ny
(Single, Black, Female, 34 yrs, Urban, Liberal, £35k p.a.). it Linesy Dyna-
. . . Analysis ical Systems
» Attributes resemble factors, but may be discrete or non-Gaussian, and may outnumber ~ 7 N
observations. j Nonlinear
Nonlinear Dynamical Mixture of LDS
Distributed representations can be exponentially efficient: K binary factors = K bits of info. Saussan Systems

(K parallel binary state variables in an HMM can replace one variable with 2% states.)
Adapted from Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural

Comput. 11(2).



Independent

Components Analysis

Natural Scenes and Sounds

Probability
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—— Response histogram
— — Gaussian density
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nd Source Separation

Sometimes called the cocktail party problem.

» Given signals from one or more receivers that mix signals from one or more sources,
recover the timeseries of the source signals.

» Independent components analysis: assumes that sources are independent and
non-Gaussian.

Independent Components Analysis

Mixture of Heavy Tailed Sources Mixture of Light Tailed Sources
4
2
3
2 1 These distributions are gen-
1 erated by linearly combining
0 ° (or mixing) two non-Gaussian
- 1 sources.
-2
-2
-3
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» The ICA graphical model is identical to factor analysis:
K
Xg = Z/\dk Zk + €d
k=1
. iid .
but with zx ~ P, non-Gaussian.
» Well-posed even with K > D (e.g. K = D = 2 above).
» Tractable for 0 noise (“PCA-like” case).
» Intractable in general: posterior non-Gaussian, MAP inference non-linear.
» Exact inference and learning difficult = “noise” components or variational approx.



Square, Noiseless ICA

» The special case of K = D, and zero observation noise has been studied extensively
(also called infomax ICA, c.f. information view of PCA):

x=Az = z=Wx with W=A"
z are called independent components; W is the unmixing matrix.

» The likelihood can be obtained by transforming the density of z to that of x. If F : z — x
is a differentiable bijection, and if dz is a small neighbourhood around z, then

Pk = Pu(2)dz = P~ (x) | 5| ax = (1) [V

» This gives (for parameter W):

P(x|W) = [W|] ] P:([Wx]s)

Zk

Infomax ICA

» Consider a feedforward model:
z = Wix; & =fi(z)

with a monotonic squashing function fi(—oco) = 0, fi(+o0) = 1.
» Infomax finds filtering weights W maximizing the information carried by £ about x:

argmax I(x; &) = argmax H(&) — H(&|x) = argmax H(&)
w w w

Thus we just have to maximize entropy of &: make it as uniform as possible on [0, 1]
(note squashing function).

» But if data were generated from a square noiseless causal ICA then best we can do is if
& =f(z)=cdf(z) and W=A""

Infomax ICA & square noiseless causal ICA.
» Another view: redundancy reduction in the representation & of the data x.

argmn/wax H(¢) = argVTax Z H(&) — I(&, ..., €p)

See: MacKay (1996), Pearlmutter and Parra (1996), Cardoso (1997) for equivalence, Teh et
al (2003) for an energy-based view.

Learning in ICA

» Log likelihood of data:
log P(x) = log |W| + Z log P-(Wix)

» Learning by gradient ascent:

AW x Viwlog P(x) = W7 + g(z)x" 9(z) = mC@T’:Z(Z)
» Better approach: “natural” or covariant gradient
AW x Vwlog P(x) - (WTW) = W + g(2)2' W
——
~ (~VVlogP)™"

(see MacKay 1996).
» Note: we can’t use EM in the square noiseless causal ICA model. Why?

Kurtosis
The kurtosis (or excess kurtosis) measures how “peaky” or “heavy-tailed” a distribution is:
E _ 4
= ((Xiu)g)z — 3, where p = E(x) is the mean of x.
E((x — n)?)

Gaussian distributions have zero kurtosis.
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Heavy tailed: positive kurtosis (leptokurtic).  Light tailed: negative kurtosis (platykurtic).

Linear mixtures of independent non-Gaussian sources tend to be “more” Gaussian
=K —=0.

Some ICA algorithms are essentially kurtosis pursuit approaches. Possibly fewer
assumptions about generating distributions.



ICA and BSS

Applications:
» Separating auditory sources
> Analysis of EEG data
» Analysis of functional MRI data
» Natural scene analysis

> ...

Extensions:
» Non-zero output noise — approximate posteriors and learning.
» Undercomplete (K < D) or overcomplete (K > D).
» Learning prior distributions (on 2).
» Dynamical hidden models (on z).
» Learning number of sources.
» Time-varying mixing matrix.

v

Nonparametric, kernel ICA.

Images

filters

image patch, |

Blind Source Separation

» |ICA solution to blind source separation assumes no dependence across time; still works

fine much of the time.
» Many other algorithms: DCA, SOBI, JADE, ...

Natural Scenes
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Olshausen & Field (1996)



Nonlinear state-space models

Learning (online EKF)
Nonlinear message passing can also be used to implement online parameter learning in
(non)linear latent state-space systems:

— zt
Eg: for linear model, augment state vector to include the model parameters iz = | Al,
and introduce nonlinear transition f and output map g: c
_ _ _ 2; Az; 3 Wi
Et+1 = f(it) —+ wW; f A = A ) V_\lt = 0
C o 0
X; = g(z¢) + vi g A = Cz;
C

(where A and C need to be vectorised and ole-vectorised as approgriate).
Use EKF to compute online estimates of E[z;|x1, . .., X;] and Cov[z¢|x4, . .., X;]. These now
include mean and posterior variance of parameter estimates.

» Pseudo-Bayesian approach: gives Gaussian distributions over parameters.
» Can model nonstationarity by assuming non-zero innovations noise in A, C.
» Not simple to implement for Q and R (e.g. covariance constraints?).

» May be faster than EM/gradient approaches.

Sometimes called the joint-EKF approach.

Nonlinear state-space model (NLSSM)

\_m \_m% \B’ Zip1 = f(2e,Ur) + Wy

D, C 5, Xt = g(z, ur) + Vi

w;, V; usually still Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, 2!

of f(z)
2t R f(iga u) + 9z, (zt — ) +w;
—— V2l
Bru N——
At
Al 0, . ]
x: ~ g(2 1’”')+675, H(z,—zﬁ ") + i !
—_——— 3=
By N e Z
C Z;

Run the Kalman filter (smoother) on non-stationary linearised system (Zf, Ef, a, 5{):
» Adaptively approximates non-Gaussian messages by Gaussians.
» Local linearisation depends on central point of distribution = approximation degrades
with increased state uncertainty. May work acceptably for close-to-linear systems.

Can base EM:-like algorithm on EKF/EKS (or alternatives).

Binary models: Boltzmann Machines and Sigmoid Belief Nets



Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a
vector of binary variables s; € {0,1}. Some variables may
be hidden, some may be visible (observed).

P(s|W,b) = — exp {Z Wjsisj — Z b,s,}
where Z is the normalization constant (partition function).

A jointly exponential-family model, with intractable normaliser.

» Inference requires expectations of hidden nodes s"':

.
(&) (")
P(st|sV,W,b) P(sH|sV,W,b)

» Usually requires approximate methods: sampling or loopy BP.
» Intractable normaliser also complicates M-step =- doubly intractable.

Sigmoid Belief Networks

Directed graphical model (i.e. a Bayesian network) over a
vector of binary variables s; € {0, 1}.

P(s|W,b) HP sil{s;}j<i, W,b)

sil{sj}j<i, W, b ~ Bernoulli(c E Wjs;j — bi))
j<i

LI ) 1

P(si = 1 W,b
(S’ |{sl}l<’7 ) 1 + exp{ Z/<I VV,]SJ b/}

O O tee O » parents most often grouped into layers

» logistic function o of linear combination of parents

> “generative multilayer perceptron” (“neural network”)

Learning algorithm: a gradient version of EM
» E step involves computing averages w.r.t. P(s"|s”, W, b). This could be done either
exactly or approximately using Gibbs sampling or mean field approximations. Or using a
parallel ‘recognition network’ (the Helmholtz machine).
» Unlike Boltzmann machines, there is no partition function, so no need for an unclamped
phase in the M step.

Learning in Boltzmann Machines
log P(s"s"|W,b) = > " Wjsis; — > bis; —log Z

with Z = >~ o2 Wisisi =32 bisi
Generalised (gradient M-step) EM requires parameter step

a V_H
AW o 5 <IogP(s s"w, b)>

P(sH[sY)
Write (), (clamped) for expectations under P(s|sgss) (with P(s"|sgs) = [T, e ). Then
[Vulog P(s", 8" = 5[5, Wilsisi), — 5, bilsi), — log 2] = (sisi), — 0oz
3W /1 = oW
= <S,‘S/‘>C Z 8VV,/ Z eZ,, Wjsisi—>_, bjsi

Wisisi— "
:<S,'Sj> — E — eEu 15 Z’b’S'S,'Sj

S,S/ Z P(S|W b S,S/ = <S/Sj>c — <S/Sj>u

with (), (unclamped) expectation under the current joint. = ExpFam moment matching, but
requires simulation and gradient ascent.

Restricted Boltzmann Machines

Special case Boltzmann Machine: W = 0 for any two visible or any two hidden nodes
(bipartite graph).

P(SV‘SH) _ leZ,ev 2 ien Wisisi—2 iy bisi— 2 e bis)
V4

1 H o5 2ojen Wisi—bisi
Z/

= H Bernoulli( O’(Z Wjs; — bi))

jEH

similarly

H Bernoulli( O’(Z Wjsi — b))

eV

» So inference is tractable ...

v

.. but learning still intractable because of normaliser.

v

Unclamped samples can be generated efficiently by block Gibbs sampling.
Often combined with a futher approximation called contrastive divergence learning.

v



Factorial Hidden Markov Models

Distributed state models

» Hidden Markov models with many state variables (i.e. distributed state representation).
» Each state variable evolves independently.

» The state can capture many bits of information about the sequence (linear in the number
of state variables).

» E step is typically intractable (due to explaining away in latent states).

» Example case for variational approximation

Dynamic Bayesian Networks

Latent Dirichlet Allocation

» Distributed HMM with structured dependencies amongst latent states.



Topic Modelling Topic Modelling

Example topics discovered from PNAS abstracts (each topic represented in terms of the top 5
most common words in that topic).

Topic modelling: given a corpus of documents, find the “topics” they discuss.

Example: consider abstracts of papers PNAS.

. . . . . . . 217 274 126 63 200 209
Global climate change and mammalian species diversity in U.S. national parks INSECT SPECIES GENE STRUCTURE FOLDING NUCLEAR
0 B ; 0 0 MYB PHYLOGENETIC VECTOR ANGSTROM NATIVE NUCLEUS
Natlpnal pgrks and blor‘eserves‘ are key‘ gonservatloq tools L_lsgd to pr'o_tect species qnd their PHEROMONE EVOLUTION VECTORS CRYSTAL PROTEIN LOCALIZATION
habitats within the confines of fixed political boundaries. This inflexibility may be their LENS EVOLUTIONARY EXPRESSION RESIDUES STATE CYTOPLASM
"Achilles’ heel” as conservation tools in the face of emerging global-scale environmental A BRaS e Bl R i
problems such as climate change. Global climate change, brought about by rising levels of sta i SFE% s sp‘é"c‘?ss i HD': g ki cglis Tﬂ gg .
greenhouse gases, threatens to alter the geographic distribution of many habitats and their DEVELOPMENT GLOBAL SELECTION REGION CELL GANCER
component species.... DORSAL CLIMATE EVOLUTION CHROMOSOMES ANTIGEN TUMORS
EMBRYOS co2 GENETIC KB LYMPHOCYTES HUMAN
VENTRAL WATER POPULATIONS MAP cD4 CELLS
The influence of large-scale wind power on global climate
X i i i i 112 210 201 165 142 222
Large-scale use of wind power can alter local and global climate by extracting kinetic energy HOST SYNAPTIC RESISTANCE CHANNEL PLANTS CORTEX
d /t . t b / ¢t t . fh t h . b d / W t / t d I BACTERIAL NEURONS RESISTANT CHANNELS PLANT BRAIN
ana altering turoulent transport in the atmospheric bounaary layer. Vve report climaie-moae BACTERIA POSTSYNAPTIC DRUG VOLTAGE ARABIDOPSIS SUBJECTS
simulations that address the possible climatic impacts of wind power at regional to global STRAINS HIPPOCAMPAL DRUGS CURRENT TOBACCO TASK
. . . . . SALMONELLA SYNAPSES SENSITIVE CURRENTS LEAVES AREAS
scales by using two general circulation models and several parameterizations of the
interaction of wind turbines with the boundary layer.... 39 105 221 270 55 114
THEORY HAIR LARGE TIME FORCE POPULATION
TIME MECHANICAL SCALE SPECTROSCOPY SURFACE POPULATIONS
i i - Evi i SPACE ME DENSITY NMR MOLECULES GENETIC
Twentieth century climate change: Evidence from small glaciers aLh e AIF ool bR e iz il
The relation between changes in modern glaciers, not including the ice sheets of Greenland PROBLEM EAR OBSERVATIONS TRANSFER SURFACES ISOLATES
and Antarctica, and their climatic environment is investigated to shed light on paleoglacier 109 120
evidence of past climate change and for projecting the effects of future climate warming on HESNEEAv?CH gﬁ;—
cold regions of the world. Loss of glacier volume has been more or less continuous since the INFORMATION AGING
19th century, but it is not a simple adjustment to the end of an "anomalous” Little Ice Age.... UNDE;SJ;;DING WISIUFSG

Recap: Beta Distributions Dirichlet Distributions

Recall the Bayesian coin toss example.
Imagine a Bayesian dice throwing example.

P(Hlq) =q P(Tlg)=1-q
P(lla)=a P(2la)=q P@la)=gs P(4la)=q: P(5la)=gs P(6la) =ae
The probability of a sequence of coin tosses is:
) with gi > 0, ", g; = 1. The probability of a sequence of dice throws is:
P(HHTT~ . HT|q) _ q#head5(1 _ q)#talls
6
A conjugate prior for g is the Beta distribution: P(34156---12|q) = H g e
i=1
MNa+b) .+ b—1
P(q) = an (1-9) a,b>0 A conjugate prior for g is the Dirichlet distribution:

q>0,>,q =1 a=0

[(S,a) 77 a0
H@ﬁ%éh}m

P()




Latent Dirichlet Allocation Latent Dirichlet Allocation as Matrix Decomposition

Each document is a sequence of words, we'model it using a mixture model by ignoring the Let Ny, be the number of times word w appears in document d, and Py, is the probability of
sequential nature—"bag-of-words” assumption. word w appearing in document d.

» Draw topic distributions from a prior
p(N|P) =[] Pia likelihood term

@ ¢k ~ Dir(B, ..., B) L
» For each document: K
Pow = ick topic k ick word w|k) = 0,
» draw a distribution over topics o ;p(p pic k)p(p 1K) ; ok Plow
@ 04 ~ Dir(a, ..., )
Y > generate words iid:
@ @ » draw topic from a document-specific dist:
/ topic k=1...K Pdw — edk N ¢kw
A zig ~ Discrete(0y4)
» draw word from a topic-specific dist:
word i=1...Ny
document d=1...D Xid ~ DiSCrete((t)zfd)

This decomposition is similar to PCA and factor analysis, but not Gaussian. Related to

. . . — . . non-negative matrix factorisation (NMF).
Multiple mixtures of discrete distributions, sharing the same set of components (topics). 9 ( )

Latent Dirichlet Allocation

» Exact inference in latent Dirichlet allocation is intractable, and typically either variational
or Markov chain Monte Carlo approximations are deployed.

» Latent Dirichlet allocation is an example of a mixed membership model from statistics.

» Latent Dirichlet allocation has also been applied to computer vision, social network Nonlinear Dimensionality Reduction / Manifold Recovery
modelling, natural language processing. ..

» Generalizations:

Relax the bag-of-words assumption (e.g. a Markov model).
Model changes in topics through time.

Model correlations among occurrences of topics.

Model authors, recipients, multiple corpora.

Cross modal interactions (images and tags).
Nonparametric generalisations.

VY VY VY VY



Nonlinear Dimensionality Reduction

We can see matrix factorisation methods as performing linear dimensionality reduction.

There are many ways to generalise PCA and FA to deal with data which lie on a nonlinear

manifold:

» Nonlinear autoencoders

» Generative topographic mappings (GTM) and Kohonen self-organising maps (SOM)

» Multi-dimensional scaling (MDS)

» Kernel PCA (based on MDS representation)

> Isomap

> Locally linear embedding (LLE)

» Stochastic Neighbour Embedding

» Gaussian Process Latent Variable Models (GPLVM)

Another view of PCA: matching inner products

Consider the eigendecomposition of G:

G= UAU" arrangedso A >--->Apn>0

The best rank-k approximation G ~ Z'Z is given by:

Z' = [U]1:m,1:k[/\1/2]1:k,1:k;
= [UA1/2]1:m,1:k

Z = [/\1/2 UT]1:k,1:m

The same operations can be performed on the kernel Gram matrix = Kernel PCA.

Varu]

V2 Uz ———

VA ug ——

71/)\mu;7

Another view of PCA: matching inner products

We have viewed PCA as providing a decomposition of the covariance or scatter matrix S. We
obtain similar results if we approximate the Gram matrix:

minimise € = Z(Gij —z-z)°

)

forz € R¥.

That is, look for a k-dimensional embedding in which dot products (which depend on lengths,
and angles) are preserved as well as possible.

We will see that this is also equivalent to preserving distances between points.

Multidimensional Scaling

Suppose all we were given were distances or symmetric “dissimilarities” Aj.

0 Ay Az A
A+ 0 Doz Aoy
Az Az 0 Az
Ay Doy A3y 0

A=

Goal: Find vectors z; such that ||z — zj|| = Aj.

This is called Multidimensional Scaling (MDS).



Metric MDS Metric MDS and eigenvalues

Assume the dissimilarities represent Euclidean distances between points in some high-D

space. We will actually minimize the error in the dot products:

£=) (Gi-z-z)
A/j: HX,‘*X/'H with ZX,‘ZO. i
i As in PCA, this is given by the top slice of the eigenvector matrix.

We have: - -
VA1 UT
2 2 2 _1|_
Aj = [Ixill” + [x;]" — 2x; - %, VA2 U
> AL =mixlF+ > [x* -0 2 2z Zpm
k k .
AG = Il + mllx[|* — 0
2.0h=2 T
> Ah=2m} I
Kl k
11 1
= Gj =X - X =2<mZ(Ai+AZ‘)—mZZAi/—A;> | ———— VAnup, — |
k Kl
Interpreting MDS MDS and PCA

Dual matrices:

_1 l 2 2_ Z_LTZ
G= (m(A1+1A) A m21A1>

2
1
- 12,7 S=—xx" scatter matrix (nx n)
G=UANU": Y =[N"U lik1:m m
G=X"X Gram matrix (m x m)
(1 is a matrix of ones.)

» Eigenvectors. Ordered, scaled and truncated to yield low-dimensional embedded » Same eigenvalues up to a constant factor.

points z;. » Equivalent on metric data, but MDS can run on non-metric dissimilarities.
» Eigenvalues. Measure how much each dimension contributes to dot products. » Computational cost is different.
» Estimated dimensionality. Number of significant (nonnegative — negative possible if » PCA: O((m+ k)n2)

Aj are not metric) eigenvalues. > MDS: O((n + k)m?)



Non-metric MDS But

Rank ordering of Euclidean distances is
NOT preserved in “manifold learning”.

MDS can be generalised to permit a monotonic mapping:

Aj — g(4),

even if this violates metric rules (like the triangle inequality). RE T
This can introduce a non-linear warping of the manifold.
d(A,C) < d(A,B) d(A,C) > d(A,B)

Isomap Stages of Isomap

Idea: try to trace distance along the manifold. Use geodesic instead of (transformed)

Euclidean distances in MDS.
1. Ildentify neighbourhoods around each point (local points, assumed to be local on the

manifold). Euclidean distances are preserved within a neighbourhood.

2. For points outside the neighbourhood, estimate distances by hopping between points
within neighbourhoods.

3. Embed using MDS.

P 3 e
5".’&!""' el 1

> preserves local structure
> estimates “global” structure
» preserves information (MDS)



Step 1: Adjacency graph

First we construct a graph linking each point to its neighbours.
» vertices represent input points
» undirected edges connect neighbours (weight = Euclidean distance)

Forms a discretised approximation to the submanifold, assuming:
» Graph is singly-connected.
» Graph neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k-nearest neighbours, inputs within a ball of radius r,
prior knowledge.

Step 3: Embed

Embed using metric MDS (path distances obey the triangle inequality)

» Eigenvectors of Gram matrix yield low-dimensional embedding.

» Number of significant eigenvalues estimates dimensionality.

Step 2: Geodesics

Estimate distances by shortest path in graph.

Aj= min { > )5,}

ath(x;,X;
path(x;, /) e/Epath(xi,x/-

» Standard graph problem. Solved by Dijkstra’s algorithm (and others).
> Better estimates for denser sampling.
» Short cuts very dangerous (“average” path distance?) .

Isomap example 1
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Isomap example 2 Locally Linear Embedding (LLE)

B Bottom loop articulation

MDS and isomap preserve local and global (estimated, for isomap) distances. PCA
preserves local and global structure.

Idea: estimate local (linear) structure of manifold. Preserve this as well as possible.

Top arch articulation

» preserves local structure (not just distance)
» not explicitly global

il
=}

» preserves only local information

Stages of LLE Step 1: Neighbourhoods

o]
o
o ° e -2 Just as in isomap, we first define neighbouring points for each input. Equivalent to the isomap
o graph, but we won’t need the graph structure.
o (¢}
o %
(o]
o
Qo > [¢] (o]
. o o
-~
\ ©)
Reconstruct with

linear weights

Forms a discretised approximation to the submanifold, assuming:
» Graph is singly-connected — although will “work” if not.
» Neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k-nearest neighbours, inputs within a ball of radius r,
prior knowledge.

Map to embedded coordinates



Step 2: Local weights Step 3: Embed

Minimise reconstruction errors in z-space under the same weights:
Estimate local weights to minimize error

2
W2) =) |lzi - Wiz,
2 i JENe(i)
‘:D(W) = Z X — Z VV,'/‘X/‘
i JENe(i) subject to:
Zz,-:o; Zz,-z,Tz ml
> W= ’ ’
JENe(i)
. . . . . We can re-write the cost function in quadratic form:
> Linear regression — under- or over-constrained depending on |Ne(/)|.
» Local structure — optimal weights are invariant to rotation, translation and scaling. P(Z) = Z V(27 Z); with W = (1 — W)T(1 — W)
» Short cuts less dangerous (one in many). i

Minimise by setting Z to equal the bottom 2. .. k 4 1 eigenvectors of V. (Bottom eigenvector
always 1 — discard due to centering constraint)

LLE example 1

LLE example 2
Surfaces
N=1000
inputs
k=8
nearest fosl
neighbors -
D=3
d=2
dimensions
;.\_alkcliao!_asll_'zs-}_ad_sd_tll_ad_:d_nd wullad lad ad ad
& N e D M e i
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LLE example 3
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Unfold neighbourhood graph preserving local structure.

AFTER | [ |
0.0 02 0.4 0.6 0.8 1.0

LLE and Isomap

Many similarities
» Graph-based, spectral methods
» No local optima

Essential differences
» LLE does not estimate dimensionality
» Isomap can be shown to be consistent; no theoretical guarantees for LLE.
» LLE diagonalises a sparse matrix — more efficient than isomap.

v

Local weights vs. local & global distances.

Maximum Variance Unfolding
Unfold neighbourhood graph preserving local structure.

1. Build the neighbourhood graph.

2. Find {z;} C R" (points in high-D space) with maximum variance, preserving local
distances. Let Kj = z/z;. Then:

Maximise Tr [K] subject to:
Zij Ki=0 (centered)
K>=0 (positive definite)
Ki — 2Kj + Kj = ||x; — ;|| for j € Ne(i)  (locally metric)
————
llzi—z12

This is a semi-definite program: convex optimisation with unique solution.
3. Embed z; in R¥ using linear methods (PCA/MDS).



Stochastic Neighbour Embedding
Softer “probabilistic” notions of neighbourhood and consistency.

High-D “transition” probabilities:
e*%HXi*XjHQ/U2
Zk#_ e~ Llxi—x,l[2/ 02

Find {z} C R” to:

pji = for j # i, piji =0

1 . 2
Pj|i e_Ellzr_z/“
minimise E pjjilog — with gjjj = —————.
i i | D ki o bl ==l

Nonconvex optimisation is initialisation dependent.

Scale o plays a similar role to neighbourhood definition:
» Fixed o: resembles a fixed-radius ball.

» Choose o to maintain consistent entropy in p;; of log, k: similar to k-nearest
neighbours.

Gaussian Process Latent Variable Models
Recap: probabilistic PCA

X,“Z,‘7 A~ N(/\Z,‘, B71 /)
Zj ~ N(O, /)

Usually: compute posterior over Z = [z1,...,2zx] |, maximizing likelihood over A.

Suppose we know the values of the latent Z, then we can integrate out A (c.f. linear
regression), giving a conditional probability of X = [xy...xn]":

A~ N(0,a7"1)

p(X|Z) ~ [27K| "2 exp (—%Tr[K*‘xxT]) K=azZ" + I

This is just D independent Gaussian processes, one for each dimension of X! Each Gaussian
process describes a mapping from latent space z to one dimension of x.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on Z is complicated—instead of computing a posterior over Z we must
find point values that maximise the likelihood (jointly with the hyperparameters), or use a
variational approximation (cf also the Locally-Linear Latent Variable Model).

SNE variants

» Symmetrise probabilities (pj = pj)
o LlIxi—xl?/?

= forj # i
e e i

Pij

» Gaussian Process Latent Variable Models. Lawrence. Advances in Neural Information

Processing Systems, 2004.
Define g; analagously, optimise joint KL.

» Heavy-tailed embedding distributions allow embedding to lower dimensions than true

manifold:

oo Ot lz =z
=
' Zk#l“ + llzx — z/|?)

Student-t distribution defines “t-SNE”.

Focus is on visualisation, rather than manifold discovery.

Gaussian Process Latent Variable Models

Ve o



Intractability Approximate Inference

For many probabilistic models of interest, exact inference is not computationally feasible.

» Linearisation: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean or mode of the hidden variable distribution). Linear
approximations are particularly useful since Gaussian distributions are closed under
linear transformations (e.g., EKF). Also Laplace’s approximation.

There are three (main) reasons:
» Distributions may have complicated forms (e.g. non-linearities in generative model).

» “Explaining away”: observing the value of a child induces dependencies amongst its

parents. » Monte Carlo Sampling: Approximate posterior distribution over unobserved variables by

a e oo o a set of random samples. We often need Markov chain Monte carlo or sequential Monte
Carlo methods to sample from difficult distributions.

» Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form q(H), such that KL[q||p] is minimised. This gives a lower bound on the likelihood
@ that can be maximised with respect to the parameters of g(H).

> Local Message Passing Methods: Approximate the hidden variable posterior p(H) with
a tractable form g(H) or with a set of locally consistent tractable forms by other means

» Even with simple models, Bayesian computation of the full posterior over both latent (loopy belief propagation, expectation propagation).

variables and parameters is made complicated by the strong coupling between latent

. » Recognition Models and Autoencoders: Approximate the hidden variable posterior
variables and parameters.

distribution using an explicit bottom-up recognition model/network.
We can still work with such models by using approximate inference techniques to estimate

the latent variables.
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