
Assignment 1

Unsupervised & Probabilistic Learning

Maneesh Sahani & Peter Orbanz

Due: Tuesday 22 Oct, 2019; 12:00

Assignments are due at noon on the date specified. The standard UCL late policy
applies. To ensure legibility typeset your answers using LaTeX or a similar package
and upload them as a single pdf document to the course moodle page. Show your
working.

1. [28 marks] Statistics and Distributions. In the coming weeks we will be making extensive
use of the following distributions, all of which belong to the exponential family. For each of these
distributions, find:

(a) The standard exponential form, identifying the natural parameters in terms of the conven-
tional parameters given in the table (i.e. the function φ(θ)), and the sufficient statistic (i.e.
T(x)).

(b) The expected value of the sufficient statistics in terms of the natural or conventional pa-
rameters (i.e. 〈T(x)〉p(x|θ)). These expectations are often called the “mean” or “moment”
parameters of the distribution. [Note: show your derivation of the expectations; don’t just
look them up.]

The distributions to consider are:

Name Domain Symbol Density or Probability fn

Multivariate Normal RD x ∼ N (µ,Σ) |2πΣ|−1/2 e−
1
2

(x−µ)TΣ−1(x−µ)

Binomial Z0−N x ∼ Binom(p)

(
N

x

)
px(1− p)N−x

Multinomial [Z0−N ]D x ∼ Multinom(p)
N !

x1! x2! . . . xD!

D∏
d=1

pxdd

Poisson Z0+ x ∼ Poisson(µ) µxe−µ/x!

Beta [0, 1] x ∼ Beta(α, β)
1

B(α, β)
xα−1(1− x)β−1

Gamma R+ x ∼ Gamma(α, β)
βα

Γ(α)
xα−1e−βx

Dirichlet [0, 1]D x ∼ Dirichlet(α)
Γ
(∑D

d=1 αd
)∏D

d=1 Γ(αd)

D∏
d=1

xαd−1
d

[4 marks each]

2. [7 marks] ML in the exponential family.

Express the maximum-likelihood value of the mean parameters (as defined in the question above)
of the general exponential family distribution

p(x|θ) = g(θ)f(x)eθ
TT(x)

as a function of a data set of iid observations D = {x1, x2, . . . , xN}.



3. [25 marks] Models for binary vectors. Consider a data set of binary (black and white)
images. Each image is arranged into a vector of pixels by concatenating the columns of pixels
in the image. The data set has N images {x(1), . . . , x(N)} and each image has D pixels, where
D is (number of rows × number of columns) in the image. For example, image x(n) is a vector

(x
(n)
1 , . . . , x

(n)
D ) where x

(n)
d ∈ {0, 1} for all n ∈ {1, . . . , N} and d ∈ {1, . . . , D}.

(a) Explain why a multivariate Gaussian would not be an appropriate model for this data set
of images. [5 marks]

Assume that the images were modelled as independently and identically distributed samples from
a D-dimensional multivariate Bernoulli distribution with parameter vector p = (p1, . . . , pD),
which has the form

P (x|p) =
D∏
d=1

pxdd (1− pd)(1−xd)

where both x and p are D-dimensional vectors

(b) What is the equation for the maximum likelihood (ML) estimate of p? Note that you can
solve for p directly. [5 marks]

(c) Assuming independent Beta priors on the parameters pd

P (pd) =
1

B(α, β)
pα−1
d (1− pd)β−1

and P (p) =
∏
d P (pd) What is the maximum a posteriori (MAP) estimate of p? Hint:

maximise the log posterior with respect to p. [5 marks]

Download the data set binarydigits.txt from the course website, which contains N = 100
images with D = 64 pixels each, in an N × D matrix. These pixels can be displayed as 8 × 8
images by rearranging them. View them in Matlab by running bindigit.m or in Python by
running bindigit.py.

(d) Write code to learn the ML parameters of a multivariate Bernoulli from this data set and
display these parameters as an 8 × 8 image. Include a listing of your code within your
submission, and a visualisation of the learned parameter vector as an image. (You may use
Matlab, Octave or Python) [5 marks]

(e) Modify your code to learn MAP parameters with α = β = 3. Show the new learned
parameter vector for this data set as an image. Explain why this might be better or worse
than the ML estimate. [5 marks]

4. [15 marks] Model selection. In the binary data model above, find the expressions needed
to calculate the (relative) probability of the three different models:

(a) all D components are generated from a Bernoulli distribution with pd = 0.5

(b) all D components are generated from Bernoulli distributions with unknown, but identical,
pd

(c) each component is Bernoulli distributed with separate, unknown pd

Assume that all three models are equally likely a priori, and take the prior distributions for any
unknown probablities to be uniform. Calculate the posterior probabilities of each of the three
models having generated the data in binarydigits.txt.

http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/binarydigits.txt
http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/bindigit.m
http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/bindigit.py


5. [10 marks] Latent Variable Models.

(a) Describe a real-world data set which you believe could be modelled using factor analysis.
Argue why factor analysis is a sensible model for this data. What do you expect the
factors to represent? How many factors do you think there would be? Are the linearity
and Gaussianity assumptions reasonable, and if not, how would you modify the model? [5
marks]

(b) Describe a real-world data set which you believe could be modelled using a mixture model.
Argue why a mixture model is a sensible model for your real world data set. What do you
expect the mixture components to represent? How many components (or clusters) do you
think there would be? What parametric form would each component have? [5 marks]

6. [15 marks] Principal Components Analysis.

The conventional latent variable model for Probabilistic Principal Components Analysis has a
standard normal latent z and an arbitrary loading matrix Λ.

p(z) = N (0, I)

p(x|z) = N (Λz, ψI) .

An alternative model would be to draw z from a normal with diagonal covariance (say Υ), and
then restrict Λ to have orthonormal columns:

p(z) = N (0,Υ) ; Υij = 0 for i 6= j

p(x|z) = N (Λz, ψI) ; ΛTΛ = I.

(a) Show that this alternative model is equivalent to the standard one in the sense that in the
sense that it can model exactly the same set of possible marginal distributions. [5 marks]

(b) Derive the mean and covariance of p(z|x) within the alternative model in the non-probabilistic
PCA limit, ψ → 0. [10 marks]

BONUS QUESTIONS: you must attempt the questions above before answering those below.

7. [Bonus: 10 marks] Consistent beliefs. A friend (perhaps not for much longer) reports
that he is willing to bet on the following beliefs about two events A and B.

b(A) = 0.5

b(A ∩B) = 0.5

b(B) = 0.6

b(A ∪B) = 0.7

(a) Show that these beliefs are inconsistent. [3 marks]

(b) Construct a Dutch Book, which he would accept according to his beliefs, but which will
guarantee that he will lose money. [7 marks]

8. [Bonus: 20 marks] Linear Autoencoders. A linear autoencoder is a “neural network”
implementation of PCA. The network has three “layers” of “units” — each unit represents a
single scalar variable, and so each layer represents a vector:



x̂j j = 1 . . . D output units

zk k = 1 . . .K < D hidden units

xi i = 1 . . . D input units

The mappings from input to hidden, and hid-
den to output layers, are linear:

zk =
∑
i

Pki xi

x̂j =
∑
k

Qjk zk

x1 x2 xD• • •input units

z1 zK• • •hidden units

x̂1 x̂2 x̂D• • •output units

P

Q

Given a set of N observed “input” vectors {xn}, the weight matrices P and Q are set to minimise
the “autoencoding error”

∑
n ‖x̂n−xn‖2, often using iterative gradient descent. Assume the input

vector distribution has zero mean.

(a) Show that after the weights have converged, they obey the identities:

P = (QTQ)−1QT

Q = ΣXP
T(PΣXP

T)−1

where ΣX =
∑

n xnx
T
n and we assume that Q is rank K. [5 marks]

(b) It is clear that if P and Q minimize the error, then, for any invertible K ×K matrix C the
matrices P∗ = CP and Q∗ = QC−1 also achieve the same minimum. Show that you can
always find a matrix C such that QT

∗Q∗ = I and so P∗ = QT
∗ . [2 marks]

(c) Show that the minimisation of the error is equivalent to the maximisation of

Tr
[
Q∗Q

T
∗ΣX

]
and that this maximum is achieved by choosing the columns of Q∗ proportional to the
first K eigenvectors of ΣX . (There are many ways to do this, but one option is to start
from the argument presented in lecture showing that projection on the leading eigenvector
maximises the projected variance.) [7 marks]

This demonstrates the assertion made in lecture that the linear autoencoder will find the subspace
of the leading K principal components.

(d) How would you adapt the algorithm to implement factor analysis in the case that the
uniquenesses (another term for the output noise variances Ψdd) are known? [3 marks]

(e) Is it possible to use an autoencoder for FA in the case of unknown uniquenesses? How, if
so; or why not, if not? [3 marks]


