Probabilistic & Unsupervised Learning

Parametric Variational Methods and Recognition Models

Maneesh Sahani

maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College London

Term 1, Autumn 2019

Optimising the variational parameters

$$\mathcal{F}(
ho, heta) = \left\langle \log P(\mathcal{X}, \mathcal{Z} | heta^{(k-1)})
ight
angle_{q(\mathcal{Z};
ho)} + \mathbf{H}[
ho]$$

- In some special cases, the expectations of the log-joint under $q(\mathcal{Z}; \rho)$ can be expressed in closed form, but these are rare.
- ▶ Otherwise we might seek to follow $\nabla_{\rho}\mathcal{F}$.
- Naively, this requires evaluting a high-dimensional expectation wrt $q(\mathcal{Z}, \rho)$ as a function of ρ not simple.
- At least three solutions:
 - "Score-based" gradient estimate, and Monte-Carlo (Ranganath et al. 2014).
 - Recognition network trained in separate phase not strictly variational (Dayan et al. 1995).
 - Recognition network trained simultaneously with generative model using "frozen" samples (Kingma and Welling 2014; Rezende et al. 2014).

Variational methods

- Our treatment of variational methods has (except EP) emphasised 'natural' choices of variational family – often factorised using the same functional (ExpFam) form as joint.
 - mostly restricted to joint exponential families facilitates hierarchical and distributed models, but not non-linear/non-conjugate.
- ▶ Consider parametric variational approximations using a constrained family $q(\mathcal{Z}; \rho)$.

The constrained (approximate) variational E-step becomes:

$$q(\mathcal{Z}) := \underset{q \in \{q(\mathcal{Z}; \rho)\}}{\operatorname{argmax}} \ \mathcal{F}\big(q(\mathcal{Z}), \theta^{(k-1)}\big) \quad \Rightarrow \quad \rho^{(k)} := \underset{\rho}{\operatorname{argmax}} \ \mathcal{F}\big(q(\mathcal{Z}; \rho), \theta^{(k-1)}\big)$$

and so we can replace constrained optimisation of $\mathcal{F}(q,\theta)$ with unconstrained optimisation of a constrained $\mathcal{F}(\rho,\theta)$:

$$\mathcal{F}(
ho, heta) = \left\langle \log P(\mathcal{X}, \mathcal{Z} | heta^{(k-1)})
ight
angle_{q(\mathcal{Z};
ho)} + \mathbf{H}[
ho]$$

It might still be valuable to use coordinate ascent in ρ and θ , although this is no longer necessary.

Score-based gradient estimate

We have:

$$\begin{split} \nabla_{\rho} \mathcal{F}(\rho, \theta) &= \nabla_{\rho} \int \!\! d\mathcal{Z} \, q(\mathcal{Z}; \rho) (\log P(\mathcal{X}, \mathcal{Z}|\theta) - \log q(\mathcal{Z}; \rho)) \\ &= \int \!\! d\mathcal{Z} \, [\nabla_{\rho} q(\mathcal{Z}; \rho)] (\log P(\mathcal{X}, \mathcal{Z}|\theta) - \log q(\mathcal{Z}; \rho)) \\ &+ q(\mathcal{Z}; \rho) \nabla_{\rho} [\log P(\mathcal{X}, \mathcal{Z}|\theta) - \log q(\mathcal{Z}; \rho)] \end{split}$$

Now,

$$\begin{split} \nabla_{\rho} \log P(\mathcal{X}, \mathcal{Z} | \theta) &= 0 & \text{(no direct dependence)} \\ \int d\mathcal{Z} \, q(\mathcal{Z}; \rho) \nabla_{\rho} \log q(\mathcal{Z}; \rho) &= \nabla_{\rho} \int \!\! d\mathcal{Z} \, q(\mathcal{Z}; \rho) = 0 \\ \nabla_{\rho} q(\mathcal{Z}; \rho) &= q(\mathcal{Z}; \rho) \nabla_{\rho} \log q(\mathcal{Z}; \rho) \end{split}$$
 (always normalised)

So,

$$abla_{
ho}\mathcal{F}(
ho, heta) = \left\langle [
abla_{
ho}\log q(\mathcal{Z};
ho)](\log P(\mathcal{X},\mathcal{Z}| heta) - \log q(\mathcal{Z};
ho))
ight
angle_{q(\mathcal{Z};
ho)}$$

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called the REINFORCE trick.

Factorisation

$$abla_{
ho}\mathcal{F}(
ho, heta) = \Big\langle [
abla_{
ho}\log q(\mathcal{Z};
ho)] (\log P(\mathcal{X},\mathcal{Z}| heta) - \log q(\mathcal{Z};
ho)) \Big
angle_{q(\mathcal{Z};
ho)}$$

- Still requires a high-dimensional expectation, but can now be evaluated by Monte-Carlo.
- ▶ Dimensionality reduced by factorisation (particularly where $P(\mathcal{X}, \mathcal{Z})$ is factorised). Let $q(\mathcal{Z}) = \prod_i q(\mathcal{Z}_i | \rho_i)$ factor over disjoint cliques; let $\bar{\mathcal{Z}}_i$ be the minimal Markov blanket of \mathcal{Z}_i in the joint; $P_{\bar{\mathcal{Z}}_i}$ be the product of joint factors that include any element of \mathcal{Z}_i (so the union of their arguments is $\bar{\mathcal{Z}}_i$); and $P_{\neg \bar{\mathcal{Z}}_i}$ the remaining factors. Then,

$$\begin{split} \nabla_{\rho_{i}}\mathcal{F}(\{\rho_{j}\},\theta) &= \left\langle [\nabla_{\rho_{i}} \sum_{j} \log q(\mathcal{Z}_{j};\rho_{j})] (\log P(\mathcal{X},\mathcal{Z}|\theta) - \sum_{j} \log q(\mathcal{Z}_{j};\rho_{j})) \right\rangle_{q(\mathcal{Z})} \\ &= \left\langle [\nabla_{\rho_{i}} \log q(\mathcal{Z}_{i};\rho_{i})] (\log P_{\bar{\mathcal{Z}}_{i}}(\mathcal{X},\bar{\mathcal{Z}}_{i}) - \log q(\mathcal{Z}_{i};\rho_{i}) \right\rangle_{q(\bar{\mathcal{Z}}_{i})} \\ &+ \left\langle [\nabla_{\rho_{i}} \log q(\mathcal{Z}_{i};\rho_{i})] \underbrace{(\log P_{\neg \bar{\mathcal{Z}}_{i}}(\mathcal{X},\mathcal{Z}_{\neg_{i}}) - \sum_{j \neq i} \log q(\mathcal{Z}_{j};\rho_{j})}_{\text{constant wrt } \mathcal{Z}_{i}} \right\rangle_{q(\mathcal{Z})} \end{split}$$

So the second term is proportional to $\langle \nabla_{\rho_i} \log q(\mathcal{Z}_i; \rho_i) \rangle_{q(\mathcal{Z}_i)}$, this = 0 as before. So expectations are only needed wrt $q(\bar{\mathcal{Z}}_i) \to \text{variational message passing!}$

Recognition Models

We have not generally distinguished between multivariate models and iid data instances, grouping all variables together in \mathcal{Z} .

However, even for large models (such as HMMs), we often work with multiple data draws (e.g. multiple strings) and each instance requires a separate variational optimisation.

Suppose that we have fixed length vectors $\{(\mathbf{x}_i, \mathbf{z}_i)\}$ (\mathbf{z} is still latent).

- ▶ Optimal variational distribution $q^*(\mathbf{z}_i)$ depends on \mathbf{x}_i .
- ▶ Learn this mapping (in parametric form): $q(\mathbf{z}_i; \rho = f(\mathbf{x}_i; \phi))$.
- Now ρ is the output of a general function approximator f (a GP, neural network or similar) parametrised by ϕ , trained to map \mathbf{x}_i to the variational parameters of $q(\mathbf{z}_i)$.
- ▶ The mapping function *f* is called a recognition model.
- ▶ This is approach is now often called amortised inference.

How to learn f?

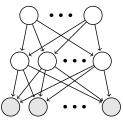
Sampling

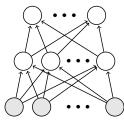
So the "black-box" variational approach is as follows:

- ▶ Choose a parametric (factored) variational family $q(\mathcal{Z}) = \prod_i q(\mathcal{Z}_i; \rho_i)$.
- Initialise factors.
- Repeat to convergence:
 - ▶ Stochastic VE-step. For each *i*:
 - ▶ Sample from $q(\bar{z}_i)$ and estimate expected gradient $\nabla_{a_i} \mathcal{F}$.
 - ▶ Update ρ_i along gradient.
 - ▶ Stochastic M-step. For each *i*:
 - ▶ Sample from each $q(\bar{Z}_i)$.
 - Update corresponding parameters.
- Stochastic gradient steps may employ a Robbins-Munro step-size sequence to promote convergence.
- Variance of the gradient estimators can also be controlled by clever Monte-Carlo techniques (orginal authors used a "control variate" method that we have not studied).

The Helmholtz Machine

Dayan et al. (1995) originally studied binary sigmoid belief net, with parallel recognition model:





Two phase learning:

Wake phase: given current f, estimate mean-field representation from data (mean sufficient stats for Bernoulli are just probabilities):

$$q(\mathbf{z}_i) = \text{Bernoulli}[\hat{\mathbf{z}}_i] \qquad \hat{\mathbf{z}}_i = f(\mathbf{x}_i; \phi)$$

Update generative parameters θ according to $\nabla_{\theta} \mathcal{F}(\{\hat{\mathbf{z}}_i\}, \theta)$.

▶ Sleep phase: sample $\{\mathbf{z}_s, \mathbf{x}_s\}_{s=1}^S$ from current generative model. Update recognition parameters ϕ to direct $f(\mathbf{x}_s)$ towards \mathbf{z}_s (simple gradient learning).

$$\Delta\phi\propto\sum_{s}(\mathbf{z}_{s}-f(\mathbf{x}_{s};\phi))\nabla_{\phi}f(\mathbf{x}_{s};\phi)$$

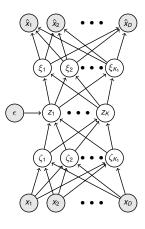
The Helmholtz Machine

- ► Can sample **z** from recognition model rather than just evaluate means.
 - Expectations in free-energy can be computed directly rather than by mean substitution.
 - In hierarchical models, output of higher recognition layers then depends on samples at previous stages, which introduces correlations between samples at different layers.
- Recognition model structure need not exactly echo generative model.
- More general approach is to train f to yield mean parameters of ExpFam q(z) (later).
- Sleep phase learning minimises $\mathbf{KL}[p_{\theta}(\mathbf{z}|\mathbf{x})||q(\mathbf{z};f(\mathbf{x},\phi))]$. Opposite to variational objective, but may not matter if divergence is small enough.

Variational Autoencoders

- Frozen samples e^s can be redrawn to avoid overfitting.
- May be possible to evaluate entropy and log P(z) without sampling, reducing variance.
- Differentiable reparametrisations are available for a number of different distributions.
- Conditional $P(\mathbf{x}|\mathbf{z},\theta)$ is often implemented as a neural network with additive noise at output, or at transitions. If at transitions recognition network must estimate each noise input.
- In practice, hierarchical models appear difficult to learn.

Variational Autoencoders



- Fuses the wake and sleep phases.
- Generate recognition samples using deterministic transformations of external random variates (reparametrisation trick).
 - ▶ E.g. if **f** gives marginal μ_i and σ_i for latents z_i and $\epsilon_i^s \sim \mathcal{N}$ (0, 1), then $z_i^s = \mu_i + \sigma_i \epsilon_i^s$.
- Now generative and recognition parameters can be trained together by gradient descent (backprop), holding ε^s fixed.

$$\begin{split} \mathcal{F}_i(\theta, \phi) &= \sum_s \log P(\mathbf{x}_i, \mathbf{z}_i^s; \theta) - \log q(\mathbf{z}_i^s; \mathbf{f}(\mathbf{x}_i, \phi)) \\ &\frac{\partial}{\partial \theta} \mathcal{F}_i = \sum_s \nabla_{\theta} \log P(\mathbf{x}_i, \mathbf{z}_i^s; \theta) \\ &\frac{\partial}{\partial \phi} \mathcal{F}_i = \sum_s \frac{\partial}{\partial \mathbf{z}_i^s} (\log P(\mathbf{x}_i, \mathbf{z}_i^s; \theta) - \log q(\mathbf{z}_i^s; \mathbf{f}(\mathbf{x}_i))) \frac{d\mathbf{z}_i^s}{d\phi} \\ &+ \frac{\partial}{\partial \mathbf{f}(\mathbf{x}_i)} \log q(\mathbf{z}_i^s; \mathbf{f}(\mathbf{x}_i)) \frac{d\mathbf{f}(\mathbf{x}_i)}{d\phi} \end{split}$$

More recent work

- Changing the variational cost function (tightening the bound):
 - Importance-Weighted autoencoder (IWAE)
 - Filtering variational objective (FIVO)
 - ▶ Thermodynamic variational objective (TVO)
- Flexible variational distributions
 - Normalising flows
 - DDC-Helmholtz machine
- Structured generative models
 - "standard" VAE generative model both too powerful and too simple for learning
 - local conjugate inference structured VAEs
 - DDC message passing

Far from exhaustive . . . these are all areas of active research. We'll survey a few ideas.

Importance-weighted free energy

Another interpretation of the free energy:

$$\mathcal{F}(q,\theta) = \left\langle \log \frac{p(\mathbf{x},\mathbf{z})}{q(\mathbf{z})} \right\rangle_q = \mathbb{E}_{\mathbf{z} \sim q} \left[\log p(\mathbf{x}) \frac{p(\mathbf{z}|\mathbf{x})}{q(\mathbf{z})} \right]$$
importance weight

Jensen bound on importance sampled estimate:

$$\ell(heta) = \log \mathbb{E}_{\mathbf{z} \sim q} \left[rac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}
ight] \geq \mathbb{E}_{\mathbf{z} \sim q} \left[\log rac{p(\mathbf{x}, \mathbf{z})}{q(\mathbf{z})}
ight]$$

Suggests more accurate importance sampling:

$$\ell(\theta) = \log \mathbb{E}_{\mathbf{z}_1 \dots \mathbf{z}_K \overset{\text{iid}}{\sim} q} \left[\frac{1}{K} \sum_k \frac{\rho(\mathbf{x}, \mathbf{z}_k)}{q(\mathbf{z}_k)} \right] \ge \mathbb{E}_{\mathbf{z}_1 \dots \mathbf{z}_K \overset{\text{iid}}{\sim} q} \left[\log \frac{1}{K} \sum_k \frac{\rho(\mathbf{x}, \mathbf{z}_k)}{q(\mathbf{z}_k)} \right]$$

Tighter bound, and reparametrisation friendly, but as $K \to \infty$ the signal for learning amortised q grows weaker so VAE learning doesn't always improve.

Normalising flows

So, given a sample $\mathbf{z}_0^s \overset{\text{iid}}{\sim} q_0(\cdot; \mathbf{x})$:

$$\mathcal{F}(q,\theta) \approx \frac{1}{S} \sum_{s} \log p(\mathbf{x}, f_{\mathcal{K}}(\dots f_1(\mathbf{z}_0^s)))) + \mathbf{H}[q_0] + \frac{1}{S} \sum_{s} \sum_{k} \left| \nabla f_{\mathcal{K}}(f_{k-1}(\dots f_1(\mathbf{z}_0^s))) \right|$$

and we can compute gradients of this expression wrt θ and ϕ .

Useful fs (from Rezende & Mohammed 2015):

$$f(\mathbf{z}) = \mathbf{z} + \mathbf{u}h(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b) \qquad \Rightarrow |\nabla f| = \left|1 + \mathbf{u}^{\mathsf{T}}\psi(\mathbf{z})\right| \qquad \psi(\mathbf{z}) = h'(\mathbf{w}^{\mathsf{T}}\mathbf{z} + b)\mathbf{w}$$

$$f(\mathbf{z}) = \mathbf{z} + \frac{\beta}{\alpha + |\mathbf{z} - \mathbf{z}_0|} \qquad \Rightarrow |\nabla f| = [1 + \beta h]^{d-1}[1 + \beta h + \beta h'r]$$

$$r = |\mathbf{z} - \mathbf{z}_0|, h = \frac{1}{\alpha + r}$$

Both can be cascaded to give a flexible variational family.

Normalising flows

$$\mathcal{F}(q,\theta) = \langle \log p(\mathbf{x}, \mathbf{z}|\theta) \rangle_q - \langle \log q(\mathbf{z}) \rangle_q$$

To evaluate \mathcal{F} (or its gradients) we need to be able to find expectations wrt q (e.g. by Monte Carlo) and evaluate the log-density – usually restricts us to tractable inferential families.

Consider defining a recognition model $q(\mathbf{z})$ implicitly by:

$$\mathbf{z}_0 \sim q_0(\cdot; \mathbf{x})$$
 \leftarrow fixed, tractable, e.g. $\mathcal{N}(\mathbf{x}, l)$ $\mathbf{z} = f_K(f_{K-1}(\dots f_1(\mathbf{z}_0)))$ \leftarrow f_K smooth, invertible, parametrised by ϕ

Then

$$\langle F(\mathbf{z}) \rangle_q = \langle F(f_K(f_{K-1}(\dots f_1(\mathbf{z}_0)))) \rangle_{q_0}$$

$$\log q(\mathbf{z}) = \log q_0(f_1^{-1}(f_2^{-1}(\dots f_K^{-1}(\mathbf{z})))) - \sum_k \log |\nabla f_k|$$

where the second result applies from repeated transformations of variables

$$\mathbf{z}_k = f_k(\mathbf{z}_{k-1}) \Rightarrow q(\mathbf{z}_k) = q(f_k^{-1}(\mathbf{z}_k)) \left| \frac{\partial \mathbf{z}_{k-1}}{\partial \mathbf{z}_k} \right| = q(f_k^{-1}(\mathbf{z}_k)) \left| \nabla f_k(\mathbf{z}_{k-1}) \right|^{-1}$$

DDC Helmholtz machine

A (loosely) neurally inspired idea. Define q as an unnormalisable exponential family with a large set of sufficient statistics

$$q(\mathbf{z}) \propto e^{\sum_i \eta_i \psi_i(\mathbf{z})}$$

and parametrise by mean parameters $\mu = \langle \phi(\mathbf{z}) \rangle$: Distributed distributional code (DDC).

Train recognition model using sleep samples:

$$egin{aligned} oldsymbol{\mu} &= \left< oldsymbol{\psi}(\mathbf{z}) \right>_q = f(\mathbf{x}; \phi) \ \Delta \phi &\propto \sum_s (oldsymbol{\psi}(\mathbf{z}_s) - f(\mathbf{x}_s; \phi))
abla_\phi f(\mathbf{x}_s; \phi) \end{aligned}$$

Also learn linear approximation $\nabla \log p(\mathbf{x}, \mathbf{z}|\theta) \approx A\psi(\mathbf{z})$

$$A = \left(\sum_{s} \nabla \log p(\mathbf{x}_{s}, \mathbf{z}_{s} | \theta) \psi(\mathbf{z}_{s})\right)^{\mathsf{T}} \left(\sum_{s} \psi(\mathbf{z}_{s}) \psi(\mathbf{z}_{s})^{\mathsf{T}}\right)^{-1}$$

Then

$$\langle \nabla \log p(\mathbf{x}, \mathbf{z}) \rangle_a \approx A \langle \psi(\mathbf{z}) \rangle_a \approx A f(\mathbf{x}, \phi)$$

Approach can be generalised to an infinite dimensional ψ using the kernel trick.

Generative models

In practice, much of the VAE and related work has used a common generative model:

$$\mathbf{z} \sim \mathcal{N}\left(\mathbf{0}, l
ight) \ \mathbf{x} \sim \mathcal{N}\left(\mathbf{g}(\mathbf{z}; oldsymbol{ heta}), \psi l
ight)$$

where g is a neural network.

- Overcomplicated: if dim(\mathbf{z}) is large enough the optimal solution has $\psi \to 0$, $q(\mathbf{z}; \mathbf{x}) \to \delta(\mathbf{z} f(\mathbf{x}, \phi))$. In effect, the generative model learns a flow to transform a normal density to the target.
- Oversimplified: if dim(z) is small, this is just non-linear PCA!

Interesting latent representations are likely to require more structured generative models. Recent work has approached such models in both VAE and DDC frameworks.

Structured VAE learning

Now, the free-energy can be written as a function of parameters and recognition parameters:

$$\mathcal{F}(\theta, \Gamma, \{\phi_i\}) = \left\langle \sum_{i} \log p(\mathbf{x}_i | \mathbf{z}_i, \gamma_i) + \log p(\mathcal{Z}|\theta) \right\rangle_{q(\mathcal{Z}; \theta, \{\phi_i\})} + \sum_{i} \mathbf{H}[q_i]$$

$$= \sum_{i} \underbrace{\left\langle \log p(\mathbf{x}_i | \mathbf{z}_i, \gamma_i) \right\rangle_{q_i(\mathbf{z}_i; \theta, \phi_i)} + \mathbf{H}[q_i]}_{\mathcal{F}_i} + \left\langle \log p(\mathcal{Z}|\theta) \right\rangle_{q(\mathcal{Z}; \theta, \{\phi_i\})}$$

Updates on θ are just as for tractable model.

To update each ϕ_i and γ_i , find $\langle \boldsymbol{\eta}_{\neg i} \rangle_{q_{\neg i}}$ to give the "prior". Generate reparametrised samples $\mathbf{z}_i^s \sim q_i$. Then

$$\begin{split} \frac{\partial}{\partial \gamma_i} \mathcal{F}_i &= \sum_s \nabla_{\gamma_i} \log p(\mathbf{x}_i, \mathbf{z}_i^s; \gamma_i) \\ \frac{\partial}{\partial \phi_i} \mathcal{F}_i &= \sum_s \frac{\partial}{\partial \mathbf{z}_i^s} (\log p(\mathbf{x}_i, \mathbf{z}_i^s; \gamma_i) - \log q(\mathbf{z}_i^s; \mathbf{f}(\mathbf{x}_i))) \frac{d\mathbf{z}_i^s}{d\phi} + \frac{\partial}{\partial \mathbf{f}(\mathbf{x}_i)} \log q(\mathbf{z}_i^s; \mathbf{f}(\mathbf{x}_i)) \frac{d\mathbf{f}(\mathbf{x}_i)}{d\phi} \end{split}$$

as for the standard VAE.

Structured VAEs

Consider a model where $p(\mathcal{Z}|\theta)$ has tractable joint exponential-family potentials and

$$p(\mathcal{X}|\mathcal{Z},\Gamma) = \prod_{i} p(\mathbf{x}_{i}|\mathbf{z}_{i},\gamma_{i})$$

are intractable (say neural net + normal) cond ind observations. γ_i might be the same for all i. Consider factored variational inference $q(\mathcal{Z}) = \prod_i q_i(\mathbf{z}_i)$. With no further constraint,

$$\begin{aligned} \log q_i^*(\mathbf{z}_i) &= \left\langle \log p(\mathcal{Z}, \mathcal{X}) \right\rangle_{q_{\neg i}} &= \left\langle \log p(\mathbf{z}_i | \mathcal{Z}_{\neg i}) + \log p(\mathbf{x}_i | \mathbf{z}_i) \right\rangle_{q_{\neg i}} \\ &= \left\langle \eta_{\neg i} \right\rangle_{q_{\neg i}}^\mathsf{T} \psi_i(\mathbf{z}_i) + \log p(\mathbf{x}_i | \mathbf{z}_i) \end{aligned}$$

where we have exploited the exponential-family form of $p(\mathcal{Z})$. ψ_i are effective suff stats – including log normalisers of children in a DAG; $\eta_{\neg i}$ is a function of $\mathcal{Z}_{\neg i}$.

Now, choose the parametric form $q_i(\mathbf{z}_i) = e^{\tilde{\eta}_i^{\mathsf{T}} \psi_i(\mathbf{z}_i) - \Phi_i(\tilde{\eta}_i)}$. Constrained optimum has form

$$\log q_i^*(\mathbf{z}_i) = \langle \boldsymbol{\eta}_{\neg i} \rangle_{q_{\neg i}}^\mathsf{T} \boldsymbol{\psi}_i(\mathbf{z}_i) + \boldsymbol{\rho}(\mathbf{x}_i)^\mathsf{T} \boldsymbol{\psi}_i(\mathbf{z}_i)$$

for some x_i-dependent natural parameter. Introduce recognition models:

$$\rho(\mathbf{x}_i) = f_i(\mathbf{x}_i, \phi_i)$$

Recognition function f_i might be same for all i if all likelihoods are the same (e.g. HMM).

DDC message passing

Consider simple chain inference:



$$p(\mathbf{z}_2|\mathbf{x}) = \int dz_1 \ p(\mathbf{z}_2|\mathbf{z}_1)p(\mathbf{z}_1|\mathbf{x}).$$

▶ DDC for p(z₁|x):

$$r_j^1 = \left\langle \psi_j^1(\mathbf{z}_1) \right\rangle_{p(\mathbf{z}_1|\mathbf{x})}$$
.

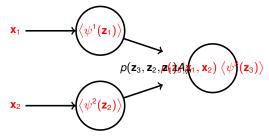
► Connections A_{ii} such that

$$f_i(\mathbf{z}_1) = \int d\mathbf{z}_2 \psi_i^2(\mathbf{z}_2) \rho(\mathbf{z}_2|\mathbf{z}_1) \approx \sum_i A_{ij} \psi_j^1(\mathbf{z}_1)$$

► Then

$$r_i^2 = \sum_i A_{ij} r_j^1 = \left\langle \psi_i^2(\mathbf{z}_2) \right\rangle_{p(\mathbf{z}_2|\mathbf{x})}$$

Convergent messages



$$ho(\mathbf{z}_3|\mathbf{x}) = \int d\mathbf{z}_1 d\mathbf{z}_2 \
ho(\mathbf{z}_3|\mathbf{z}_1,\mathbf{z}_2)
ho(\mathbf{z}_2|\mathbf{x}_2)
ho(\mathbf{z}_1|\mathbf{x}_1)$$

▶ Multilinear combination. Connections Aiik such that

$$f_i(\mathbf{z}_1, \mathbf{z}_2) = \int d\mathbf{z}_3 \; \psi_i^3(\mathbf{z}_3) \frac{\rho(\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3)}{\rho(\mathbf{z}_1)\rho(\mathbf{z}_2)} = \sum_{jk} A_{ijk} \psi_i^1(\mathbf{z}_1) \psi_j^2(\mathbf{z}_2)$$

► Then

$$r_k^3 = \sum_{jk} A_{ijk} r_i^1 r_j^2 = \left\langle \psi^3(\mathbf{z}_3) \right\rangle_{\rho(\mathbf{z}_3|\mathbf{x}_1,\mathbf{x}_2)}$$

A few things we hope you've learned in this course ...

- Exponential families are your friends.
- Latent variable models and conditional independence to uncover structured representations.
- ► Free-energies, maximum likelihood, variational approximation theory and variational Bayes.
- Message passing exploits conditional independence.
- A rich toolkit of approximations, that you can compose in novel and useful ways.
- ► A theory of many approximations that helps ensure you understand their use and limitations (and may help derive new approaches).

... just a brief survey of a subset of current ideas.