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Variational methods

I Our treatment of variational methods has (except EP) emphasised ‘natural’ choices of
variational family – often factorised using the same functional (ExpFam) form as joint.

I mostly restricted to joint exponential families – facilitates hierarchical and
distributed models, but not non-linear/non-conjugate.

I Consider parametric variational approximations using a constrained family q(Z; ρ).

The constrained (approximate) variational E-step becomes:

q(Z) := argmax
q∈{q(Z;ρ)}

F
(
q(Z), θ(k−1)) ⇒ ρ(k) := argmax

ρ
F
(
q(Z; ρ), θ(k−1))

and so we can replace constrained optimisation of F(q, θ) with unconstrained
optimisation of a constrained F(ρ, θ) :

F(ρ, θ) =
〈

log P(X ,Z|θ(k−1))
〉

q(Z;ρ)
+ H[ρ]

It might still be valuable to use coordinate ascent in ρ and θ, although this is no longer
necessary.
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Optimising the variational parameters

F(ρ, θ) =
〈

log P(X ,Z|θ(k−1))
〉

q(Z;ρ)
+ H[ρ]

I In some special cases, the expectations of the log-joint under q(Z; ρ) can be expressed
in closed form, but these are rare.

I Otherwise we might seek to follow∇ρF .

I Naively, this requires evaluting a high-dimensional expectation wrt q(Z, ρ) as a function
of ρ – not simple.

I At least three solutions:

I “Score-based” gradient estimate, and Monte-Carlo (Ranganath et al. 2014).

I Recognition network trained in separate phase – not strictly variational (Dayan et
al. 1995).

I Recognition network trained simultaneously with generative model using “frozen”
samples (Kingma and Welling 2014; Rezende et al. 2014).
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Score-based gradient estimate

We have:

∇ρF(ρ, θ) = ∇ρ
∫

dZ q(Z; ρ)(log P(X ,Z|θ)− log q(Z; ρ))

=

∫
dZ [∇ρq(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))

+ q(Z; ρ)∇ρ[log P(X ,Z|θ)− log q(Z; ρ)]

Now,

∇ρ log P(X ,Z|θ) = 0 (no direct dependence)∫
dZ q(Z; ρ)∇ρ log q(Z; ρ) = ∇ρ

∫
dZ q(Z; ρ) = 0 (always normalised)

∇ρq(Z; ρ) = q(Z; ρ)∇ρ log q(Z; ρ)

So,

∇ρF(ρ, θ) =
〈

[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))
〉

q(Z;ρ)

Reduced gradient of expectation to expectation of gradient – easier to compute. Also called
the REINFORCE trick.
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Factorisation

∇ρF(ρ, θ) =
〈

[∇ρ log q(Z; ρ)](log P(X ,Z|θ)− log q(Z; ρ))
〉

q(Z;ρ)

I Still requires a high-dimensional expectation, but can now be evaluated by Monte-Carlo.
I Dimensionality reduced by factorisation (particularly where P(X ,Z) is factorised).

Let q(Z) =
∏

i q(Zi |ρi ) factor over disjoint cliques; let Z̄i be the minimal Markov
blanket of Zi in the joint; PZ̄i

be the product of joint factors that include any element of
Zi (so the union of their arguments is Z̄i ); and P¬Z̄i

the remaining factors. Then,

∇ρiF({ρj}, θ) =
〈

[∇ρi

∑
j log q(Zj ; ρj )](log P(X ,Z|θ)−

∑
j log q(Zj ; ρj ))

〉
q(Z)

=
〈

[∇ρi log q(Zi ; ρi )](log PZ̄i
(X , Z̄i )− log q(Zi ; ρi )

〉
q(Z̄i )

+
〈

[∇ρi log q(Zi ; ρi )] (log P¬Z̄i
(X ,Z¬i )−

∑
j 6=i

log q(Zj ; ρj )︸ ︷︷ ︸
constant wrtZi

〉
q(Z)

So the second term is proportional to 〈∇ρi log q(Zi ; ρi )〉q(Zi )
, this = 0 as before.

So expectations are only needed wrt q(Z̄i )→ variational message passing!



Sampling

So the “black-box” variational approach is as follows:

I Choose a parametric (factored) variational family q(Z) =
∏

i q(Zi ; ρi ).
I Initialise factors.
I Repeat to convergence:

I Stochastic VE-step. For each i :
I Sample from q(Z̄i ) and estimate expected gradient∇ρiF .
I Update ρi along gradient.

I Stochastic M-step. For each i :
I Sample from each q(Z̄i ).
I Update corresponding parameters.

I Stochastic gradient steps may employ a Robbins-Munro step-size sequence to promote
convergence.

I Variance of the gradient estimators can also be controlled by clever Monte-Carlo
techniques (orginal authors used a “control variate” method that we have not studied).



Recognition Models

We have not generally distinguished between multivariate models and iid data instances,
grouping all variables together in Z .

However, even for large models (such as HMMs), we often work with multiple data draws (e.g.
multiple strings) and each instance requires a separate variational optimisation.

Suppose that we have fixed length vectors {(xi , zi )} (z is still latent).

I Optimal variational distribution q∗(zi ) depends on xi .
I Learn this mapping (in parametric form): q

(
zi ; ρ = f (xi ;φ)

)
.

I Now ρ is the output of a general function approximator f (a GP, neural network or similar)
parametrised by φ, trained to map xi to the variational parameters of q(zi ).

I The mapping function f is called a recognition model.
I This is approach is now often called amortised inference.

How to learn f?



The Helmholtz Machine
Dayan et al. (1995) originally studied binary sigmoid belief net, with parallel recognition
model:

• • •

• • •

• • •

• • •

• • •

• • •

Two phase learning:
I Wake phase: given current f , estimate mean-field representation from data (mean

sufficient stats for Bernoulli are just probabilities):

q(zi ) = Bernoulli[ẑi ] ẑi = f (xi ;φ)

Update generative parameters θ according to∇θF({ẑi}, θ).
I Sleep phase: sample {zs, xs}S

s=1 from current generative model. Update recognition
parameters φ to direct f (xs) towards zs (simple gradient learning).

∆φ ∝
∑

s

(zs − f (xs;φ))∇φf (xs;φ)



The Helmholtz Machine

I Can sample z from recognition model rather than just evaluate means.

I Expectations in free-energy can be computed directly rather than by mean
substitution.

I In hierarchical models, output of higher recognition layers then depends on
samples at previous stages, which introduces correlations between samples at
different layers.

I Recognition model structure need not exactly echo generative model.

I More general approach is to train f to yield mean parameters of ExpFam q(z) (later).

I Sleep phase learning minimises KL[pθ(z|x)‖q(z; f (x, φ))]. Opposite to variational
objective, but may not matter if divergence is small enough.



Variational Autoencoders

x1 x2 xD• • •

ζ1 ζ2 ζK1• • •

z1 zK• • •

ξ1 ξ2 ξK1• • •

x̂1 x̂2 x̂D• • •

ε

I Fuses the wake and sleep phases.
I Generate recognition samples using deterministic

transformations of external random variates
(reparametrisation trick).

I E.g. if f gives marginal µi and σi for latents zi and
εs

i ∼ N (0, 1), then zs
i = µi + σiε

s
i .

I Now generative and recognition parameters can be trained
together by gradient descent (backprop), holding εs fixed.

Fi (θ, φ) =
∑

s

log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi , φ))

∂

∂θ
Fi =

∑
s

∇θ log P(xi , z
s
i ; θ)

∂

∂φ
Fi =

∑
s

∂

∂zs
i

(log P(xi , z
s
i ; θ)− log q(zs

i ; f(xi )))
dzs

i

dφ

+
∂

∂f(xi )
log q(zs

i ; f(xi ))
df(xi )

dφ



Variational Autoencoders

I Frozen samples εs can be redrawn to avoid overfitting.
I May be possible to evaluate entropy and log P(z) without sampling, reducing variance.
I Differentiable reparametrisations are available for a number of different distributions.
I Conditional P(x|z, θ) is often implemented as a neural network with additive noise at

output, or at transitions. If at transitions recognition network must estimate each noise
input.

I In practice, hierarchical models appear difficult to learn.



More recent work

I Changing the variational cost function (tightening the bound):
I Importance-Weighted autoencoder (IWAE)
I Filtering variational objective (FIVO)
I Thermodynamic variational objective (TVO)

I Flexible variational distributions
I Normalising flows
I DDC-Helmholtz machine

I Structured generative models
I “standard” VAE generative model both too powerful and too simple for learning
I local conjugate inference – structured VAEs
I DDC message passing

Far from exhaustive . . . these are all areas of active research. We’ll survey a few ideas.



Importance-weighted free energy

Another interpretation of the free energy:

F(q, θ) =

〈
log

p(x, z)

q(z)

〉
q

= Ez∼q

proposal[
log p(x)

p(z|x)

q(z)

importance weight

]

Jensen bound on importance sampled estimate:

`(θ) = logEz∼q

[
p(x, z)

q(z)

]
≥ Ez∼q

[
log

p(x, z)

q(z)

]

Suggests more accurate importance sampling:

`(θ) = logE
z1...zK

iid∼ q

[
1
K

∑
k

p(x, zk )

q(zk )

]
≥ E

z1...zK
iid∼ q

[
log

1
K

∑
k

p(x, zk )

q(zk )

]

Tighter bound, and reparametrisation friendly, but as K →∞ the signal for learning
amortised q grows weaker so VAE learning doesn’t always improve.



Normalising flows

F(q, θ) = 〈log p(x, z|θ)〉q − 〈log q(z)〉q

To evaluate F (or its gradients) we need to be able to find expectations wrt q (e.g. by Monte
Carlo) and evaluate the log-density – usually restricts us to tractable inferential families.

Consider defining a recognition model q(z) implicitly by:

z0 ∼ q0(·; x) ← fixed, tractable, e.g. N (x, I)

z = fK (fK−1(. . . f1(z0))) ← fk smooth, invertible, parametrised by φ

Then

〈F(z)〉q = 〈F(fK (fK−1(. . . f1(z0))))〉q0

log q(z) = log q0(f−1
1 (f−1

2 (. . . f−1
K (z))))−

∑
k

log |∇fk |

where the second result applies from repeated transformations of variables

zk = fk (zk−1) ⇒ q(zk ) = q(f−1
k (zk ))

∣∣∣∣∂zk−1

∂zk

∣∣∣∣ = q(f−1
k (zk )) |∇fk (zk−1)|−1



Normalising flows

F(q, θ) = 〈log p(x, z|θ)〉q − 〈log q(z)〉q

To evaluate F (or its gradients) we need to be able to find expectations wrt q (e.g. by Monte
Carlo) and evaluate the log-density – usually restricts us to tractable inferential families.

Consider defining a recognition model q(z) implicitly by:

z0 ∼ q0(·; x) ← fixed, tractable, e.g. N (x, I)

z = fK (fK−1(. . . f1(z0))) ← fk smooth, invertible, parametrised by φ

Then

〈F(z)〉q = 〈F(fK (fK−1(. . . f1(z0))))〉q0

log q(z) = log q0(f−1
1 (f−1

2 (. . . f−1
K (z))))−

∑
k

log |∇fk |

where the second result applies from repeated transformations of variables

zk = fk (zk−1) ⇒ q(zk ) = q(f−1
k (zk ))

∣∣∣∣∂zk−1

∂zk

∣∣∣∣ = q(f−1
k (zk )) |∇fk (zk−1)|−1



Normalising flows

F(q, θ) = 〈log p(x, z|θ)〉q − 〈log q(z)〉q

To evaluate F (or its gradients) we need to be able to find expectations wrt q (e.g. by Monte
Carlo) and evaluate the log-density – usually restricts us to tractable inferential families.

Consider defining a recognition model q(z) implicitly by:

z0 ∼ q0(·; x) ← fixed, tractable, e.g. N (x, I)

z = fK (fK−1(. . . f1(z0))) ← fk smooth, invertible, parametrised by φ

Then

〈F(z)〉q = 〈F(fK (fK−1(. . . f1(z0))))〉q0

log q(z) = log q0(f−1
1 (f−1

2 (. . . f−1
K (z))))−

∑
k

log |∇fk |

where the second result applies from repeated transformations of variables

zk = fk (zk−1) ⇒ q(zk ) = q(f−1
k (zk ))

∣∣∣∣∂zk−1

∂zk

∣∣∣∣ = q(f−1
k (zk )) |∇fk (zk−1)|−1



Normalising flows

So, given a sample zs
0

iid∼ q0(·; x):

F(q, θ) ≈ 1
S

∑
s

log p(x, fK (. . . f1(zs
0)))) + H[q0] +

1
S

∑
s

∑
k

∣∣∇fk (fk−1(. . . f1(zs
0)))
∣∣

and we can compute gradients of this expression wrt θ and φ.

Useful fs (from Rezende & Mohammed 2015):

f (z) = z + uh(wTz + b) ⇒ |∇f | =
∣∣∣1 + uTψ(z)

∣∣∣ ψ(z) = h′(wTz + b)w

f (z) = z +
β

α + |z− z0|
⇒ |∇f | = [1 + βh]d−1[1 + βh + βh′r ]

r = |z− z0|, h =
1

α + r

Both can be cascaded to give a flexible variational family.



DDC Helmholtz machine

A (loosely) neurally inspired idea. Define q as an unnormalisable exponential family with a
large set of sufficient statistics

q(z) ∝ e
∑

i ηiψi (z)

and parametrise by mean parameters µ = 〈φ(z)〉: Distributed distributional code (DDC).

Train recognition model using sleep samples:

µ = 〈ψ(z)〉q = f (x;φ)

∆φ ∝
∑

s

(ψ(zs)− f (xs;φ))∇φf (xs;φ)

Also learn linear approximation∇ log p(x, z|θ) ≈ Aψ(z)

A =
(∑

s

∇ log p(xs, zs|θ)ψ(zs)
)T(∑

s

ψ(zs)ψ(zs)T
)−1

Then

〈∇ log p(x, z)〉q ≈ A〈ψ(z)〉q ≈ Af (x, φ)

Approach can be generalised to an infinite dimensional ψ using the kernel trick.



Generative models

In practice, much of the VAE and related work has used a common generative model:

z ∼ N (0, I)

x ∼ N (g(z;θ), ψI)

where g is a neural network.

I Overcomplicated: if dim(z) is large enough the optimal solution has ψ → 0,
q(z; x)→ δ(z− f (x, φ)). In effect, the generative model learns a flow to transform a
normal density to the target.

I Oversimplified: if dim(z) is small, this is just non-linear PCA!

Interesting latent representations are likely to require more structured generative models.
Recent work has approached such models in both VAE and DDC frameworks.



Structured VAEs
Consider a model where p(Z|θ) has tractable joint exponential-family potentials and

p(X|Z, Γ) =
∏

i

p(xi |zi , γi )

are intractable (say neural net + normal) cond ind observations. γi might be the same for all i .

Consider factored variational inference q(Z) =
∏

i qi (zi ). With no further constraint,

log q∗i (zi ) =
+C
〈log p(Z,X )〉q¬i

=
+C
〈log p(zi |Z¬i ) + log p(xi |zi )〉q¬i

=
+C
〈η¬i〉Tq¬i

ψi (zi ) + log p(xi |zi )

where we have exploited the exponential-family form of p(Z). ψi are effective suff stats –
including log normalisers of children in a DAG; η¬i is a function of Z¬i .

Now, choose the parametric form qi (zi ) = eη̃
T
i ψi (zi )−Φi (η̃i ). Constrained optimum has form

log q∗i (zi ) =
+C
〈η¬i〉Tq¬i

ψi (zi ) + ρ(xi )
Tψi (zi )

for some xi -dependent natural parameter. Introduce recognition models:

ρ(xi ) = fi (xi , φi )

Recognition function fi might be same for all i if all likelihoods are the same (e.g. HMM).



Structured VAEs
Consider a model where p(Z|θ) has tractable joint exponential-family potentials and

p(X|Z, Γ) =
∏

i

p(xi |zi , γi )

are intractable (say neural net + normal) cond ind observations. γi might be the same for all i .

Consider factored variational inference q(Z) =
∏

i qi (zi ). With no further constraint,

log q∗i (zi ) =
+C
〈log p(Z,X )〉q¬i

=
+C
〈log p(zi |Z¬i ) + log p(xi |zi )〉q¬i

=
+C
〈η¬i〉Tq¬i

ψi (zi ) + log p(xi |zi )

where we have exploited the exponential-family form of p(Z). ψi are effective suff stats –
including log normalisers of children in a DAG; η¬i is a function of Z¬i .

Now, choose the parametric form qi (zi ) = eη̃
T
i ψi (zi )−Φi (η̃i ). Constrained optimum has form

log q∗i (zi ) =
+C
〈η¬i〉Tq¬i

ψi (zi ) + ρ(xi )
Tψi (zi )

for some xi -dependent natural parameter. Introduce recognition models:

ρ(xi ) = fi (xi , φi )

Recognition function fi might be same for all i if all likelihoods are the same (e.g. HMM).



Structured VAEs
Consider a model where p(Z|θ) has tractable joint exponential-family potentials and

p(X|Z, Γ) =
∏

i

p(xi |zi , γi )

are intractable (say neural net + normal) cond ind observations. γi might be the same for all i .

Consider factored variational inference q(Z) =
∏

i qi (zi ). With no further constraint,

log q∗i (zi ) =
+C
〈log p(Z,X )〉q¬i

=
+C
〈log p(zi |Z¬i ) + log p(xi |zi )〉q¬i

=
+C
〈η¬i〉Tq¬i

ψi (zi ) + log p(xi |zi )

where we have exploited the exponential-family form of p(Z). ψi are effective suff stats –
including log normalisers of children in a DAG; η¬i is a function of Z¬i .

Now, choose the parametric form qi (zi ) = eη̃
T
i ψi (zi )−Φi (η̃i ). Constrained optimum has form

log q∗i (zi ) =
+C
〈η¬i〉Tq¬i

ψi (zi ) + ρ(xi )
Tψi (zi )

for some xi -dependent natural parameter. Introduce recognition models:

ρ(xi ) = fi (xi , φi )

Recognition function fi might be same for all i if all likelihoods are the same (e.g. HMM).



Structured VAE learning

Now, the free-energy can be written as a function of parameters and recognition parameters:

F(θ, Γ, {φi}) =

〈∑
i

log p(xi |zi , γi ) + log p(Z|θ)

〉
q(Z;θ,{φi})

+
∑

i

H[qi ]

=
∑

i

〈log p(xi |zi , γi )〉qi (zi ;θ,φi )
+ H[qi ]︸ ︷︷ ︸

Fi

+〈log p(Z|θ)〉q(Z;θ,{φi})

Updates on θ are just as for tractable model.

To update each φi and γi , find 〈η¬i〉q¬i
to give the “prior”. Generate reparametrised samples

zs
i ∼ qi . Then

∂

∂γi
Fi =

∑
s

∇γi log p(xi , z
s
i ; γi )

∂

∂φi
Fi =

∑
s

∂

∂zs
i

(log p(xi , z
s
i ; γi )− log q(zs

i ; f(xi )))
dzs

i

dφ
+

∂

∂f(xi )
log q(zs

i ; f(xi ))
df(xi )

dφ

as for the standard VAE.
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DDC message passing
Consider simple chain inference:

p(z1|x) p(z2|x)
p(z1, z2)

x

p(z2|x) =

∫
dz1 p(z2|z1)p(z1|x).

I DDC for p(z1|x):

r 1
j =

〈
ψ1

j (z1)
〉

p(z1|x)
.

I Connections Aij such that

fi (z1) =

∫
dz2ψ

2
i (z2)p(z2|z1) ≈

∑
j

Aijψ
1
j (z1)

I Then

r 2
i =

∑
j

Aij r
1
j =

〈
ψ2

i (z2)
〉

p(z2|x)
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Convergent messages
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. . . just a brief survey of a subset of current ideas.



A few things we hope you’ve learned in this course . . .

I Exponential families are your friends.

I Latent variable models and conditional independence to uncover structured
representations.

I Free-energies, maximum likelihood, variational approximation theory and variational
Bayes.

I Message passing exploits conditional independence.

I A rich toolkit of approximations, that you can compose in novel and useful ways.

I A theory of many approximations that helps ensure you understand their use and
limitations (and may help derive new approaches).
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