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Expectations in Statistical Modelling

I Parameter estimation

θ̂ = argmax
θ

∫
dZ P(Z|θ)P(X|Z, θ)

(or, using EM)

θnew = argmax
θ

∫
dZ P(Z|X , θold) log P(X ,Z|θ)

I Prediction

p(x |D,m) =

∫
dθ p(θ|D,m)p(x |θ,D,m)

I Model selection or weighting (by marginal likelihood)

p(D|m) =

∫
dθ p(θ|m)p(D|θ,m)

These integrals are often intractable:
I Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian

models⇒ numerical integration.
I Computational intractability: Numerical integral (or sum if Z or θ are discrete) may be

exponential in data or model size.



Intractabilities and approximations

I Inference – computational intractability
I Factored variational approx
I Loopy BP/EP/Power EP
I LP relaxations/ convexified BP
I Gibbs sampling, other MCMC

I Inference – analytic intractability
I Laplace approximation (global)
I Parametric variational approx
I Message approximations (linearised, sigma-point, Laplace)
I Assumed-density methods and Expectation-Propagation
I (Sequential) Monte-Carlo methods

I Learning – intractable partition function
I Sampling parameters
I Constrastive divergence
I Score-matching

I Model selection
I Laplace approximation / BIC
I Variational Bayes
I (Annealed) importance sampling
I Reversible jump MCMC

Not a complete list!



Distributed models
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Consider an FHMM with M state variables taking on K values each.

I Moralisation puts simultaneous states (s(1)
t , s(2)

t , . . . , s(M)
t ) into a single clique

I Triangulation extends cliques to size M + 1
I Each state takes K values⇒ sums over K M+1 terms.
I Factorial prior 6⇒ Factorial posterior (explaining away).

Variational methods approximate the posterior, often in a factored form.
To see how they work, we need to review the free-energy interpretation of EM.
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The Free Energy for a Latent Variable Model

Observed data X = {xi}; Latent variables Z = {zi}; Parameters θ.

Goal: Maximize the log likelihood wrt θ (i.e. ML learning):

`(θ) = log P(X|θ) = log
∫

P(Z,X|θ)dZ

Any distribution, q(Z), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

`(θ) = log
∫

q(Z)
P(Z,X|θ)

q(Z)
dZ ≥

∫
q(Z) log

P(Z,X|θ)

q(Z)
dZ def

= F(q, θ)

∫
q(Z) log

P(Z,X|θ)

q(Z)
dZ =

∫
q(Z) log P(Z,X|θ) dZ −

∫
q(Z) log q(Z) dZ

=

∫
q(Z) log P(Z,X|θ) dZ + H[q],

where H[q] is the entropy of q(Z).
So: F(q, θ) = 〈log P(Z,X|θ)〉q(Z) + H[q]
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The E and M steps of EM

The log likelihood is bounded below by:

F(q, θ) = 〈log P(Z,X|θ)〉q(Z) + H[q] = `(θ)− KL[q(Z)‖P(Z|X , θ)]

EM alternates between:

E step: optimise F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Z) := argmax
q(Z)

F
(
q(Z), θ(k−1)) = P(Z|X , θ(k−1))

M step: maximise F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

〈log P(Z,X|θ)〉q(k)(Z)



EM as Coordinate Ascent in F



EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

`
(
θ(k−1)) =

E step
F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
`
(
θ(k)),

I The E step brings the free energy to the likelihood.
I The M-step maximises the free energy wrt θ.
I F ≤ ` by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that θ(k) 6= θ(k−1) iff F increases, then the overall EM iteration
will step to a new value of θ iff the likelihood increases.



Free-energy-based variational approximation
What if finding expected sufficient stats under P(Z|X , θ) is computationally intractable?

For the generalised EM algorithm, we argued that intractable maximisations could be
replaced by gradient M-steps.

I Each step increases the likelihood.
I A fixed point of the gradient M-step must be at a mode of the expected log-joint.

For the E-step we could:
I Parameterise q = qρ(Z) and take a gradient step in ρ.
I Assume some simplified form for q, usually factored: q =

∏
i qi (Zi ) where Zi partition

Z , and maximise within this form.

In either case, we choose q from within a limited set Q:

VE step: maximise F(q, θ) wrt constrained latent distribution given parameters:

q(k)(Z) := argmax
q(Z)∈Q←Constraint

F
(
q(Z), θ(k−1)).

M step: unchanged

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

∫
q(k)(Z) log p(Z,X|θ)dZ,

Unlike in GEM, the fixed point may not be at an unconstrained optimum of F .



Free-energy-based variational approximation
What if finding expected sufficient stats under P(Z|X , θ) is computationally intractable?

For the generalised EM algorithm, we argued that intractable maximisations could be
replaced by gradient M-steps.

I Each step increases the likelihood.
I A fixed point of the gradient M-step must be at a mode of the expected log-joint.

For the E-step we could:
I Parameterise q = qρ(Z) and take a gradient step in ρ.
I Assume some simplified form for q, usually factored: q =

∏
i qi (Zi ) where Zi partition

Z , and maximise within this form.

In either case, we choose q from within a limited set Q:

VE step: maximise F(q, θ) wrt constrained latent distribution given parameters:

q(k)(Z) := argmax
q(Z)∈Q←Constraint

F
(
q(Z), θ(k−1)).

M step: unchanged

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

∫
q(k)(Z) log p(Z,X|θ)dZ,

Unlike in GEM, the fixed point may not be at an unconstrained optimum of F .



Free-energy-based variational approximation
What if finding expected sufficient stats under P(Z|X , θ) is computationally intractable?

For the generalised EM algorithm, we argued that intractable maximisations could be
replaced by gradient M-steps.

I Each step increases the likelihood.
I A fixed point of the gradient M-step must be at a mode of the expected log-joint.

For the E-step we could:
I Parameterise q = qρ(Z) and take a gradient step in ρ.
I Assume some simplified form for q, usually factored: q =

∏
i qi (Zi ) where Zi partition

Z , and maximise within this form.

In either case, we choose q from within a limited set Q:

VE step: maximise F(q, θ) wrt constrained latent distribution given parameters:

q(k)(Z) := argmax
q(Z)∈Q←Constraint

F
(
q(Z), θ(k−1)).

M step: unchanged

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

∫
q(k)(Z) log p(Z,X|θ)dZ,

Unlike in GEM, the fixed point may not be at an unconstrained optimum of F .



Free-energy-based variational approximation
What if finding expected sufficient stats under P(Z|X , θ) is computationally intractable?

For the generalised EM algorithm, we argued that intractable maximisations could be
replaced by gradient M-steps.

I Each step increases the likelihood.
I A fixed point of the gradient M-step must be at a mode of the expected log-joint.

For the E-step we could:
I Parameterise q = qρ(Z) and take a gradient step in ρ.
I Assume some simplified form for q, usually factored: q =

∏
i qi (Zi ) where Zi partition

Z , and maximise within this form.

In either case, we choose q from within a limited set Q:

VE step: maximise F(q, θ) wrt constrained latent distribution given parameters:

q(k)(Z) := argmax
q(Z)∈Q←Constraint

F
(
q(Z), θ(k−1)).

M step: unchanged

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ

∫
q(k)(Z) log p(Z,X|θ)dZ,

Unlike in GEM, the fixed point may not be at an unconstrained optimum of F .



What do we lose?

What does restricting q to Q cost us?

I Recall that the free-energy is bounded above by Jensen:

F(q, θ) ≤ `(θML)

Thus, as long as every step increases F , convergence is still guaranteed.

I But, since P(Z|X , θ(k)) may not lie in Q, we no longer saturate the bound after the
E-step. Thus, the likelihood may not increase on each full EM step.

`
(
θ(k−1)) /∖

=
E step

F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
`
(
θ(k)),

I This means we may not (and usually won’t) converge to a maximum of `.

The hope is that by increasing a lower bound on ` we will find a decent solution.
[Note that if P(Z|X , θML) ∈ Q, then θML is a fixed point of the variational algorithm.]



What do we lose?

What does restricting q to Q cost us?

I Recall that the free-energy is bounded above by Jensen:

F(q, θ) ≤ `(θML)

Thus, as long as every step increases F , convergence is still guaranteed.

I But, since P(Z|X , θ(k)) may not lie in Q, we no longer saturate the bound after the
E-step. Thus, the likelihood may not increase on each full EM step.

`
(
θ(k−1)) /∖

=
E step

F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
`
(
θ(k)),

I This means we may not (and usually won’t) converge to a maximum of `.

The hope is that by increasing a lower bound on ` we will find a decent solution.
[Note that if P(Z|X , θML) ∈ Q, then θML is a fixed point of the variational algorithm.]



What do we lose?

What does restricting q to Q cost us?

I Recall that the free-energy is bounded above by Jensen:

F(q, θ) ≤ `(θML)

Thus, as long as every step increases F , convergence is still guaranteed.

I But, since P(Z|X , θ(k)) may not lie in Q, we no longer saturate the bound after the
E-step. Thus, the likelihood may not increase on each full EM step.

`
(
θ(k−1)) /∖

=
E step

F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
`
(
θ(k)),

I This means we may not (and usually won’t) converge to a maximum of `.

The hope is that by increasing a lower bound on ` we will find a decent solution.
[Note that if P(Z|X , θML) ∈ Q, then θML is a fixed point of the variational algorithm.]



What do we lose?

What does restricting q to Q cost us?

I Recall that the free-energy is bounded above by Jensen:

F(q, θ) ≤ `(θML)

Thus, as long as every step increases F , convergence is still guaranteed.

I But, since P(Z|X , θ(k)) may not lie in Q, we no longer saturate the bound after the
E-step. Thus, the likelihood may not increase on each full EM step.

`
(
θ(k−1)) /∖

=
E step

F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
`
(
θ(k)),

I This means we may not (and usually won’t) converge to a maximum of `.

The hope is that by increasing a lower bound on ` we will find a decent solution.
[Note that if P(Z|X , θML) ∈ Q, then θML is a fixed point of the variational algorithm.]



What do we lose?

What does restricting q to Q cost us?

I Recall that the free-energy is bounded above by Jensen:

F(q, θ) ≤ `(θML)

Thus, as long as every step increases F , convergence is still guaranteed.

I But, since P(Z|X , θ(k)) may not lie in Q, we no longer saturate the bound after the
E-step. Thus, the likelihood may not increase on each full EM step.

`
(
θ(k−1)) /∖

=
E step

F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
`
(
θ(k)),

I This means we may not (and usually won’t) converge to a maximum of `.

The hope is that by increasing a lower bound on ` we will find a decent solution.

[Note that if P(Z|X , θML) ∈ Q, then θML is a fixed point of the variational algorithm.]



What do we lose?

What does restricting q to Q cost us?

I Recall that the free-energy is bounded above by Jensen:

F(q, θ) ≤ `(θML)

Thus, as long as every step increases F , convergence is still guaranteed.

I But, since P(Z|X , θ(k)) may not lie in Q, we no longer saturate the bound after the
E-step. Thus, the likelihood may not increase on each full EM step.

`
(
θ(k−1)) /∖

=
E step

F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
`
(
θ(k)),

I This means we may not (and usually won’t) converge to a maximum of `.

The hope is that by increasing a lower bound on ` we will find a decent solution.
[Note that if P(Z|X , θML) ∈ Q, then θML is a fixed point of the variational algorithm.]



KL divergence

Recall that

F(q, θ) = 〈log P(X ,Z|θ)〉q(Z) + H[q]

= 〈log P(X|θ) + log P(Z|X , θ)〉q(Z) − 〈log q(Z)〉q(Z)

= 〈log P(X|θ)〉q(Z) − KL[q‖P(Z|X , θ)].

Thus,

E step maximise F(q, θ) wrt the distribution over latents, given parameters:

q(k)(Z) := argmax
q(Z)∈Q

F
(
q(Z), θ(k−1)).

is equivalent to:

E step minimise KL[q‖p(Z|X , θ)] wrt distribution over latents, given parameters:

q(k)(Z) := argmin
q(Z)∈Q

∫
q(Z) log

q(Z)

p(Z|X , θ(k−1))
dZ

So, in each E step, the algorithm is trying to find the best approximation to P(Z|X ) in Q in a
KL sense. This is related to ideas in information geometry. It also suggests generalisations to
other distance measures.



Factored Variational E-step

The most common form of variational approximation partitions Z into disjoint sets Zi with

Q =
{

q
∣∣ q(Z) =

∏
i

qi (Zi )
}
.

In this case the E-step is itself iterative:

(Factored VE step)i : maximise F(q, θ) wrt qi (Zi ) given other qj and parameters:

q(k)
i (Zi ) := argmax

qi (Zi )

F
(
qi (Zi )

∏
j 6=i

qj (Zj ), θ
(k−1)).

I qi updates iterated to convergence to “complete” VE-step.
I In fact, every (VE)i -step separately increases F , so any schedule of (VE)i - and M-steps

will converge. Choice can be dictated by practical issues (rarely efficient to fully
converge E-step before updating parameters).
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Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

F
(∏

j

qj (Zj ), θ
(k−1)

)
=
〈

log P(X ,Z|θ(k−1))
〉∏

j qj (Zj )
+ H

[∏
j

qj (Zj )
]

=

∫
dZi qi (Zi )

〈
log P(X ,Z|θ(k−1))

〉∏
j 6=i qj (Zj )

+ H[qi ] +
∑
j 6=i

H[qj ]

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of qi ):

δ

δqi

(
F + λ

(∫
qi − 1

))
=
〈

log P(X ,Z|θ(k−1))
〉∏

j 6=i qj (Zj )
− log qi (Zi )−

qi (Zi )

qi (Zi )
+ λ

(= 0) ⇒ qi (Zi ) ∝ exp
〈

log P(X ,Z|θ(k−1))
〉∏

j 6=i qj (Zj )
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Mean-field approximations

If Zi = zi (i.e., q is factored over all variables) then the variational technique is often called a
“mean field” approximation.

I Suppose P(X ,Z) has sufficient statistics that are separable in the latent variables:
e.g. the Boltzmann machine

P(X ,Z) =
1
Z

exp
(∑

ij

Wij si sj +
∑

i

bi si

)
with some si ∈ Z and others observed.

I Expectations wrt a fully-factored q distribute over all si ∈ Z

〈log P(X ,Z)〉∏ qi
=
∑

ij

Wij〈si〉qi
〈sj〉qj

+
∑

i

bi〈si〉qi

(where qi for si ∈ X is a delta function on the observed value).
I Thus, we can update each qi in turn given the means (or, in general, mean sufficient

statistics) of the others.
I Each variable sees the mean field imposed by its neighbours, and we update these

fields until they all agree.
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I Yields a message-passing algorithm like forward-backward
I Updates depend only on immediate neighbours in chain
I Chains couple only through joint output
I Multiple passes; messages depend on (approximate) marginals
I Evidence does not appear explicitly in backward message (cf Kalman smoothing)
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I Chains couple only through joint output

I Multiple passes; messages depend on (approximate) marginals
I Evidence does not appear explicitly in backward message (cf Kalman smoothing)
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Structured variational approximation

I q(Z) need not be completely factorized.

I For example, suppose Z can be partitioned into sets Z1 and Z2 such that computing the
expected sufficient statistics under P(Z1|Z2,X ) and P(Z2|Z1,X ) would be tractable.

⇒ Then the factored approximation q(Z) = q(Z1)q(Z2) is tractable.
I In particular, any factorisation of q(Z) into a product of distributions on trees, yields a

tractable approximation.
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Stuctured FHMM
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For the FHMM we can factor the chains:
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This looks like a standard HMM joint, with a modified likelihood term⇒ cycle through multiple
forward-backward passes, updating likelihood terms each time.
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Messages on an arbitrary graph

Consider a DAG:
A B

C

D

E

P(X ,Z) =
∏

k

P(Vk | pa(Vk ))

and let q(Z) =
∏

i qi (Zi ) for disjoint sets {Zi}.

We have that the VE update for qi is given by q∗i (Zi ) ∝ exp 〈log p(Z,X )〉q¬i (Z) where
〈·〉q¬i (Z) denotes averaging with respect to qj (Zj ) for all j 6= i

Then:
log q∗i (Zi ) =

〈∑
k

log P(Vk | pa(Vk ))
〉

q¬i (Z)

+ const

=
∑
j∈Zi

〈log P(Zj | pa(Zj ))〉q¬i (Z) +
∑

j∈ch(Zi )

〈log P(Vj | pa(Vj ))〉q¬i (Z) + const

This defines messages that are passed between nodes in the graph. Each node receives
messages from its Markov boundary: parents, children and parents of children (all
neighbours in the corresponding factor graph).
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Non-factored variational methods

The term variational approximation is used whenever a bound on the likelihood (or on another
estimation cost function) is optimised, but does not necessarily become tight.

Many further variational approximations have been developed, including:
I parametric forms (e.g. Gaussian) for non-linear models

I closed form updates in special cases
I numerical or sampling-based computation of expectations
I ’recognition networks’ or amortisation to estimate variational parameters

I non-free-energy-based bounds (both upper and lower) on the likelihood.

We can also see MAP- or zero-temperature EM and recognition models as parametric forms
of variational inference.

Variational methods can also be used to find an approximate posterior on the parameters.
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Variational Bayes

So far, we have applied Jensen’s bound and factorisations to help with integrals over latent
variables.

We can do the same for integrals over parameters in order to bound the log marginal
likelihood or evidence.

log P(X|M) = log
∫∫

dZ dθ P(X ,Z|θ,M)P(θ|M)

= max
Q

∫∫
dZ dθ Q(Z,θ) log

P(X ,Z,θ|M)

Q(Z,θ)

≥ max
QZ ,Qθ

∫∫
dZ dθ QZ(Z)Qθ(θ) log

P(X ,Z,θ|M)

QZ(Z)Qθ(θ)

The constraint that the distribution Q must factor into the product Qy (Z)Qθ(θ) leads to the
variational Bayesian EM algorithm or just “Variational Bayes”.

Some call this the “Evidence Lower Bound” (ELBO). I’m not fond of that term.
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Variational Bayesian EM . . .

Coordinate maximization of the VB free-energy lower bound

F(QZ ,Qθ) =

∫∫
dZ dθ QZ(Z)Qθ(θ) log

p(X ,Z,θ|M)

QZ(Z)Qθ(θ)

leads to EM-like updates:

Q∗Z(Z) ∝ exp 〈log P(Z,X|θ)〉Qθ(θ) E-like step

Q∗θ(θ) ∝ P(θ) exp 〈log P(Z,X|θ)〉QZ (Z) M-like step

Maximizing F is equivalent to minimizing KL-divergence between the approximate posterior,
Q(θ)Q(Z) and the true posterior, P(θ,Z|X ).

log P(X )−F(QZ ,Qθ) = log P(X )−
∫∫

dZ dθ QZ(Z)Qθ(θ) log
P(X ,Z,θ)

QZ(Z)Qθ(θ)

=

∫∫
dZ dθ QZ(Z)Qθ(θ) log

QZ(Z)Qθ(θ)

P(Z,θ|X )
= KL(Q||P)
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Conjugate-Exponential models

Let’s focus on conjugate-exponential (CE) latent-variable models:

I Condition (1). The joint probability over variables is in the exponential family:

P(Z,X|θ) = f (Z,X ) g(θ) exp
{
φ(θ)TT(Z,X )

}
where φ(θ) is the vector of natural parameters, T are sufficient statistics

I Condition (2). The prior over parameters is conjugate to this joint probability:

P(θ|ν, τ) = h(ν, τ) g(θ)ν exp
{
φ(θ)Tτ

}
where ν and τ are hyperparameters of the prior.

Conjugate priors are computationally convenient and have an intuitive interpretation:
I ν: number of pseudo-observations
I τ : values of pseudo-observations



Conjugate-Exponential examples

In the CE family:

I Gaussian mixtures

I factor analysis, probabilistic PCA

I hidden Markov models and factorial HMMs

I linear dynamical systems and switching models

I discrete-variable belief networks

Other as yet undreamt-of models combinations of Gaussian, Gamma, Poisson, Dirichlet, Wishart,
Multinomial and others.

Not in the CE family:

I Boltzmann machines, MRFs (no simple conjugacy)

I logistic regression (no simple conjugacy)

I sigmoid belief networks (not exponential)

I independent components analysis (not exponential)

Note: one can often approximate such models with a suitable choice from the CE family.



Conjugate-exponential VB

Given an iid data set D = (x1, . . . xn), if the model is CE then:

I Qθ(θ) is also conjugate, i.e.

Qθ(θ) ∝ P(θ) exp
〈∑

i
log P(zi , xi |θ)

〉
QZ

= h(ν, τ )g(θ)νeφ(θ)Tτ g(θ)ne

〈
log f (Z,X )

〉
QZ e

φ(θ)T
〈∑

i T(zi ,xi )
〉

QZ

∝ h(ν̃, τ̃ )g(θ)ν̃eφ(θ)Tτ̃

with ν̃ = ν + n and τ̃ = τ +
∑

i 〈T(zi , xi )〉QZ

⇒ only need to track ν̃, τ̃ .

I QZ(Z) =
∏n

i=1 Qzi (zi ) takes the same form as in the E-step of regular EM

Qzi (zi ) ∝ exp 〈log P(zi , xi |θ)〉Qθ

∝ f (zi , xi )e〈φ(θ)〉TQθ
T(zi ,xi ) = P(zi |xi ,φ(θ))

with natural parameters φ(θ) = 〈φ(θ)〉Qθ

⇒ inference unchanged from regular EM.
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The Variational Bayesian EM algorithm

EM for MAP estimation

Goal: maximize P(θ|X ,m) wrt θ

E Step: compute

QZ(Z)← p(Z|X ,θ)

M Step:

θ ← argmax
θ

∫
dZ QZ(Z) log P(Z,X ,θ)

Variational Bayesian EM

Goal: maximise bound on P(X|m) wrt Qθ

VB-E Step: compute

QZ(Z)← p(Z|X , φ̄)

VB-M Step:

Qθ(θ)← exp
∫

dZ QZ(Z) log P(Z,X ,θ)

Properties:

I Reduces to the EM algorithm if Qθ(θ) = δ(θ − θ∗).
I Fm increases monotonically, and incorporates the model complexity penalty.
I Analytical parameter distributions (but not constrained to be Gaussian).
I VB-E step has same complexity as corresponding E step.
I We can use the junction tree, belief propagation, Kalman filter, etc, algorithms in the

VB-E step of VB-EM, but using expected natural parameters, φ̄.
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VB and model selection

I Variational Bayesian EM yields an approximate posterior Qθ over model parameters.

I It also yields an optimised lower bound on the model evidence

maxFM(QZ ,Qθ) ≤ P(D|M)

I These lower bounds can be compared amongst models to learn the right (structure,
connectivity . . . of the) model

I If a continuous domain of models is specified by a hyperparameter η, then the VB free
energy depends on that parameter:

F(QZ ,Qθ,η) =

∫∫
dZ dθ QZ(Z)Qθ(θ) log

P(X ,Z,θ|η)

QZ(Z)Qθ(θ)
≤ P(X|η)

A hyper-M step maximises the current bound wrt η:

η ← argmax
η

∫∫
dZ dθ QZ(Z)Qθ(θ) log P(X ,Z,θ|η)



VB and model selection

I Variational Bayesian EM yields an approximate posterior Qθ over model parameters.

I It also yields an optimised lower bound on the model evidence

maxFM(QZ ,Qθ) ≤ P(D|M)

I These lower bounds can be compared amongst models to learn the right (structure,
connectivity . . . of the) model

I If a continuous domain of models is specified by a hyperparameter η, then the VB free
energy depends on that parameter:

F(QZ ,Qθ,η) =

∫∫
dZ dθ QZ(Z)Qθ(θ) log

P(X ,Z,θ|η)

QZ(Z)Qθ(θ)
≤ P(X|η)

A hyper-M step maximises the current bound wrt η:

η ← argmax
η

∫∫
dZ dθ QZ(Z)Qθ(θ) log P(X ,Z,θ|η)



VB and model selection

I Variational Bayesian EM yields an approximate posterior Qθ over model parameters.

I It also yields an optimised lower bound on the model evidence

maxFM(QZ ,Qθ) ≤ P(D|M)

I These lower bounds can be compared amongst models to learn the right (structure,
connectivity . . . of the) model

I If a continuous domain of models is specified by a hyperparameter η, then the VB free
energy depends on that parameter:

F(QZ ,Qθ,η) =

∫∫
dZ dθ QZ(Z)Qθ(θ) log

P(X ,Z,θ|η)

QZ(Z)Qθ(θ)
≤ P(X|η)

A hyper-M step maximises the current bound wrt η:

η ← argmax
η

∫∫
dZ dθ QZ(Z)Qθ(θ) log P(X ,Z,θ|η)



VB and model selection

I Variational Bayesian EM yields an approximate posterior Qθ over model parameters.

I It also yields an optimised lower bound on the model evidence

maxFM(QZ ,Qθ) ≤ P(D|M)

I These lower bounds can be compared amongst models to learn the right (structure,
connectivity . . . of the) model

I If a continuous domain of models is specified by a hyperparameter η, then the VB free
energy depends on that parameter:

F(QZ ,Qθ,η) =

∫∫
dZ dθ QZ(Z)Qθ(θ) log

P(X ,Z,θ|η)

QZ(Z)Qθ(θ)
≤ P(X|η)

A hyper-M step maximises the current bound wrt η:

η ← argmax
η

∫∫
dZ dθ QZ(Z)Qθ(θ) log P(X ,Z,θ|η)



ARD for unsupervised learning

Recall that ARD (automatic relevance determination) was a hyperparameter method to select
relevant or useful inputs in regression.

I A similar idea used with variational Bayesian methods can learn a latent dimensionality.

I Consider factor analysis:

x ∼ N (Λz,Ψ) z ∼ N (0, I) with a column-wise prior Λ:i ∼ N
(
0, α−1

i I
)

I The VB free energy is

F(QZ(Z),QΛ(Λ),Ψ,α) =
〈

log P(X ,Z|Λ,Ψ) + log P(Λ|α) + log P(Ψ)
〉

QZQΛ
+ . . .

and so hyperparameter optimisation requires

α← argmax 〈log P(Λ|α)〉QΛ

I Now QΛ is Gaussian, with the same form as in linear regression, but with expected
moments of z appearing in place of the inputs.

I Optimisation wrt the distributions, Ψ and α in turn causes some αi to diverge as in
regression ARD.

I In this case, these parameters select “relevant” latent dimensions, effectively learning
the dimensionality of z.
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Augmented Variational Methods

In our examples so far, the approximate variational distribution has been over the “natural”
latent variables (and parameters) of the generative model.

Sometimes it may be useful to introduce additional latent variables, solely to achieve
computational tractability.

Two examples are GP regression and the GPLVM.



Sparse GP approximations

GP predictions:

y ′|X ,Y , x′ ∼ N
(

Kx′X (KXX + σ2I)−1Y ,Kx′x′ − Kx′X (K−1
XX+σ2 I)KXx′ + σ2

)
Evidence (for learning kernel hyperparameters):

log P(Y |X) = −1
2

log |2π(KXX + σ2I)| − 1
2

Y (KXX + σ2I)−1Y T

Computing either form requires inverting the N × N matrix KXX , in O(N3) time.

One proposal to make this more efficient is to find (or select) a smaller set of possibly
fictitious measurements U at inputs Z such that

P(y ′|Z ,U, x′) ≈ P(y ′|X ,Y , x′) .

What values should U and Z take?
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Variational Sparse GP approximations
Write F for the (smooth) GP function values that underlie Y (so Y ∼ N

(
F , σ2I

)
).

Introduce latent measurements U at inputs Z (and integrate over U).

The likelihood can be written

P(Y |X) =

∫∫
dF dU P(Y , F ,U|X , Z) =

∫∫
dF dU P(Y |F)P(F |U,X , Z)P(U|Z)

Now, both U and F are latent, so we introduce a variational distribution q(F ,U) to form a
free-energy.

F(q(F ,U), θ) =

〈
log

P(Y |F)P(F |U,X , Z)P(U|Z)

q(F ,U)

〉
q(F ,U)

Now, choose the variational form q(F ,U) = P(F |U,X , Z)q(U). That is, fix F |U without
reference to Y – so information about Y will need to be “compressed” into q(U).
Then

F(q(F ,U), θ, Z)

=

〈
log

P(Y |F) P(F |U,X , Z) P(U|Z)

P(F |U,X , Z) q(U)

〉
P(F |U)q(U)

=
〈
〈log P(Y |F)〉P(F |U) + log P(U|Z)− log q(U)

〉
q(U)
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Now P(F |U) is fixed by the generative model (rather than being subject to free optimisation).
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log
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]〉
P(F |U)

= −1
2

log
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∣∣− 1
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(Y − 〈F〉P(F |U))(Y − 〈F〉P(F |U))

T
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2σ2
Tr
[
ΣF |U
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(
Y |KXZ K−1

ZZ U, σ2I
)
− 1

2σ2
Tr
[
KXX − KXZ K−1

ZZ KZX
]

So,
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ZZ U, σ2I
)

+ log P(U|Z)− log q(U)
〉

q(U)

− 1
2σ2

Tr
[
KXX − KXZ K−1

ZZ KZX
]
.
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Tr
[
KXX − KXZ K−1
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]
.

The expectation is the free energy of a PPCA-like model with normal prior U ∼ N (0,KZZ )
and loading matrix KXZ K−1

ZZ . The maximum of this free energy is the log-likelihood (achieved
with q equal to the posterior under the PPCA-like model).
This gives

F(q∗(U), θ, Z) = logN
(
Y |0,KXZ K−1

ZZ KZZ K−1
ZZ KZX + σ2I

)
− 1

2σ2
Tr
[
KXX − KXZ K−1

ZZ KZX
]
.

Note that we have eliminated all terms in K−1
XX .

We can optimise the free energy numerically with respect to Z and θ to adjust the GP prior
and quality of variational approximation.

A similar approach can be used to learn X if they are unobserved (i.e. in the GPLVM).
Assume q(X , F ,U) = q(X)P(F |X ,U)q(U). Then F = 〈log P(Y , F ,U|X) log P(X)〉q(U)q(X)

which simplifies into tractable components in much the same way as above.
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