Probabilistic & Unsupervised Learning

Expectation Propagation

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science
University College London

Term 1, Autumn 2019

Intractabilities and approximations
> Inference — computational intractability

> Inference — analytic intractability

» Learning — intractable partition function

» Posterior estimation and model selection

Not a complete list!

Intractabilities and approximations
> Inference — computational intractability

> Inference — analytic intractability
» Laplace approximation (global)

» Learning — intractable partition function

» Posterior estimation and model selection
» Laplace approximation / BIC

Not a complete list!

Intractabilities and approximations

» Inference — computational intractability
> Gibbs sampling, other MCMC

> Inference — analytic intractability

> Laplace approximation (global)
> (Sequential) Monte-Carlo

» Learning — intractable partition function
» Sampling parameters

» Posterior estimation and model selection
> Laplace approximation / BIC

Monte-Carlo

(Annealed) importance sampling

Reversible jump MCMC

vyvyy

Not a complete list!

Intractabilities and approximations

» Inference — computational intractability
> Gibbs sampling, other MCMC
> Factored variational approx

> Inference — analytic intractability

> Laplace approximation (global)
> (Sequential) Monte-Carlo
» Parametric variational approx (for special cases).

» Learning — intractable partition function
» Sampling parameters

» Posterior estimation and model selection
Laplace approximation / BIC
Monte-Carlo

(Annealed) importance sampling
Reversible jump MCMC

Variational Bayes

v

vvyyvyy

Not a complete list!

Intractabilities and approximations

» Inference — computational intractability
> Gibbs sampling, other MCMC
> Factored variational approx

» Inference — analytic intractability
> Laplace approximation (global)
(Sequential) Monte-Carlo
Parametric variational approx (for special cases).
Message approximations (linearised, sigma-point, Laplace)
Assumed-density methods and Expectation-Propagation

vvyyy

» Learning — intractable partition function
» Sampling parameters

» Posterior estimation and model selection
Laplace approximation / BIC
Monte-Carlo

(Annealed) importance sampling
Reversible jump MCMC

Variational Bayes

v

vvyyvyy

Not a complete list!

Nonlinear state-space model (NLSSM)

® ®

PeRely.
Q&Y ! O\é

Zip = f(zg, up) + Wy

X = g(Zt, Ut) =+ Vi

w;, V¢ usually still Gaussian.

f(zt)

Z;

Nonlinear state-space model (NLSSM)

()
O O 6

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, 2!:

f(zt)

Zip = f(zg, up) + Wy

N
°° Q Xt = g(ze,ur) + Vi
g

w;, V¢ usually still Gaussian.

N of N
Zepr (2 Ww) + | (20— 2) +wy

82{

st
L

1(Zt - 2§_1) + Vi

Z;

\
Noe---

Nonlinear state-space model (NLSSM)

/'\ /'\ AN \B’ Zep1 = f(ze,u) + Wy
5 X; = g(zr,us) + v;

Dt
w;, V¢ usually still Gaussian.

C(@ C[@ C, @ C:

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, Z;
f(zt)

At of At
24~ f(2e,ur) + oz, (2t — 2;) 4w
&’v\/_d Zt 2;
Biug ~——
A
St—1 dg St—1 !
X ~ g(2 ’ut)+76z t (zZ—2)+ !
! g ‘ L2 Z;
5t
Z;

BIUI N ——’

Ct
Run the Kalman filter (smoother) on non-stationary linearised system (A;, B, C, D)

Nonlinear state-space model (NLSSM)

/'\ /'\ AN \B’ Zep1 = f(ze,u) + Wy
5 X; = g(zr,us) + v;

Dt
w;, V¢ usually still Gaussian.

C(@ C[@ C, @ C:

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, Z;
f(zt)

At of At
24~ f(2e,ur) + oz, (2t — 2;) 4w
&’v\/_d Zt 2;
Biug ~——
A
St—1 dg St—1 !
X ~ g(2 ’ut)+76z t (zZ—2)+ !
! i‘ ‘ - Z;
5t
Z;

BIUI N ——’

Ct
Run the Kalman filter (smoother) on non-stationary linearised system (A; B, Ci Dy)

» Adaptively approximates non-Gaussian messages by Gaussians

Nonlinear state-space model (NLSSM)

/'\ /'\ AN \B’ Zep1 = f(ze,u) + Wy
5 X; = g(zr,us) + v;

Dt
w;, V¢ usually still Gaussian.

C(@ Ct @ C, @ C:

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, Z;
f(zt)

at af at
24~ f(2e,ur) + oz, (2t — 2;) 4w
&’v\/_d Zt 2;
Biug ~——
A
at—1 09 st—1 !
X ~ g(2 ’ut)+76z t (zZ—2)+ !
! g ‘ L2 Z;
5t
Z;

B(UI N ——’

Ct
Run the Kalman filter (smoother) on non-stationary linearised system (A; B, Ci Dy)
» Adaptively approximates non-Gaussian messages by Gaussians.
» Local linearisation depends on central point of distribution = approximation degrades

with increased state uncertainty.

Nonlinear state-space model (NLSSM)

/'\ /'\ A \B’ Zep1 = f(ze,u) + Wy
5 X; = g(zr,us) + v;

Dt
w;, V¢ usually still Gaussian.

C(@ Ct @ C, @ C:

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, Z;
f(zt)

At of At
24~ f(2e,ur) + oz, (2t — 2;) 4w
&’v\/_d Zt 2;
Biug ~——
A
St—1 dg St—1 !
X ~ g(2 ’ut)+76z t (zZ—2)+ !
! g ‘ L2 Z;
5t
Z;

B(UI N ——’

Ct
Run the Kalman filter (smoother) on non-stationary linearised system (A; B, Ci Dy)

» Adaptively approximates non-Gaussian messages by Gaussians
» Local linearisation depends on central point of distribution = approximation degrades

with increased state uncertainty. May work acceptably for close-to-linear systems

Nonlinear state-space model (NLSSM)

/'\ /'\ A \B’ Zep1 = f(ze,u) + Wy
5 X; = g(zr,us) + v;

Dt
w;, V¢ usually still Gaussian.

C(@ Ct @ C, @ C:

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, Z;
f(zt)

At of At
24~ f(2e,ur) + oz, (2t — 2;) 4w
&N\,_J Zt 2;
Biug ~——
A
St—1 dg St—1 !
X ~ g(2 7Ut)+762 t (zZ—2)+ !
! g ‘ L2 Z;
5t
Z;

B(UI N ——’

Ct
Run the Kalman filter (smoother) on non-stationary linearised system (A; B, Ci Dy)

» Adaptively approximates non-Gaussian messages by Gaussians
» Local linearisation depends on central point of distribution = approximation degrades

with increased state uncertainty. May work acceptably for close-to-linear systems

Can base EM-like algorithm on EKF/EKS (or alternatives)

Other message approximations
Consider the forward messages on a latent chain:

1
P(z¢[x1.t) = EP(X’|Z') /dZH P(zt|zt-1) P(Zt-1]X1:11)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

N— ——
N(f(ZH)’ Q) N(ﬁt—h V[—1)

Other message approximations
Consider the forward messages on a latent chain:

1
P(z¢[x1.t) = EP(X’|Z') /dZH P(zt|zt-1) P(Zt-1]X1:11)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

N— ——
N(f(ZH)’ Q) N(ﬁt—h VI—1)

» Linearisation at the peak (EKF) is only one approach.

Other message approximations
Consider the forward messages on a latent chain:

1
P(z¢[x1.t) = EP(X’|Z') /dZH P(zt|zt-1) P(Zt-1]X1:11)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

a/_/
N (f(z=1), Q) N (21, Vier)

» Linearisation at the peak (EKF) is only one approach.
> Laplace filter: use mode and curvature of integrand.

Other message approximations
Consider the forward messages on a latent chain:

1
P(Zt|X1;t) = EP(X1|Zt) /dZH P(Zt|th1)P(th1|X1;rf1)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

a/_/
N (f(z=1), Q) N (21, Vier)

» Linearisation at the peak (EKF) is only one approach.

> Laplace filter: use mode and curvature of integrand.
» Sigma-point (“‘unscented”) filter:

Other message approximations
Consider the forward messages on a latent chain:

1
P(Zt|X1;t) = EP(X1|Zt) /dZH P(Zt|th1)P(th1|X1;rf1)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

a/_/
N (f(z=1), Q) N (21, Vier)

» Linearisation at the peak (EKF) is only one approach.
> Laplace filter: use mode and curvature of integrand.
> Sigma-point (“unscented”) filter:
> Evaluate f(2;-1), f(2i-1 = \f/\v) for eigenvalues, eigenvectors Vv = Av.

Other message approximations
Consider the forward messages on a latent chain:

1
P(Zt|X1;t) = EP(X1|Zt) /dZH P(Zt|th1)P(th1|X1;rf1)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

a/_/
N (f(z=1), Q) N (21, Vier)

» Linearisation at the peak (EKF) is only one approach.
> Laplace filter: use mode and curvature of integrand.
» Sigma-point (“‘unscented”) filter:

> Evaluate f(2;-1), f(2i-1 = \f/\v) for eigenvalues, eigenvectors Vv = Av.
> “Fit” Gaussian to these 2K + 1 points.

Other message approximations
Consider the forward messages on a latent chain:

1
P(Zt|X1;t) = EP(X1|Zt) /dZH P(Zt|th1)P(th1|X1;rf1)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

a’_/
N (f(Z[q)., O) ./\/’(ﬁfq, qu)

» Linearisation at the peak (EKF) is only one approach.
> Laplace filter: use mode and curvature of integrand.
» Sigma-point (“‘unscented”) filter:

> Evaluate f(2;-1), f(2i-1 = \f/\v) for eigenvalues, eigenvectors Vv = Av.
> “Fit” Gaussian to these 2K + 1 points.
» Equivalent to numerical evaluation of mean and covariance by Gaussian quadrature.

Other message approximations
Consider the forward messages on a latent chain:

1
P(Zt|X1;t) = EP(X1|Zt) /dZH P(Zt|th1)P(th1|X1;rf1)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

a’_/
N (f(Z[q)., O) ./\/’(ﬁfq, qu)

» Linearisation at the peak (EKF) is only one approach.

> Laplace filter: use mode and curvature of integrand.
» Sigma-point (“‘unscented”) filter:

v

Evaluate f(2i-1), f(2i-1 = \f/\v) for eigenvalues, eigenvectors Vv = Av.

“Fit” Gaussian to these 2K + 1 points.

Equivalent to numerical evaluation of mean and covariance by Gaussian quadrature.
One form of “Assumed Density Filtering” and EP.

vyvyy

Other message approximations
Consider the forward messages on a latent chain:

1
P(Zt|X1;t) = EP(X1|Zt) /dZH P(Zt|th1)P(th1|X1;rf1)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

a’_/
N (f(Z[q)., O) ./\/’(ﬁfq, qu)

v

Linearisation at the peak (EKF) is only one approach.

v

Laplace filter: use mode and curvature of integrand.
Sigma-point (“‘unscented”) filter:

> Evaluate f(2;-1), f(2i-1 = \f/\v) for eigenvalues, eigenvectors Vv = Av.

“Fit” Gaussian to these 2K + 1 points.

Equivalent to numerical evaluation of mean and covariance by Gaussian quadrature.
One form of “Assumed Density Filtering” and EP.

v
vyvyy

v

Parametric variational: argmin KL[A (2,)| [dzes ...]. Requires Gaussian
expectations of log [= may be challenging.

Other message approximations
Consider the forward messages on a latent chain:

1
P(Zt|X1;t) = EP(X1|Zt) /dZH P(Zt|th1)P(th1|X1;rf1)

We want to approximate the messages to retain a tractable form (i.e. Gaussian).

- 1 -
P(zi|x1:4) = = P(X¢|zt) [dzier P(ze|zee1) P(Zir|X1:41)

N—— ———

a’_/
N (f(Z[q)., O) ./\/’(ﬁfq, qu)

» Linearisation at the peak (EKF) is only one approach.

> Laplace filter: use mode and curvature of integrand.
» Sigma-point (“‘unscented”) filter:

> Evaluate f(2;-1), f(2i-1 = \f/\v) for eigenvalues, eigenvectors Vv = Av.

“Fit” Gaussian to these 2K + 1 points.

Equivalent to numerical evaluation of mean and covariance by Gaussian quadrature.
One form of “Assumed Density Filtering” and EP.

vyvyy

» Parametric variational: argmin KL [\ (2, ¥)]| [dzes ...]. Requires Gaussian
expectations of log [= may be challenging.

> The other KL: argmin KL [[dzi ||\ (2, V)] needs only first and second moments of
nonlinear message = EP.

Variational learning

Free energy:

F(3,0) = (log P(X, Z16))y(,x) + HId] = log P(X|6) — KL[a(2)[|P(Z]X,0)] < (6)

Variational learning

Free energy:

F(3,0) = (log P(X, Z16))y(,x) + HId] = log P(X|6) — KL[a(2)[|P(Z]X,0)] < (6)

E-steps:
> Exact EM: g(Z) = argmax F = P(Z|X,6)
q

Variational learning

Free energy:

F(3,0) = (log P(X, Z16))y(,x) + HId] = log P(X|6) — KL[a(2)[|P(Z]X,0)] < (6)

E-steps:
> Exact EM: g(Z) = argmax F = P(Z|X,6)
q

» Saturates bound: converges to local maximum of likelihood.

Variational learning

Free energy:

F(3,0) = (log P(X, Z16))y(,x) + HId] = log P(X|6) — KL[a(2)[|P(Z]X,0)] < (6)

E-steps:
> Exact EM: g(Z) = argmax F = P(Z|X,6)
q

» Saturates bound: converges to local maximum of likelihood.

» (Factored) variational approximation:

q(Z) = argmax F = argmin KL[g:(Z1)q:(22)||P(Z]X,0)]
q1(21)a2(Z2) q1(Z1)a2(Z22)

Variational learning

Free energy:

F(3,0) = (log P(X, Z16))y(,x) + HId] = log P(X|6) — KL[a(2)[|P(Z]X,0)] < (6)

E-steps:
> Exact EM: g(Z) = argmax F = P(Z|X,6)
q

» Saturates bound: converges to local maximum of likelihood.

» (Factored) variational approximation:

q(Z) = argmax F = argmin KL[g:(Z1)q:(22)||P(Z]X,0)]
G1(21)q(22) G1(21)q(22)
> Increases bound: converges, but not necessarily to ML.

Variational learning

Free energy:

F(3,0) = (log P(X, Z16))y(,x) + HId] = log P(X|6) — KL[a(2)[|P(Z]X,0)] < (6)

E-steps:
> Exact EM: g(Z) = argmax F = P(Z|X,6)
q

» Saturates bound: converges to local maximum of likelihood.

» (Factored) variational approximation:
q(Z) = argmax F = argmin KL[g:(Z1)q:(22)||P(Z]X,0)]
G1(21)q(22) G1(21)q(22)
> Increases bound: converges, but not necessarily to ML.

» Other approximations: q(Z) ~ P(Z|X, 6)

Variational learning

Free energy:

F(3,0) = (log P(X, Z16))y(,x) + HId] = log P(X|6) — KL[a(2)[|P(Z]X,0)] < (6)

E-steps:
> Exact EM: g(Z) = argmax F = P(Z|X,6)
q

» Saturates bound: converges to local maximum of likelihood.

» (Factored) variational approximation:

q(Z) = argmax F = argmin KL[g:(Z1)q:(22)||P(Z]X,0)]
G1(21)q(22) G1(21)q(22)
> Increases bound: converges, but not necessarily to ML.

» Other approximations: q(Z) ~ P(Z|X, 6)
» Usually no guarantees, but if learning converges it may be more accurate than the
factored approximation

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

g = argmin D(P <> q)
qeQ

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

g = argmin D(P <> q)
qeQ

Open choices:

» form of the metric D
» nature of the constraint space Q

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

g = argmin D(P <> q)
qeQ

Open choices:

» form of the metric D
» nature of the constraint space Q

» Variational methods: D = KL[q]|P].

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

g = argmin D(P <> q)
qeQ

Open choices:

» form of the metric D
» nature of the constraint space Q

» Variational methods: D = KL[q]|P].
» Choosing Q = {tree-factored distributions} leads to efficient message passing.

Approximating the posterior

Linearisation (or local Laplace, sigma-point and other such approaches) seem ad hoc. A
more principled approach might look for an approximate q that is closest to P in some sense.

g = argmin D(P <> q)
qeQ

Open choices:

» form of the metric D
» nature of the constraint space Q

» Variational methods: D = KL[q]|P].
» Choosing Q = {tree-factored distributions} leads to efficient message passing.

» Can we use other divergences?

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin KL[P(Z|X)HH q,-(Z,-\X)] = argmin — / oz P(2|X)log [] (2|)

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin KL[P(Z|X)HH q,-(Z,-\X)] = argmin — / oz P(2|X)log [] (2|)

= argmin — Z/dZ P(Z]X)log gi(Z|X)
qi j

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin KL[P(Z|X)HH q,-(Z,-\X)] = argmin — / oz P(2|X)log [] (2|)

= argmin — Z/dZ P(Z]X)log gi(Z|X)
qi j

= argmin—/de P(Zj|X)log qi(Zi|X)

qi

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin KL[P(Z|X)HHq,(z,-|X)] = argmin - / oz P(2|X)log [] (2|)

= argmin — Z/dZ P(Z]X)log gi(Z|X)
qi j

= argmin—/de P(Zj|X)log qi(Zi|X)

qi

= P(Z|X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin KL[P(Z|X)HHq,(z,-|X)] = argmin - / oz P(2|X)log [] (2|)

= argmin — Z/dZ P(Z]X)log gi(Z|X)
qi j

= argmin—/de P(Zj|X)log qi(Zi|X)

qi

= P(Z|X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best g for this KL is intractable!

The other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argmin KL[P(Z|X)HHq,(z,-|X)] = argmin - / oz P(2|X)log [] (2|)

J

= argmin — Z/dZ P(Z]X)log gi(Z|X)
qi j

= argmin—/de P(Zj|X)log qi(Zi|X)
qi

= P(Z|X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best g for this KL is intractable!

But it raises the hope that approximate minimisation might still yield useful results.

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = % = %H P(Z|pa(Z)) o« | [1(2)

i=1

where the Z; are not necessarily disjoint. In the language of EP the f; are called sites.

Approximate optimisation
The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = % = %H P(Z|pa(Z)) o« | [1(2)

i=1

where the Z; are not necessarily disjoint. In the language of EP the f; are called sites.
Consider g with the same factorisation, but potentially approximated sites:

N
q9(2) ef Hf,-(Z,v). We would like to minimise (at least in some sense) KL[P||q].

i=1

Approximate optimisation

The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = % = %H P(Z|pa(Z)) o« | [1(2)

i=1

where the Z; are not necessarily disjoint. In the language of EP the f; are called sites.
Consider g with the same factorisation, but potentially approximated sites:

N
q9(2) ef Hf,-(Z,v). We would like to minimise (at least in some sense) KL[P||q].

i=1

Possible optimisations:

Approximate optimisation

The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = % = %H P(Z|pa(Z)) o« | [1(2)

i=1

where the Z; are not necessarily disjoint. In the language of EP the f; are called sites.
Consider g with the same factorisation, but potentially approximated sites:

N
q9(2) ef Hf,-(Z,). We would like to minimise (at least in some sense) KL[P||q].

i=1

Possible optimisations:

N N
min KL [H f,(Z,)HHE(ZJ} (global: intractable)
{f/} i=1 i=1

Approximate optimisation

The posterior distribution in a graphical model is a (normalised) product of factors:

N
P(Z,X) 1
P(Z|X)= —~ == || P(Z|pa(Z fi(Zi
(212) = =y = z [T P@iea@) [T 1(2)
where the Z; are not necessarily disjoint. In the language of EP the f; are called sites.
Consider g with the same factorisation, but potentially approximated sites:

N
q9(2) ef Hf,-(Z,). We would like to minimise (at least in some sense) KL[P||q].

i=1

Possible optimisations:

N N
min KL [H f,(Z,)HHE(ZJ} (global: intractable)

min KL [n(zi) Hf,(z,)} (local, fixed: simple, inaccurate)

Approximate optimisation

The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = % = %H P(Z|pa(Z)) o« | [1(2)

i=1

where the Z; are not necessarily disjoint. In the language of EP the f; are called sites.
Consider g with the same factorisation, but potentially approximated sites:

N
q9(2) ef Hf,-(Z,). We would like to minimise (at least in some sense) KL[P||q].

i=1

Possible optimisations:

N N
min KL [H f,(Z,)HHE(ZJ} (global: intractable)
iy i=1 i=1
min KL [f,(Z;)Hf,(Z;)] (local, fixed: simple, inaccurate)
7

min KL [ﬁ(Z/)Hf/(Zj)Hf/(Z/) H?,-(Z,-)] (local, contextual: iterative, accurate)
f; s s
' J#i J#i

Approximate optimisation

The posterior distribution in a graphical model is a (normalised) product of factors:

P(Z|X) = % = %H P(Z|pa(Z)) o« | [1(2)

i=1

where the Z; are not necessarily disjoint. In the language of EP the f; are called sites.
Consider g with the same factorisation, but potentially approximated sites:

N
q9(2) ef Hf,-(Z,). We would like to minimise (at least in some sense) KL[P||q].

i=1

Possible optimisations:

N N
min KL [H f,(Z,)HHE(ZJ} (global: intractable)
iy i=1 i=1
min KL [f,(Z;)Hf,(Z;)] (local, fixed: simple, inaccurate)
7

min KL [ﬁ(Z/)Hf/(Zj)Hf/(Z/) H?,-(Z,-)] (local, contextual: iterative, accurate) < EP
f; s s
! J#i J#i

Expectation? Propagation?

EP is really two ideas:

» Approximation of factors.

Expectation? Propagation?

EP is really two ideas:

» Approximation of factors.

» Usually by “projection” to exponential families.

» This involves finding expected sufficient statistics, hence expectation.

Expectation? Propagation?

EP is really two ideas:

» Approximation of factors.

» Usually by “projection” to exponential families.

» This involves finding expected sufficient statistics, hence expectation.

» Local divergence minimization in the context of other factors.

Expectation? Propagation?

EP is really two ideas:

» Approximation of factors.

» Usually by “projection” to exponential families.

» This involves finding expected sufficient statistics, hence expectation.

» Local divergence minimization in the context of other factors.

» This leads to a message passing approach, hence propagation.

Local updates

Each EP update involves a KL minimisation:

PY(Z) arg?}in KL[(Z)g-i(2)||1f(Z))g-i1(2)] [qﬁ,-(Z) o HZ‘(Z/)}
ref j#i

Write g-/(2) = q-i(Z1)q-i(Z-i|Z:). Then: (2. ¥ 2\ 2]

min KL[7(Z))q-i(2)[[/(Z1)a-/(2)]

mfax/dZ,-dZﬁ,- (Z))g-i(Z)log f(Zi)g-i(Z)
= mfax/dZ,-dZﬁ,-f,v(Z,r)qﬁ,(Z;)qﬁ,‘(Zﬁ,'\Z;)(Iog f(Z2i)g-i(2:) +log g-i(Z-i| Zi)

— max [d2,1(2)q.(2) (109 /(203 (2) [dZq.(212)

= minKL[fi(Z))q-/(Z)[|1(Z2:)g-/(Z1)]

g-i(Z;) is sometimes called the cavity distribution.

Expectation Propagation (EP)

Input f1(Z1) - fN(ZN)

Initialize f (21) = argmin KL[f; (Z1)||fi(21)], £(Z)) = 1fori > 1, q(Z) o< [[,7(2)
fe{f}
repeat
fori=1...Ndo

q(2)

Delete: g-i(Z 2 =117z
q-i(Z) 7(Z) g i(Z))
Project: ?,-“e“’(Z) « argmin KL[fi(Z/)g-i(Z)||f(Zi)q-i(Zi)]
fe{f

Include: g(2) + " (2)) g-i(2)
end for

until convergence

Message Passing

» The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

a-i(2) = [] M-i(2nz)

jene(i)

Message Passing

» The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

a-i(2)= [] M-i(&nz)
jene(i)

» Once the ith site has been approximated, the messages can be passed on to
neighbouring cliques by marginalising to the shared variables (SSM example follows).
= belief propagation.

Message Passing

» The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

a-i(2)= [] M-i(&nz)
jene(i)

» Once the ith site has been approximated, the messages can be passed on to
neighbouring cliques by marginalising to the shared variables (SSM example follows).
= belief propagation.

> In loopy graphs, we can use loopy belief propagation. In that case
a-i(2) =[] M-i(Enz2)
jene(i)

becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages =- later lecture).

Message Passing

» The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

a-1(2) =[] M-(2n2)
jene(i)
» Once the ith site has been approximated, the messages can be passed on to

neighbouring cliques by marginalising to the shared variables (SSM example follows).
= belief propagation.

> In loopy graphs, we can use loopy belief propagation. In that case
a-i(2) =[] M-i(Enz2)
jene(i)
becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages =- later lecture).

» For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

Message Passing

» The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

a-1(2) =[] M-(2n2)
jene(i)
» Once the ith site has been approximated, the messages can be passed on to

neighbouring cliques by marginalising to the shared variables (SSM example follows).
= belief propagation.

> In loopy graphs, we can use loopy belief propagation. In that case
a-i(2) =[] M-i(Enz2)
jene(i)
becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages =- later lecture).

» For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

» In either case, message updates can be scheduled in any order.

Message Passing

» The cavity distribution (in a tree) can be further broken down into a product of terms
from each neighbouring clique:

a-1(2) =[] M-(2n2)
jene(i)
» Once the ith site has been approximated, the messages can be passed on to

neighbouring cliques by marginalising to the shared variables (SSM example follows).
= belief propagation.

> In loopy graphs, we can use loopy belief propagation. In that case
a-i(2) =[] M-i(Enz2)
jene(i)
becomes an approximation to the true cavity distribution (or we can recast the
approximation directly in terms of messages =- later lecture).

» For some approximations (e.g. Gaussian) may be able to compute true loopy cavity
using approximate sites, even if computing exact message would have been intractable.

» In either case, message updates can be scheduled in any order.
» No guarantee of convergence (but see “power-EP” methods).

EP for a NLSSM

P(zilzi-1) = ¢i(2i;2i-1) e.g. exp(—||zi — hs(zi—1)|*/20°)
P(xilzi) = vi(z) e.g. exp(—||xi — ho(2))[|*/20°)

EP for a NLSSM

0 0 ©® ©

P(zilzi-1) = ¢i(2i,2i-1) e.g. exp(—||zi — hs(zi—1)|*/20°)
P(xi|zi) = vi(z) e.g. exp(—|xi — ho(2:)|[* /20%)

Then fi(z;,zi—1) = ¢i(zi,2i—1)vi(zi). As ¢; and 1; are non-linear, inference is not generally
tractable.

EP for a NLSSM

e OO OO0 -
O 0 ©® O ©

P(zilzi-1) = ¢i(2i,2i-1) e.g. exp(—||zi — hs(zi—1)|*/20°)
P(xi|z)) = vi(zi) e.g. exp(—||xi — ho(zi)|?/20?)

Then fi(z;,zi—1) = ¢i(zi,2i—1)vi(zi). As ¢; and 1; are non-linear, inference is not generally
tractable.
Assume fi(z;,z;—1) is Gaussian. Then,

qﬂ(Z: Zi 1 / Hf 1y Zjr — 1 / Hf Zj, 21’71 / Hfi’(zf’7zi’f1)

21.02j_p I'#i ’ i"<i i">i
z,-+1 ,..z,-

Zj41...2p

aj—1(zj—1) Bi(zi)

with both e and 5 Gaussian.

EP for a NLSSM

Q Q @ 0 0

P(zilzi-1) = ¢i(2i,2i-1) e.g. exp(—||zi — hs(zi—1)|*/20°)
P(xi|z)) = vi(zi) e.g. exp(—||xi — ho(zi)|?/20?)

Then fi(z;,zi—1) = ¢i(zi,2i—1)vi(zi). As ¢; and 1; are non-linear, inference is not generally
tractable.
Assume fi(z;,z;—1) is Gaussian. Then,

q-i(zi,zi-1) = /Hf 1,2 y) /H?f’(zﬂ;zi'a) / Hfi’(zi’7zi’—1)
2y...2j_»p

210z I'#i i"<i P>
z,-+1 ,..z,-

Zj41...2p

aj—1(zi—1) Bi(zi)
with both e and 5 Gaussian.

f(zi,zi1) = arfgr]\}in KL [qb/(Z/, zi_1)i(z))ai—1(Zi—)5/(2/)||f(2i, Zi_1)i—1(Zi—)3/(21)]
€

NLSSM EP message updates

fi(zi,zio1) = argmin KL([f(zi,2i-1)q-i(zi.2i 1) ||f(zi, 2i-1) q-i(2i. 20 1)]
fe

NLSSM EP message updates

fi(zi,zi1) = al;geTfin KL[i(2i,zi—1)0i(zi) i1 (Z/—1)/3i(zi)||f(zi, zi1)oi1(zi-1)Bi(zi)]

Zj

NLSSM EP message updates

fi(zi,zi—1) = argmin KL [¢i(2i,2i—1)i(zi) i+ (Zi—1)5i(zi)”f(zi, zi1)oi1(zi-1)Bi(zi)]

feN

Plzi—1,2)) P(zj—1,2;)

Zj

Bi

)

Qi—1

Zj—1

NLSSM EP message updates

fi(zi,zi—1) = argmin KL [¢i(2i,2i—1)i(zi) i+ (Zi—1)5i(zi)”f(zi, zi1)oi1(zi-1)Bi(zi)]

feN

Plzi—1,2)) P(zj—1,2;)

P(zi-1,2) = argminKL[P(zi—1,2)||P(zi-1,2)]
PEN

z; Zj

Bi

)
Ry

Qi—1

Zi_q Zi—q

NLSSM EP message updates

f(zi,zi_1) = argmin KL [¢i(2i,2i—1)i(zi) i+ (z,»,ﬂﬁ,(z,)”f(z,, zi_1) i1 (2i-1)Bi(21)]

feN
P(zi_1,2;) P(z;—1,2;)
> f D ~ :‘5(2,;1.2,')
P(z: 1 .z)) = P(zi_ 1.z P(zi_+. z; flzizi{) = — =D %)
(zi-1,2i) a’ragerjr:ranL[(zi-1.2)||P(zi-1,2i)] (2zi,2i-1) B
z; z

Bi

)
Ry

Qi—1

Zj—1 -t 7

NLSSM EP message updates

f(zi,zi_1) = argmin KL [¢i(2i,2i—1)i(zi) i+ (z,»,ﬂﬂ,(z,)”f(z,, zi_1) i1 (2i-1)Bi(21)]

feN
Plzi—1,2)) P(zi—1,2)
z :‘5(2,;1.2,')
P — i1.2Z; P(zi_ . fi(zi.zi_ . S A—
(z1-1,2) = argminKL [P(zr-1,2)|| Pleir,2)] - F(z2i0) = Z=E=5 0
~ 1 -
a, / H f Z,/ Z_ 1 /Oz,;1(Z,‘71)ﬂ(Z,',Z/,1) = m /P(Zi—hzi)
2.z < Zj_1 I Iz,71
Bi-1(zi-1) /Hf zi,2y) /ﬂ,(z (21,2 1)—m/(21 1,2i)
Zjtq-- zll >
z; 2
Bi
B
T~ o
/ Zj_1

Moment Matching
Each EP update involves a KL minimisation:

7 (2) argmin KL[H(Z)q(2)]|1(2)q(2)]

fe{fy
Usually, both g-i(Z;) and fare in the same exponential family. Let q(x) = ﬁeT(X)-B_ Then
argmin KL [p(x)||q(x)] = argminKL | p(x) 1 JRICR
q 0 Z(0)

. 1 100
=argmin— [dx p(x)log ———e
) / P(x)log 7gy

= argmin — / dx p(x)T(x) - 6 + log Z(0)
% = f/dx p(x)T(x) + ﬁ%/dx P

= —(T(x), + ﬁ / dx €T (x)

= —(T(x)), + (T(x)),

So minimum is found by matching sufficient stats. This is usually moment matching.

Numerical issues

How do we calculate (T(x)),?

Numerical issues

How do we calculate (T(x)),?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:

» Quadrature methods.

Numerical issues

How do we calculate (T(x)),?
Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
» Quadrature methods.

» Classical Gaussian quadrature
gives an iterative version of Sigma-point methods.

Numerical issues

How do we calculate (T(x)),?
Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
» Quadrature methods.

» Classical Gaussian quadrature
gives an iterative version of Sigma-point methods.
» Positive definite joints, but not guaranteed to give positive definite messages.

Numerical issues

How do we calculate (T(x)),?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
» Quadrature methods.

» Classical Gaussian quadrature
gives an iterative version of Sigma-point methods.
» Positive definite joints, but not guaranteed to give positive definite messages.
» Heuristics include skipping non-positive-definite steps, or damping messages by
interpolation or exponentiating to power < 1.

Numerical issues

How do we calculate (T(x)),?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
» Quadrature methods.

» Classical Gaussian quadrature
gives an iterative version of Sigma-point methods.
» Positive definite joints, but not guaranteed to give positive definite messages.
» Heuristics include skipping non-positive-definite steps, or damping messages by
interpolation or exponentiating to power < 1.
» Other quadrature approaches (e.g. GP quadrature) may be more accurate, and
may allow formal constraint to pos-def cone.

Numerical issues

How do we calculate (T(x)),?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
» Quadrature methods.

» Classical Gaussian quadrature
gives an iterative version of Sigma-point methods.
» Positive definite joints, but not guaranteed to give positive definite messages.
» Heuristics include skipping non-positive-definite steps, or damping messages by
interpolation or exponentiating to power < 1.
» Other quadrature approaches (e.g. GP quadrature) may be more accurate, and
may allow formal constraint to pos-def cone.

» Laplace approximation.

Numerical issues

How do we calculate (T(x)),?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
» Quadrature methods.

» Classical Gaussian quadrature
gives an iterative version of Sigma-point methods.
» Positive definite joints, but not guaranteed to give positive definite messages.
» Heuristics include skipping non-positive-definite steps, or damping messages by
interpolation or exponentiating to power < 1.
» Other quadrature approaches (e.g. GP quadrature) may be more accurate, and
may allow formal constraint to pos-def cone.

» Laplace approximation.

» Equivalent to Laplace propagation.

Numerical issues

How do we calculate (T(x)),?

Often analytically tractable, but even if not requires a (relatively) low-dimensional integral:
» Quadrature methods.

» Classical Gaussian quadrature
gives an iterative version of Sigma-point methods.
» Positive definite joints, but not guaranteed to give positive definite messages.
» Heuristics include skipping non-positive-definite steps, or damping messages by
interpolation or exponentiating to power < 1.
» Other quadrature approaches (e.g. GP quadrature) may be more accurate, and
may allow formal constraint to pos-def cone.

» Laplace approximation.

» Equivalent to Laplace propagation.
» As long as messages remain positive definite will converge to global Laplace
approximation.

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e.g. for classification).

©0®-o

Recall:
» A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{91 . ..gn} drawn from a (usually uncountable) potential set indexed by “inputs” x;.

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e g. for classification).

Recall:
» A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{91 . ..gn} drawn from a (usually uncountable) potential set indexed by “inputs” x;.
» The Gaussian parameters depend on the inputs: (1 = [(X))], T = [K(Xi, X;)])-

EP for Gaussian process classification
EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e g. for classification).

Recall:
» A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{91 . ..gn} drawn from a (usually uncountable) potential set indexed by “inputs” x;.
» The Gaussian parameters depend on the inputs: (1 = [(X))], T = [K(Xi, X;)])-
» |f we think of the gs as function values, a GP provides a prior over functions.

EP for Gaussian process classification

EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e g. for classification).

® ®» ® ®

» A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{91 . ..gn} drawn from a (usually uncountable) potential set indexed by “inputs” x;.

» The Gaussian parameters depend on the inputs: (1 = [(X))], T = [K(Xi, X;)])-

» |f we think of the gs as function values, a GP provides a prior over functions.

» In a GP regression model, noisy observations y; are conditionally independent given g;.

Recall:

EP for Gaussian process classification

EP provides a succesful framework for Gaussian-process modelling of non-Gaussian
observations (e g. for classification).

® ®» ® ®

» A GP defines a multivariate Gaussian distribution on any finite subset of random vars
{91 . ..gn} drawn from a (usually uncountable) potential set indexed by “inputs” x;.

The Gaussian parameters depend on the inputs: (u = [u(x;)], X = [K(xi, X;)]).

If we think of the gs as function values, a GP provides a prior over functions.

In a GP regression model, noisy observations y; are conditionally independent given g;.
No parameters to learn (though often hyperparameters); instead, we make predictions
on test data directly: [assuming p = 0, and matrix X incorporates diagonal noise]

P(y'|X . D) =N (S xExx2 Twxr — Tar xTx xTxx’)

vV vy vYyy

GP EP updates

® ®» ® ®

» We can write the GP joint on g; and y; as a factor graph:

P(Gi---Gn Y- yn) =N (a1 --.a0l0,K) [N (vilgiof)

GP EP updates

» We can write the GP joint on g; and y; as a factor graph:
P(Gi---Gn Y- yn) =N (a1 ... a0l0,K) [N (vilgiof)
h(G) fi(gi)

GP EP updates

(o) (&) ()
o o o
» We can write the GP joint on g; and y; as a factor graph:
P(gi---gn 1, ¥n) =N (91 --.9nl0, K) HN(yf|gi70'12)

h(G) fi(gi)
» The same factorisation applies to non-Gaussian P(yi|gi) (e.g9. P(yi=1) = 1/(1 + e 9%)).

GP EP updates

(o) (&) ()
o o o
» We can write the GP joint on g; and y; as a factor graph:
P(gi---gn 1, ¥n) =N (91 --.9nl0, K) HN(yf|gi70'12)

h(G) fi(gi)
» The same factorisation applies to non-Gaussian P(yi|gi) (e.g9. P(yi=1) = 1/(1 + e 9%)).

» EP: approximate non-Gaussian f.(g;) by Gaussian f(g;) = N/ <ﬂ,, @,2)

GP EP updates

YU Y
W » ®)

» We can write the GP joint on g; and y; as a factor graph:
P(gi---Gn Yis---¥Yn) =N (gi...9n|0,K) HJ\/'(y,-|g,',a,2)
v(9) BT
The same factorisation applies to non-Gaussian P(yi|gi) (e.g. P(yi=1) = 1/(1 + e~ %)).

v

» EP: approximate non-Gaussian f.(g;) by Gaussian f(g;) = N/ <ﬂ,, 43,2)

v

g-i(gi) can be constructed by the usual GP marginalisation. If ¥ = K -+ diag [q/?? . [;ﬁ]

g-i(g)) =N (Z;‘,ﬁfz::ﬁ,ﬁﬁh Kii — Zimi):71 Zﬁi,i)

—iy i

GP EP updates

(&) / R0

78N\ N#
» ®» ®)

» We can write the GP joint on g; and y; as a factor graph:
P(gi---Gn Yis---¥Yn) =N (gi...9n|0,K) HJ\/'(y,-|g,',a,2)
v(9) BT
The same factorisation applies to non-Gaussian P(yi|gi) (e.g. P(yi=1) = 1/(1 + e~ %)).

v

» EP: approximate non-Gaussian f.(g;) by Gaussian f(g;) = N/ <ﬂ,, @,2)

v

g-i(gi) can be constructed by the usual GP marginalisation. If ¥ = K -+ diag [q/?? . [;ﬁ]

g-i(g)) =N (Z/,ﬁfzz,‘tﬁ/ﬁﬁh Kii — XX i)

—iymi

\4

The EP updates thus require calculating Gaussian expectations of f,-(g)g{1’2}:

() =N ([ara-(0ia)a. [wa-(@ita)d - @) /a-(a)

EP GP prediction

» Once appoximate site potentials have stabilised, they can be used to make predictions.

EP GP prediction

» Once appoximate site potentials have stabilised, they can be used to make predictions.

» Introducing a test point changes K, but does not affect the marginal P(gs . . . g») (by
consistency of the GP).

EP GP prediction

» Once appoximate site potentials have stabilised, they can be used to make predictions.

» Introducing a test point changes K, but does not affect the marginal P(gs . . . g») (by
consistency of the GP).

» The unobserved output factor provides no information about g’ (= constant factor on g’)

EP GP prediction

v

Once appoximate site potentials have stabilised, they can be used to make predictions.

v

Introducing a test point changes K, but does not affect the marginal P(g1 . . . gn) (by
consistency of the GP).

The unobserved output factor provides no information about g’ (= constant factor on g')
Thus no change is needed to the approximating potentials 7.

v

v

EP GP prediction

» Once appoximate site potentials have stabilised, they can be used to make predictions.

» Introducing a test point changes K, but does not affect the marginal P(gs . . . g») (by
consistency of the GP).

» The unobserved output factor provides no information about g’ (= constant factor on g’)
» Thus no change is needed to the approximating potentials .
» Predictions are obtained by marginalising the approximation: [let U = diag[/ . . . 7]

PWY/IX, D) = [dg Py 19 W (0 | KoK+ 9) '

Ky — Koo x(Kxx +0) " KX,X/)

Normalisers

» As long as our approximating class is a tractable exponential family, normalisers can be
computed as needed.

Normalisers

» As long as our approximating class is a tractable exponential family, normalisers can be
computed as needed.

» Consider an approximating class written
?i(Zi) x (&) 0i—2(6)

i.e., we use a single sufficient statistic vector on all latents, setting entries in 6, to 0 for
suff stat functions that take cliques other than Z;.

Normalisers

» As long as our approximating class is a tractable exponential family, normalisers can be
computed as needed.

» Consider an approximating class written
?i(Zi) x (&) 0i—2(6)

i.e., we use a single sufficient statistic vector on all latents, setting entries in 6, to 0 for
suff stat functions that take cliques other than Z;.

» Then

q(Z) x Hfl o @ (B)220i=32 ()

and so we can simply renormalise at the end as usual:

q(2) = e BV 0—o(320)

Normalisers

» As long as our approximating class is a tractable exponential family, normalisers can be
computed as needed.

» Consider an approximating class written
?i(Zi) x (&) 0i—2(6)

i.e., we use a single sufficient statistic vector on all latents, setting entries in 6, to 0 for
suff stat functions that take cliques other than Z;.

» Then
q(Z) x Hfl o @ (B)220i=32 ()
i
and so we can simply renormalise at the end as usual:
q(2) = eT(B)220i=0(320)

» However, to compute an approximation to the likelihood [, f,(Z;) we need to keep track
of the site integrals.

Computing likelihoods — keeping track of normalisers

» Define unnormalised ExpFam approximating sites 7, = C,e"%)i.

Write 8 = > 0, for the natural parameters of g(Z) and 0-; = >
parameters of g-;(Z).

i 0; for the natural

Let ®(8) = log [") ? be the (tractable) ExpFam log normaliser.
» Now, at each EP step minimise the “unnormalised KL":

KL[pllq] = / ax p(x) Iog% + / dx (q(x) — p(x))

This matches the zeroth moment of fi(Z;)g-i(Z) as well as the expected sufficient
statistics as before. That is:

/éieT(Z)H,‘HéjeT(z).el _ /ff(Z/)Hé/eT(z)'g’ o B = gPo-)—00)
=i i

it

where ®; is the log-normaliser of the “tilted” ExpFam P;(Z) o f(Z;)e"®).
» The likelihood approximation is then:

IOQ/Hfi(Z/) ~ IOQ/HE(ZI.) = d(0) + Z|09 éi def 7

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

» Approximate Bayesian inference (analagous to VB)

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

» Approximate Bayesian inference (analagous to VB)

» may be difficult to construct a coherent normalisable exponential family
approximation on both latents and parameters.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

» Approximate Bayesian inference (analagous to VB)
» may be difficult to construct a coherent normalisable exponential family
approximation on both latents and parameters.

> Approximate EM — maximize (log P(X, Z)) . (z)-

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

» Approximate Bayesian inference (analagous to VB)

» may be difficult to construct a coherent normalisable exponential family
approximation on both latents and parameters.
> Approximate EM — maximize (log P(X, Z)) . (z)-
» Practical, but no coherent cost function (unlike variational inference), so no
guarantee of convergence even if EP itself converges.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

» Approximate Bayesian inference (analagous to VB)

» may be difficult to construct a coherent normalisable exponential family
approximation on both latents and parameters.
> Approximate EM — maximize (log P(X, Z)) . (z)-
» Practical, but no coherent cost function (unlike variational inference), so no
guarantee of convergence even if EP itself converges.

» Direct maximisation of EP log-likelihood estimate.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

» Approximate Bayesian inference (analagous to VB)
» may be difficult to construct a coherent normalisable exponential family
approximation on both latents and parameters.

> Approximate EM — maximize (log P(X, Z)) . (z)-

» Practical, but no coherent cost function (unlike variational inference), so no
guarantee of convergence even if EP itself converges.
» Direct maximisation of EP log-likelihood estimate.
» Consistent, although convergence guarantees still difficult.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

» Approximate Bayesian inference (analagous to VB)

» may be difficult to construct a coherent normalisable exponential family
approximation on both latents and parameters.
> Approximate EM — maximize (log P(X, Z)) . (z)-
» Practical, but no coherent cost function (unlike variational inference), so no
guarantee of convergence even if EP itself converges.

» Direct maximisation of EP log-likelihood estimate.

» Consistent, although convergence guarantees still difficult.
» Seems challenging as we need to differentiate through (iteration-based)
dependence of approximate g(Z) and C;s.

Learning

EP yields approximate inferential posteriors. To learn (hyper)parameters we can use:

» Approximate Bayesian inference (analagous to VB)

» may be difficult to construct a coherent normalisable exponential family
approximation on both latents and parameters.
> Approximate EM — maximize (log P(X, Z)) . (z)-
» Practical, but no coherent cost function (unlike variational inference), so no
guarantee of convergence even if EP itself converges.

» Direct maximisation of EP log-likelihood estimate.

» Consistent, although convergence guarantees still difficult.

» Seems challenging as we need to differentiate through (iteration-based)
dependence of approximate g(Z) and Css.

» However, proves to be simpler than it sounds.

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have
N
Vol =V, ®(60) + > Vylog C

i=1

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have
N N
Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC
i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
Hn= <T(Z)>q(z)-

EP log-likelihood optimisation for learning

Let true potentials f; depend on model (hyper)parameters 7.

We have
N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1

using the standard ExpFam moment-generating result with mean parameters

= <T(Z)>q(2)'

Now, zeroth-moment matching implies that at EP convergence:

log Ci = ®(0-,) — (0)

EP log-likelihood optimisation for learning

Let true potentials f; depend on model (hyper)parameters 7.

We have
N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1

using the standard ExpFam moment-generating result with mean parameters

= <T(Z)>q(2)'

Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0

EP log-likelihood optimisation for learning

Let true potentials f; depend on model (hyper)parameters 7.
We have

N N
Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>Q(Z)'
Now, zeroth-moment matching implies that at EP convergence:
log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0

but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

EP log-likelihood optimisation for learning

Let true potentials f; depend on model (hyper)parameters 7.
We have

N N
Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:
log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0
but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

Vo ®i(0-7) = 8o, Di(0-) - V,0-; + e~ *0) /vnf,v(z,)eT(Z"Gﬁf

EP log-likelihood optimisation for learning

Let true potentials f; depend on model (hyper)parameters 7.
We have

N N
Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0

but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

Vo ®i(0-7) = 8o, Di(0-) - V,0-; + e~ *0) /vnf,v(z,)eT(Z"Gﬁf

— (T2 - Vb + [Tlogi(2)i(2)e" =)

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have

N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0

but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

Vo ®i(0-7) = 8o, Di(0-) - V,0-; + e~ *0) /vnf,v(z,)eT(Z"Gﬁf
— (T2 - Vb + [Tlogi(2)i(2)e" =)

=u- Vneﬁ,' + <Vn |Og f[(Z/)>/P\/

by EP moment matching at convergence!

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have

N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1

using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0
but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

Vo ®i(0-7) = 8o, Di(0-) - V,0-; + e~ *0) /vnf,v(z,)eT(Z"Gﬁf

— (T2 - Vb + [Tlogi(2)i(2)e" =)

= V- +(Vylog ff(Zf»Tv,.
by EP moment matching at convergence! So putting it all together:

N
V,,ZZ;#V,,O-!- Zvnlog@

i=1

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have

N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0

but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

V,®i(6-) = 8o ,/(0-) - V0, + & =) /anr(Zf)eT(Z)'G”
= (T(2))5, - Vi + / V, log f(2,)fi(2;)e 200
=u- Vneﬁ,' + <Vn |Og f[(Z/)>/P\/

by EP moment matching at convergence! So putting it all together:

N
Vol = - V00 + 3 (Vo®i(6-) — - 7,6)

i=1

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have

N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0

but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

V,®i(6-) = 8o ,/(0-) - V0, + & =) /anr(Zf)eT(Z)'G”
= (T(2))5, - Vi + / V, log f(2,)fi(2;)e 200
=u- Vneﬁ,' + <Vn |Og f[(Z/)>/P\/

by EP moment matching at convergence! So putting it all together:

N
Vol =p-V,0+ Y (,L N0 — - V0 + (V, log f,-(Z,-)),;/_)

i=1

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have

N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0

but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

V,®i(6-) = 8o ,/(0-) - V0, + & =) /anr(Zf)eT(Z)'G”
= (T(2))5, - Vi + / V, log f(2,)fi(2;)e 200
=u- Vneﬁ,' + <Vn |Og f[(Z/)>/P\/

by EP moment matching at convergence! So putting it all together:

Vol = 1 Vo (04 (6~ 0)) + > (Vylogi(2))

i=1 i=1

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have

N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0
but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

Vo ®i(0-7) = 8o, Di(0-) - V,0-; + e~ *0) /vnf,v(z,)eT(Z"Gﬁf

— (T2 - Vb + [Tlogi(2)i(2)e" =)

= V- +(Vylog ff(Zf»Tv,.
by EP moment matching at convergence! So putting it all together:

N

Vol =1 Vo (304 32(0--0)) + 3 (Valogh(2)5

i=1 i=1

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have

N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC

i=1 i=1

using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>q(2)'
Now, zeroth-moment matching implies that at EP convergence:

log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0
but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

Vo ®i(0-7) = 8o, Di(0-) - V,0-; + e~ *0) /vnf,v(z,)eT(Z"Gﬁf

— (T2 - Vb + [Tlogi(2)i(2)e" =)

=p-Vy0-i+(Vylog ff(Zf»Tv,.
by EP moment matching at convergence! So putting it all together:
N N

Vol =p-Vyy (0-0)+ > (Vylogfi(Z))s

i=1 i=1

EP log-likelihood optimisation for learning
Let true potentials f; depend on model (hyper)parameters 7.
We have

N N

Vol =V ®(0) + Y VylogCi=pu-Vy0+> V,logC
=1 i=1
using the standard ExpFam moment-generating result with mean parameters
n= <T(Z)>Q(Z)

Now, zeroth-moment matching implies that at EP convergence:
log C; = ®(6-,) — ®(0) = V,log C; = V,,0,(0-)) — pu- V,,0

but ®;(6-,) = log [£(Z;)e"®) %~ depends on 7 in two ways: directly through f: and
indirectly through the converged 6-.;.

Vo ®i(0-7) = 8o, Di(0-) - V,0-; + e~ *0) /Vnﬂ(Z;)eT(Z) o

—(T(2)); - ¥ eﬁ,+/v log fi(Z)(2;)e"®) 0~ i(6-)

=u- Vneﬁ,' + <Vn |Og f;(f))E/,

by EP moment matching at convergence! So putting it all together:

N
Z Vg log fi(Z)) Ap and the gradient can be computed if EP converges.

Alpha divergences and Power EP

» Alpha divergences D.[pl|q] =

a(d = a) / ax ap(x) + (1 — a)a(x) — p(x)*q(x)" ™

Alpha divergences and Power EP

» Alpha divergences D.[p||q] = /dx ap(x) + (1 — a)q(x) — p(x)*q(x)' ™

1
a(l —a)

D_s[plla] = %/dxw

i _ - im P)/(x))* _ p(x)
o[lmo D.[pllq] = KL[q||p] Note: I|m0 5 = log a0

a—r

D, plldl =2 [ax (p(x)} - a})*

lim Da[pllq] = KL[p||q]

2

D2[pllq] = %/dx%

Alpha divergences and Power EP

» Alpha divergences D.[pl|q] =

o = a) / ax ap(x) + (1 — a)a(x) — p(x)*q(x)" ™

DqMﬂz%/wgﬂﬁgﬁl

lim Dafpllq] = KL{qlp] Note: fim (PLI/ACN" _ 1oq %

ol
Q
~
x
N>
ol
~
™

%MM:Z/wmm

Jim Dalplla] = KL[pllq]
wwngfmwwiﬂﬁi

» Local (EP) minimisation gives fixed-point updates that blend messages (to power «) with
previous site approximations.

7 = argmin KL [£(2)°7(2)' ~*0-4(2)[|(2)9-,(2)]
fe{f}

Alpha divergences and Power EP

» Alpha divergences D.[p||q] = ﬁ / dx ap(x) + (1 — a)q(x) — p(x)*q(x)'~*

D_s[plla] = %/dxw

. _ i P)/a(x))* L p(x)
lim Da[pllq] = KL[qll] Note: lim 5 = log a0

ol
Q
~
x
N>
ol
~
™

D, plll =2 [ax (p(x)

lim Da[pllq] = KL[p||q]

D2[pllq] = %/dx%

» Local (EP) minimisation gives fixed-point updates that blend messages (to power «) with
previous site approximations.

i = argminKL[£(2)*%(2)' " q-1(2)||((Z1)q-1(2)]
fe{f}

» Small changes (for a < 1) lead to more stable updates, and more reliable convergence.

	Probabilistic & Unsupervised Learning[6ex] Expectation Propagation
	Intractabilities and approximations
	Nonlinear state-space model (NLSSM)
	Other message approximations
	Variational learning
	Approximating the posterior
	The other KL
	Approximate optimisation
	Expectation? Propagation?
	Local updates
	Expectation Propagation (EP)
	Message Passing
	EP for a NLSSM
	NLSSM EP message updates
	Moment Matching
	Numerical issues
	EP for Gaussian process classification
	GP EP updates
	EP GP prediction
	Normalisers
	Computing likelihoods – keeping track of normalisers
	Learning
	EP log-likelihood optimisation for learning
	Alpha divergences and Power EP

