
Assignment 1

Unsupervised & Probabilistic Learning

Maneesh Sahani & Peter Orbanz

1. [28 marks] Statistics and Distributions. In the coming weeks we will be making extensive
use of the following distributions, all of which belong to the exponential family. For each of these
distributions, find:

(a) The standard exponential form, identifying the natural parameters in terms of the conven-
tional parameters given in the table (i.e. the function φ(θ)), and the sufficient statistic (i.e.
T(x)).

(b) The expected value of the sufficient statistics in terms of the natural or conventional pa-
rameters (i.e. 〈T(x)〉p(x|θ)). These expectations are often called the “mean” or “moment”
parameters of the distribution. [Note: show your derivation of the expectations; don’t just
look them up.]

The distributions to consider are:

Name Domain Symbol Density or Probability fn

Multivariate Normal RD x ∼ N (µ,Σ) |2πΣ|−1/2 e−
1
2

(x−µ)TΣ−1(x−µ)

Binomial Z0−N x ∼ Binom(p)

(
N

x

)
px(1− p)N−x

Multinomial [Z0−N ]D x ∼ Multinom(p)
N !

x1! x2! . . . xD!

D∏
d=1

pxdd

Poisson Z0+ x ∼ Poisson(µ) µxe−µ/x!

Beta [0, 1] x ∼ Beta(α, β)
1

B(α, β)
xα−1(1− x)β−1

Gamma R+ x ∼ Gamma(α, β)
βα

Γ(α)
xα−1e−βx

Dirichlet [0, 1]D x ∼ Dirichlet(α)
Γ
(∑D

d=1 αd
)∏D

d=1 Γ(αd)

D∏
d=1

xαd−1
d

[4 marks each]

2. [7 marks] ML in the exponential family.

Express the maximum-likelihood value of the mean parameters (as defined in the question above)
of the general exponential family distribution

p(x|θ) = g(θ)f(x)eθ
TT(x)

as a function of a data set of iid observations D = {x1, x2, . . . , xN}.

3. [25 marks] Models for binary vectors. Consider a data set of binary (black and white)
images. Each image is arranged into a vector of pixels by concatenating the columns of pixels
in the image. The data set has N images {x(1), . . . , x(N)} and each image has D pixels, where
D is (number of rows × number of columns) in the image. For example, image x(n) is a vector

(x
(n)
1 , . . . , x

(n)
D ) where x

(n)
d ∈ {0, 1} for all n ∈ {1, . . . , N} and d ∈ {1, . . . , D}.



(a) Explain why a multivariate Gaussian would not be an appropriate model for this data set
of images. [5 marks]

Assume that the images were modelled as independently and identically distributed samples from
a D-dimensional multivariate Bernoulli distribution with parameter vector p = (p1, . . . , pD),
which has the form

P (x|p) =

D∏
d=1

pxdd (1− pd)(1−xd)

where both x and p are D-dimensional vectors

(b) What is the equation for the maximum likelihood (ML) estimate of p? Note that you can
solve for p directly. [5 marks]

(c) Assuming independent Beta priors on the parameters pd

P (pd) =
1

B(α, β)
pα−1
d (1− pd)β−1

and P (p) =
∏
d P (pd) What is the maximum a posteriori (MAP) estimate of p? Hint:

maximise the log posterior with respect to p. [5 marks]

Download the data set binarydigits.txt from the course website, which contains N = 100
images with D = 64 pixels each, in an N × D matrix. These pixels can be displayed as 8 × 8
images by rearranging them. View them in Matlab by running bindigit.m or in Python by
running bindigit.py.

(d) Write code to learn the ML parameters of a multivariate Bernoulli from this data set and
display these parameters as an 8 × 8 image. Include a listing of your code within your
submission, and a visualisation of the learned parameter vector as an image. (You may use
Matlab, Octave or Python) [5 marks]

(e) Modify your code to learn MAP parameters with α = β = 3. Show the new learned
parameter vector for this data set as an image. Explain why this might be better or worse
than the ML estimate. [5 marks]

4. [15 marks] Model selection. In the binary data model above, find the expressions needed
to calculate the (relative) probability of the three different models:

(a) all D components are generated from a Bernoulli distribution with pd = 0.5

(b) all D components are generated from Bernoulli distributions with unknown, but identical,
pd

(c) each component is Bernoulli distributed with separate, unknown pd

Assume that all three models are equally likely a priori, and take the prior distributions for any
unknown probablities to be uniform. Calculate the posterior probabilities of each of the three
models having generated the data in binarydigits.txt.

5. [5 marks] Basic spectral properties. Let A be a symmetric n×n-matrix, with eigenvalues
λ1, . . . , λn.

(a) Show that the matrix B = A+cI, where I is the identity matrix and c ∈ R, has eigenvalues
λ1 + c, . . . , λn + c. [3 marks]

(b) Suppose v and w are eigenvectors of A, both with the same eigenvalue λ. Show that any
linear combination of v and w is again an eigenvector of A. What is its eigenvalue? [2
marks]

http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/binarydigits.txt
http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/bindigit.m
http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/bindigit.py


6. [15 marks] Optimization.

(a) Find the local (!) extrema of the function f(x, y) := x + 2y subject to the constraint
y2 + xy = 1. For illustration, here are plots of the function f (left) and the set of points
satisfying the constraints (right) on the square [−3, 3]2:

Please derive your solution using a Lagrange multiplier, and denote this multiplier by λ.
We are asking for the points at which the local extrema occur, not for the function values
at these points. [9 marks]

(b) Suppose we have a numerical routine to evaluate the exponential function exp(x). How can
we compute the function ln(a), for a given a ∈ R+, using Newton’s method?

i. Derive a function f(x, a) to which Newton’s method can be applied to find x such that
x = ln(a).

ii. Specify the update equation xn+1 = . . . in Newton’s algorithm for this problem.

[6 marks]

BONUS QUESTIONS: you must attempt the questions above before answering those below.

7. [Bonus: 20 marks] Eigenvalues as solutions of an optimization problem. Let A
be a symmetric n× n-matrix, and define

qA(x) := x
T
Ax and RA(x) :=

x
T
Ax

xTx
=
qA(x)

‖x‖2
for x ∈ Rn .

We have already encountered the quadratic form qA in class. The purpose of this problem is to
verify the following fact:
If A is a symmetric n× n-matrix, the optimization problem

x∗ := argmax
x∈Rn

RA(x)

has a solution, RA(x∗) is the largest eigenvalue of A, and x∗ is a corresponding eigenvector.

This result is very useful in machine learning, where we are often interested in the largest
eigenvalue specifically—it allows us to compute the largest eigenvalue without computing the
entire spectrum, and it replaces an algebraic characterization (the eigenvalue equation) by an
optimization problem. We will assume as known that the function qA is continuous.

(a) Use the extreme value theorem of calculus (recall: a continous function on a compact do-
main attains its maximum and minimum) to show that supx∈Rn RA(x) is attained.
Hint: Since Rn is not compact, transform the supremum over Rn into an equivalent supre-
mum over the unit sphere S = {x ∈ Rn| ‖x‖ = 1}. The set S is compact (which you can
assume as known). [6 marks]



(b) Let λ1 ≥ . . . ≥ λn be the eigenvalues of A enumerated by decreasing size, and ξ1, . . . , ξn
corresponding eigenvectors that form an ONB. Recall from class that we can represent any
vector x ∈ Rn as

x =
n∑
i=1

(ξ
T

i x)ξi .

Show that RA(x) ≤ λ1. [9 marks]

Since clearly RA(ξ1) = λ1, we have in fact shown the existence of the maximum twice, using
two different arguments! In summary, we now know the maximum exists, and that ξ1 attains
it. What we still have to show is that any vector in S that is not an eigenvector for λ1 does not
maximize RA.

(c) Recall that there may be several linearly independent eigenvectors that all have eigenvalue
λ1. Let these be ξ1, . . . , ξk, for some k ≤ n. Show that, if x ∈ Rn is not contained in
span{ξ1, . . . , ξk}, then RA(x) < λ1. [5 marks]


