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1. [25 marks] Conditional independencies and expressiveness of graphical models.
Consider the following graphical models:
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(a) For graphs 2, 4, 6 and 8, write down all the conditional independence relationships that
hold for variable C of the form C⊥⊥X|V, where X and V are sets of other variables. [15
marks]

(b) Two graphs are equivalent if they express all the same marginal and conditional inde-
pendence relationships between their variables. A graph G is subsumed by graph H if
all conditional independence relationships in H are exhibited in G. Divide the above 8
graphs into the smallest number of non-overlapping sets of equivalent graphs, and state
which of these sets of equivalent graphs are subsumed by one of other sets. [10 marks]



2. [40 marks] Constructing directed graphs and junction trees. You are the doctor
on the Starship Enterprise and you are attempting to use Bayesian methods to help your
diagnosis abilities. You would like to represent your knowledge about the following seven
binary random variables describing the state of your patients on any given visit

M = has the disease microsoftus

L = has the disease linuxitis

A = has the disease applosis

V = is a vulcan (V=0 means "is a human")

H = has high temperature

P = likes pizza

B = has blue spots on face

You would like to build a directed graphical model which captures the following background
knowledge:

Microsoftus is a rare disease.

Linuxitis and applosis are very rare diseases.

There are about four times as many humans as vulcans on the ship.

Vulcans have higher probability of getting microsoftus than humans.

Most vulcans like pizza, some humans like pizza.

Microsoftus usually causes high temperature and blue spots on the face.

Linuxitis always causes high temperature.

Applosis sometimes causes blue spots on the face.

A recent study suggests that excess pizza consumption increases risk of linuxitis.

(a) Draw a directed graphical model representing the relationships between the above vari-
ables. Your graph should retain as much independence between the variables as possible,
given the stated background knowledge. [5 marks]

(b) For each variable in your graph, define a conditional probability table for that variable
given the settings of its parents. Use the above background knowledge and convert those
statements into probability tables which you think reasonably represent them. You will
have to translate terms like “rare”, “most”, and “usually” into numerical values. [10
marks]

(c) Construct an efficient junction tree (i.e., with minimally sized cliques) for your directed
graph, drawing out the intermediate factor graph, undirected graph and chordal graph.
Use the minimum deficiency search variable elimination order, and show the clique fac-
tors on the resulting junction tree in terms of the conditional probabilities. [10 marks]

You are told that a patient has blue spots on the face and a high temperature. As you rush to
the ward you wonder whether you are about to encounter a career-defining case of applosis.

(d) Explain how to use Shafer-Shenoy propagation on the junction tree to compute the
probability

P(patient has Applosis | patient has blue spots on face and high temperature).

Write out the expression to compute each of the messages that you need. [5 marks]

(e) Do you think the probability is higher or lower than each of



P(patient has Applosis)

and

P(patient has Applosis | patient has blue spots on face)?

Explain. [5 marks]

You have your doubts about the recent report of pizza consumption causing linuxitis. You
think it more likely that linuxitis induces a craving for pizza.

(f) Draw the graphical model that would apply if your supposition were correct. Comparing
this graph to one you drew previously, give at least two (conditional) independence
relationships which would differ under the two hypotheses. [5 marks]

(g) [Bonus] You gain access to the database used in the study. For each subject this records:
the species, pizza consumption, and whether they had a high temperature and/or blue
spots on their face. Explain how you would use these data and Bayesian model selection
to compare your hypothesis to the one advanced by the original study. In particular,
write down all the integrals you would need to compute in as much detail as you can.
Do you think these data would be adequate to distinguish between the hypotheses? As
always, explain. [10 bonus marks]



3. [35 marks] Bayesian linear and Gaussian process regression. The following time
series of monthly mean global CO2 concentrations can be obtained from the file co2.txt

(original data obtained from http://www.esrl.noaa.gov/gmd/ccgg/trends):
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We will apply Bayesian linear and Gaussian process regression to predict the CO2 concentra-
tion f(t) as a function of time t, where t = Year + (Month− 1)/12.

(a) First we model the function using linear regression, that is, using the functional form

f(t) = at+ b+ ε(t),

with i.i.d. noise residual ε(t) ∼ N (0, 1) and prior a ∼ N (0, 102), b ∼ N (360, 1002).
Compute (using MATLAB or another package) the posterior mean and covariance over
a and b given the CO2 data. [10 marks]

(b) Let aMAP, bMAP be the MAP estimate in the question above. The residual is the differ-
ence between the observed function values and the predicted mean function values

gobs(t) = fobs(t)− (aMAPt+ bMAP),

where fobs(t) is the observed value of the CO2 concentration at time t.
Plot gobs(t). Do you think these residuals conform to our prior over ε(t)? State, with
justifications, which characteristics of the residual you think do or do not conform to
our prior belief. [5 marks]

(c) Write a MATLAB (or other language) function to generate samples drawn from a GP.
Specifically, given a covariance kernel function k(·, ·) and a vector of input points x,
return a function f(x) evaluated on the input points x drawn randomly from a GP with
the given covariance kernel and with zero mean. [10 marks]

(d) Test your function by plotting sample functions drawn from the following kernel, for
various settings of the hyperparameters

k(s, t) = θ2
(
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)
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(
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2η2

))
+ ζ2δs=t (1)

Describe the characteristics of the drawn functions, and how the characteristics of the
functions depend on the parameters. [5 marks]

http://www.gatsby.ucl.ac.uk/teaching/courses/ml1-2012/co2.txt


(e) Suppose we were to consider modelling the residual function g(t) using a zero mean GP
with the covariance kernel above. Based on the plot of g(t) and your explorations in the
preceding part, what do you think will be suitable values for the hyperparameters of k?
[5 marks]

(f) [Bonus] Extrapolate the CO2 concentration levels to 2020 using the GP with covari-
ance kernel k of eqn ??, and your chosen parameter values. Specifically, compute the
predictive mean and variance of the residual g(t) for every month between September
2007 and December 2020 given the observed residuals gobs(t). Plot the means and one
standard deviation error bars of the extrapolated CO2 concentration levels

f(t) = aMAPt+ bMAP + g(t)

along with the observed CO2 levels. Does the behaviour of the extrapolation conform
to your expectations? How sensitive are your conclusions to settings of the kernel hy-
perparameters? [15 bonus marks]

(g) [Bonus] Why is the above procedure not fully Bayesian? How would we go about
modelling f(t) in a Bayesian framework? [5 bonus marks]


