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Recall: Belief Propagation on undirected trees

Joint distribution of undirected tree:

p(X ) = 1
Z

∏
nodes i

fi(Xi)
∏

edges (ij)

fij(Xi ,Xj) XjXi

Messages computed recursively:

Mj→i(Xi) :=
∑

Xj

fij(Xi ,Xj)fj(Xj)
∏

l∈ne(j)\i

Ml→j(Xj)

Marginal distributions:

p(Xi) ∝ fi(Xi)
∏

k∈ne(i)

Mk→i(Xi)

p(Xi ,Xj) ∝ fij(Xi ,Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)



Loopy Belief Propagation

Joint distribution of undirected graph:

p(X ) = 1
Z

∏
nodes i

fi(Xi)
∏

edges (ij)

fij(Xi ,Xj) XjXi

Messages computed recursively (with few guarantees of convergence):

Mj→i(Xi) :=
∑

Xj

fij(Xi ,Xj)fj(Xj)
∏

l∈ne(j)\i

Ml→j(Xj)

Marginal distributions are approximate in general:

p(Xi) ≈ bi(Xi) ∝ fi(Xi)
∏

k∈ne(i)

Mk→i(Xi)

p(Xi ,Xj) ≈ bij(Xi ,Xj) ∝ fij(Xi ,Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)



Dealing with loops

I Accuracy: BP posterior marginals are approximate on all non-trees because evidence
is over counted, but converged approximations are frequently found to be good
(particularly in their means).

I Convergence: no general guarantee, but BP does converge in some cases:

I Trees.
I Graphs with a single loop.
I Distributions with sufficiently weak interactions.
I Graphs with long (and weak) loops
I Gaussian networks: means correct, variances may also converge.

I Damping: Common approach to encourage convergence (cf EP)

M new
i→j (Xj) := (1− α)M old

i→j(Xj) + α
∑

Xi

fij(Xi ,Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

I Grouping variables: Variables can be grouped into cliques to improve accuracy.

I Region graph approximations.
I Cluster variational method.
I Junction graph.
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Different Interpretations of Loopy Belief Propagation

Loopy BP can be interpreted as a fixed point algorithm from a few different perspectives:

I Expectation propagation.

I Tree-based reparametrization.

I Bethe free energy.
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Loopy BP as message-based Expectation Propagation

⇒

Approximate pairwise factors fij by product of messages:

fij(Xi ,Xj) ≈ f̃ij(Xi ,Xj) = Mi→j(Xj)Mj→i(Xi)

Thus, the full joint is approximated by a factorised distribution:

p(X ) ≈ 1
Z

∏
nodes i

fi(Xi)
∏

edges (ij)

f̃ij(Xi ,Xj) =
1
Z

∏
nodes i

(
fi(Xi)

∏
j∈ne(i)

Mj→i(Xi)
)
=
∏

nodes i

bi(Xi)

but with multiple factors for most Xi .



Loopy BP as message-based EP

XjXi

Then the EP updates to the messages are:

I Deletion:

q¬ij(X ) = fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)
∏
s 6=i,j

fs(Xs)
∏

t∈ne(s)

Mt→s(Xs)

I Projection:

{Mnew
i→j ,M

new
j→i} = argmin KL[fij(Xi ,Xj)q¬ij(Xi ,Xj)‖Mj→i(Xi)Mi→j(Xj)q¬ij(Xi ,Xj)]

Now, q¬ij() factors⇒ rhs factors⇒ min is achieved by marginals of fij()q¬ij()

Mnew
j→i(Xi)q¬ij(Xi) =

∑
Xj

(
fij(Xi ,Xj)fj(Xj)

∏
l∈ne(j)\i

Ml→j(Xj)
)

fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

⇒ Mnew
j→i(Xi) =

∑
Xj

(
fij(Xi ,Xj)fj(Xj)

∏
l∈ne(j)\i

Ml→j(Xj)
)
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Message-based EP

I Thus message-based EP in a loopy graph need not be seen as two separate
approximations (one to the sites and one to the cavity) as we had in the EP lecture.

I Instead, we can see it as a more severe constraint on the approximate sites: not just to
an ExpFam factor, but to a product of ExpFam messages.

I On a tree-structured graph the message-factored version of EP finds the same
marginals as standard EP.

I Messages are calculated in exactly the same way as before (cf NLSSM).

I Pairwise marginals can be found after convergence by computing P̃(zi−1, zi) as
required (cf Forward-backward for HMMs).

I Would not be true of fully-factored variational approximation.

I Factorisation view remains valid even when original sites lie in the appropriate ExpFam
already – so loopy BP in (eg) discrete graphs can be seen as a form of EP.

I However, this view does not help us understand the convergence properties of BP.
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Loopy BP can be interpreted as a fixed point algorithm from a few different perspectives:

I Expectation propagation.

I Tree-based reparametrization.
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Loopy BP as tree-based reparametrisation

Tree-structured distributions can be parametrised in many ways:

p(X ) = 1
Z

∏
nodes i

fi(Xi)
∏

edges(ij)

fij(Xi ,Xj) undirected tree (1)

= p(Xr )
∏
i 6=r

p(Xi |Xpa(i)) directed (rooted) tree (2)

=
∏

nodes i

p(Xi)
∏

edges (ij)

p(Xi ,Xj)

p(Xi)p(Xj)
pairwise marginals (3)

where (3) requires that
∑

Xj
p(Xi ,Xj) = p(Xi).

The undirected tree representation is not unique—multiplying a factor fij(Xi ,Xj) by g(Xi) and
dividing fi(Xi) by the same g(Xi) does not change the distribution.

BP can be seen as an iterative replacement of fi(Xi) by the local marginal of pij(Xi ,Xj), along
with the corresponding reparametrisation of fij(Xi ,Xj). Cf. Hugin propagation.

Converged BP on a tree finds p(Xi) and p(Xi ,Xj), allowing us to transform (1) to (3).



Reparametrisation on trees

Xd

Xe

Xf

Xg

Xa

Xb

Xc

p(X ) ∝
∏
(ij)

fij(Xi ,Xj)

⇓

p(X ) =
∏

i

p(Xi)
∏
(ij)

p(Xi ,Xj)

p(Xi)p(Xk)

Define f 0
ij = fij (absorbing singleton factors), and f 0

i = p0
i = 1. Iterate over edges (ij):

pn(Xi ,Xj) =
1

Z n
ij

f n−1
i (Xi)f

n−1
ij (Xi ,Xj)f

n−1
j (Xj)

f n
i (Xi) = pn(Xi) =

∑
Xj

pn(Xi ,Xj) = f n−1
i (Xi)

∑
Xj

f n−1
ij (Xi ,Xj)f

n−1
j (Xj)︸ ︷︷ ︸

Mj→i
f n
ij (Xi ,Xj) =

f n−1
ij (Xi ,Xj)

Mj→i(Xi)

After all messages have propagated:

f∞i (Xi) =
∏

j∈ne(i)

Mj→i(Xi) = p(Xi)

f∞ij (Xi ,Xj) =
fij(Xi ,Xj)

Mj→i(Xi)Mi→j(Xj)
=

∏
k∈ne(i)\j

Mk→i (Xi )fij (Xi ,Xj )
∏

l∈ne(j)\i
Ml→j (Xj )∏

k∈ne(i)\j
Mk→i (Xi )Mj→i (Xi )Mi→j (Xj )

∏
l∈ne(j)\i

Ml→j (Xj )
=

p(Xi ,Xj)

p(Xi)p(Xj)



Reparametrisation on trees

Xd
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fdg

1·fab·1
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∏
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1

Z n
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f n−1
i (Xi)f

n−1
ij (Xi ,Xj)f

n−1
j (Xj) [store Z n

ij s to obtain joint normaliser]

f n
i (Xi) = pn(Xi) =

∑
Xj
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Mk→i (Xi )fij (Xi ,Xj )
∏

l∈ne(j)\i
Ml→j (Xj )∏

k∈ne(i)\j
Mk→i (Xi )Mj→i (Xi )Mi→j (Xj )

∏
l∈ne(j)\i

Ml→j (Xj )
=

p(Xi ,Xj)

p(Xi)p(Xj)



Reparametrisation on trees
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∏
(ij)

fij(Xi ,Xj)

⇓

p(X ) =
∏

i

p(Xi)
∏
(ij)

p(Xi ,Xj)

p(Xi)p(Xk)

Define f 0
ij = fij (absorbing singleton factors), and f 0

i = p0
i = 1. Iterate over edges (ij):

pn(Xi ,Xj) =
1

Z n
ij

f n−1
i (Xi)f

n−1
ij (Xi ,Xj)f

n−1
j (Xj)

f n
i (Xi) = pn(Xi) =

∑
Xj

pn(Xi ,Xj) = f n−1
i (Xi)

∑
Xj

f n−1
ij (Xi ,Xj)f

n−1
j (Xj)︸ ︷︷ ︸

Mj→i
f n
ij (Xi ,Xj) =

f n−1
ij (Xi ,Xj)

Mj→i(Xi)

After all messages have propagated:

f∞i (Xi) =
∏

j∈ne(i)

Mj→i(Xi) = p(Xi)
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Mj→i(Xi)Mi→j(Xj)
=

∏
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Mk→i (Xi )fij (Xi ,Xj )
∏

l∈ne(j)\i
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∏
l∈ne(j)\i
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Reparametrisation on non-trees

I If BP converges on a non-tree, it will have successfully reparametrised the distribution to
have locally consistent beliefs:

p(X ) ∝
∏

i

b(Xi)
∏
(ij)

b(Xi ,Xj)

b(Xi)b(Xj)
with

∑
Xj

b(Xi ,Xj) = b(Xi) etc.

I However, the marginals will not usually be correct or globally consistent. That is∑
X¬i

(∏
i

b(Xi)
∏
(ij)

b(Xi ,Xj)

b(Xi)b(Xj)

)
6= b(Xi)

and the product will not generally be normalised.
I What can be said about these pseudomarginals?
I Consider the following (theoretical) message scheduling scheme:

I Identify all the spanning trees of the graph.
I Pass messages along edges of each spanning tree in turn.
I Iterate over spanning trees to convergence



Loopy BP as tree-based reparametrisation

graph spanning tree 1 spanning tree 2

p(X ) = 1
Z

∏
nodes i

f 0
i (Xi)

∏
edges (ij)

f 0
ij (Xi ,Xj)

=
1
Z

∏
nodes i∈T1

f 0
i (Xi)

∏
edges (ij)∈T1

f 0
ij (Xi ,Xj)

∏
edges (ij) 6∈T1

f 0
ij (Xi ,Xj)

=
1
Z

∏
nodes i∈T1

f 1
i (Xi)

∏
edges (ij)∈T1

f 1
ij (Xi ,Xj)

∏
edges (ij) 6∈T1

f 1
ij (Xi ,Xj)

where f 1
i (Xi) = pT1(Xi), f 1

ij (Xi ,Xj) =
pT1 (Xi ,Xj )

pT1 (Xi )p
T1 (Xj )

, f 1
ij = f 0

ij .

=
1
Z

∏
nodes i∈T2

f 1
i (Xi)

∏
edges (ij)∈T2

f 1
ij (Xi ,Xj)

∏
edges (ij) 6∈T2

f 1
ij (Xi ,Xj)

. . .



Loopy BP as tree-based reparametrisation

At convergence, loopy BP has reparametrised the joint distribution as:

p(X ) = 1
Z

∏
nodes i

f∞i (Xi)
∏

edges (ij)

f∞ij (Xi ,Xj)

where for any tree T embedded in the graph,

f∞i (Xi) = pT (Xi)

f∞ij (Xi ,Xj) =
pT (Xi ,Xj)

pT (Xi)pT (Xj)

Thus, the local marginals of all subtrees are locally consistent with each other, and the
pseudomarginals represent valid beliefs for any of the subtrees.

p(X ) = 1
Z

∏
nodes i

bi(Xi)
∏

edges (ij)

bij(Xi ,Xj)

bi(Xi)bj(Xj)



Different Interpretations of Loopy Belief Propagation

Loopy BP can be interpreted as a fixed point algorithm from a few different perspectives:

I Expectation propagation.

I Tree-based reparametrization.

I Bethe free energy.



Loopy BP and Bethe free energy

In the reparametrisation view, BP solves for marginal beliefs bij(Xi ,Xj) and
bi(Xi) =

∑
Xj

bij(Xi ,Xj) such that

p(X ) ∝
∏

i

fi(Xi)
∏
(ij)

fij(Xi ,Xj) ∝
∏

i

bi(Xi)
∏
(ij)

bij(Xi ,Xj)

bi(Xi)bj(Xj)

Another view of loopy BP is as a set of fixed point equations for finding stationary points of an
objective function called the Bethe free energy, which is defined in terms of the locally
consistent beliefs (or pseudomarginals) bi ≥ 0 and bij ≥ 0:∑

xi

bi(xi) = 1 ∀i

∑
xj

bij(xi , xj) = bi(xi) ∀i, j ∈ ne(i), xi
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Loopy BP and Bethe free energy
Recall that the variational free energy is: F(q) = 〈log P(X )〉q + H[q]

We define the (negative) Bethe free energy: Fbethe(b) = Ebethe(b) +Hbethe(b) where both
terms are approximations to the corresponding variational likelihood terms.

I The Bethe average energy is the expected log-joint evaluated as though the
pseudomarginals were correct:

Ebethe(b) =
∑

i

∑
xi

bi(xi) log fi(xi) +
∑
(ij)

∑
xi ,xj

bij(xi , xj) log fij(xi , xj)

I The Bethe entropy is the sum of the pseudomarginal entropies corrected for pairwise
(pseudo)interactions, but neglecting higher-order dependence:

Hbethe(b) =
∑

i

H[bi ]−
∑
(ij)

KL[bij‖bi bj ]

= −
∑

i

∑
xi

bi(xi) log bi(xi)−
∑
(ij)

∑
xi ,xj

bij(xi , xj) log
bij(xi , xj)

bi(xi)bj(xj)

I On a tree, both the beliefs and the Bethe entropy expression are correct, so Fbethe = F .
I Message updates in loopy BP can now be derived by finding the stationary points of a

Lagrangian with local consistency and normalisation constraints. The BP messages are
related to the Lagrange multipliers.
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Bethe fixed point equations
The Bethe free-energy Lagrangian is:

L =
∑

i

∑
xi

bi(xi) log fi(xi) +
∑
(ij)

∑
xi ,xj

bij(xi , xj) log fij(xi , xj) [Ebethe]

−
∑

i

∑
xi

bi(xi) log bi(xi)−
∑
(ij)

∑
xi ,xj

bij(xi , xj) log
bij(xi , xj)

bi(xi)bj(xj)
[Hbethe]

+
∑

i

ξi

(∑
xi

bi(xi)− 1
)

[norm ∀i]

+
∑
(ij)

[∑
xi

ξij(xi)
(∑

xj

bij(xi , xj)− bi(xi)
)
+
∑

xj

ξji(xj)
(∑

xi

bij(xi , xj)− bj(xj)
)]

[marg ∀i, j, xi ]

Setting derivatives wrt beliefs to 0 gives

∂L
∂bi(xi)

= log fi(xi)− log bi(xi) +
∑

j∈ne(i)

∑
xj

bij(xi , xj)

bi(xi)︸ ︷︷ ︸
=1 by constraint

+ξi −
∑

j∈ne(i)

ξij(xi) + const = 0

⇒bi(xi) ∝ fi(xi)
∏

j∈ne(i)

e−ξij (xi )

∂L
∂bij(xi , xj)

= log fij(xi , xj)− log bij(xi , xj) + log bi(xi)bj(xj) + ξij(xi) + ξji(xj) + const = 0

⇒bij(xi , xj) ∝ fij(xi , xj)bi(xi)bj(xj)e
ξij (xi )eξji (xj )



Bethe fixed point messages

The Bethe Lagrangian fixed point equations are:

bi(xi) ∝ fi(xi)
∏

j∈ne(i)

e−ξij (xi )

bij(xi , xj) ∝ fij(xi , xj)bi(xi)bj(xj)e
ξij (xi )eξji (xj )

Comparison with BP suggests that messages should have the form Mj→i(xi) = e−ξij (xi ).

Indeed, solving for ξij(xi) by enforcing the constraint
∑

xj
bij(xi , xj) = bi(xi) we have:∑

xj

bij(xi , xj) ∝
∑

xj

fij(xi , xj)bi(xi)bj(xj)e
ξij (xi )eξji (xj )

⇒ bi(xi) ∝ bi(xi)e
ξij (xi )

∑
xj

fij(xi , xj)bj(xj)e
ξji (xj )

⇒ e−ξij (xi ) ∝
∑

xj

fij(xi , xj)bj(xj)e
ξji (xj )

=
∑

xj

fij(xi , xj)fj(xj)
∏

l∈ne(j)\i

e−ξjl (xj )

thus recovering the BP message passing rules.



Loopy BP and Bethe free energy

I Fixed points of loopy BP are exactly the stationary points of the Bethe free energy.

I Stable fixed points of loopy BP are local maxima of Bethe free enegy (note the negative
definition of free energy for consistency with the variational free energy).

I For binary attractive networks, Bethe free energy at fixed points of loopy BP provides an
upper bound on the log partition function log Z—this is useful for learning undirected
graphical models as it leads to a lower bound on the log likelihood.



Loopy BP vs mean-field approximation

I Beliefs bi and bij in loopy BP are only locally consistent pseudomarginals, not
necessarily consistent marginals of the implied joint distribution.

I Bethe free energy accounts for interactions between different sites, while variational free
energy assumes independence.

I The loop series or Plefka expansion of the log partition function Z : the variational free
energy forms the first order terms, while Bethe free energy contains higher order terms
(involving generalized loops).

I Loopy BP tends to be signficantly more accurate whenever it converges.



Extensions and variations

I Generalized BP: group variables together to treat their
interactions exactly.

I Convergent alternatives: Fixed points of loopy BP are stationary
points of the Bethe free enegy. We can also derive algorithms
that increase the Bethe free energy at every step, and are thus
are guaranteed to converge.

I Convex alternatives: We can derive convex cousins of the negative of the Bethe free
energy. These give rise to algorithms that will converge to a unique global maximum.

I We have considered sum-product loopy BP to compute marginals. The treatment of
loopy Viterbi or max-product algorithms is different.
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