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Learning model structure

How many clusters in the data?

How smooth should the function be?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?

How many auditory sources in the input?

SVYDAAAQLTADVKKDLRDSWKVIGSDKKGNG

Model selection

Models (labelled by m) have parameters θm that specify the probability of data:

P(D|θm,m) .

If model is known, learning θm means finding posterior or point estimate (ML, MAP, . . . ).

What if we need to learn the model too?
I Could combine models into a single “supermodel”, with composite parameter (m,θm).

I ML learning will overfit: favours most flexible (nested) model with most parameters,
even if the data actually come from a simpler one.

I Density function on composite parameter space (union of manifolds of different
dimensionalities) difficult to define⇒ MAP learning ill-posed.

I Joint posterior difficult to compute — dimension of composite parameter varies
[although Monte-Carlo methods may be able to sample from such a posterior.]

⇒ Separate model selection step:

P(θm,m|D) = P(θm|m,D)︸ ︷︷ ︸
model-specific posterior

· P(m|D)︸ ︷︷ ︸
model selection

Model complexity and overfitting: a simple example
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Model selection
Given models labeled by m with parameters θm, identify the “correct” model for data D.

ML/MAP has no good answer: P(D|θML
m ) is always larger for more complex (nested) models.

Neyman-Pearson hypothesis testing
I For nested models. Starting with simplest model (m = 1), compare (e.g. by likelihood

ratio test) null hypothesis m to alternative m + 1. Continue until m + 1 is rejected.
I Tests often only exact asympotically in data number.
I Conservative (N-P hypothesis tests are asymmetric by design).

Likelihood validation
I Partition data into disjoint training and validation data sets D = Dtr ∪ Dvld. Choose

model with greatest P(Dvld|θML
m ), with θML

m = argmax P(Dtr|θ). [Or, better, greatest
P(Dvld|Dtr,m).]

I Consistent; and selects most useful model, even if all are incorrect.
I May be biased towards simpler models; often high-variance.
I Cross-validation uses multiple partitions and averages likelihoods.

Bayesian model selection
I Choose most likely model: argmax P(m|D).
I Consistent; probabilistically principled if true model is in set being considered, but

sensitive to assumed priors etc.
I Posterior probabilities can weight models for combined predictions (avoiding selection).

Bayesian model selection: some terminology

A model class m is a set of distributions parameterised by θm, e.g. the set of all possible
mixtures of m Gaussians.

The model implies both a prior over the parameters P(θm|m), and a likelihood of data given
parameters (which might require integrating out latent variables) P(D|θm,m).

The posterior distribution over parameters is

P(θm|D,m) =
P(D|θm,m)P(θm|m)

P(D|m)
.

The marginal probability of the data under model class m is:

P(D|m) =

∫
Θm

P(D|θm,m)P(θm|m) dθm.

(also called the Bayesian evidence for model m).

The ratio of two marginal probabilities (or sometimes its log) is known as the Bayes factor:

P(D|m)

P(D|m′) =
P(m|D)

P(m′|D)

p(m′)
p(m)

The Bayesian Occam’s razor
Occam’s Razor is a principle of scientific philosophy: of two explanations adequate to explain
the same set of observations, the simpler should always be preferred.
Bayesian inference formalises and automatically implements a form of Occam’s Razor.

Compare model classes m using their posterior probability given the data:

P(m|D) =
P(D|m)P(m)

P(D)
, P(D|m) =

∫
Θm

P(D|θm,m)P(θm|m) dθm

P(D|m): The probability that randomly selected parameter values from the model class
would generate data set D.

Model classes that are too simple are unlikely to generate the observed data set.
Model classes that are too complex can generate many possible data sets, so again, they are
unlikely to generate that particular data set at random.
Like Goldilocks, we favour a model that is just right.

data sets: D

P
(D
|m

)

D0

Bayesian model comparison: Occam’s razor at work
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Conjugate-exponential families (recap)

Can we compute P(D|m)? . . . . . . Sometimes.

Suppose P(D|θm,m) is a member of the exponential family:

P(D|θm,m) =
N∏

i=1

P(xi |θm,m) =
N∏

i=1

es(xi )
Tθm−A(θm).

If our prior on θm is conjugate:

P(θm|m) = esT
pθm−npA(θm)/Z(sp, np)

then the joint is in the same family:

P(D,θm|m) = e
(∑

i s(xi )+sp

)T
θm−(N+np)A(θm)/Z(sp, p)

and so:

P(D|m) =

∫
dθm P(D,θm|m) =

Z
(∑

i s(xi ) + sp,N + np
)

Z(sp, p)

← posterior volume
← prior volume

While the intuition is general, tractability is a special case. Thus, we must approximate . . .

Practical Bayesian approaches

I Laplace approximation:
I Approximate posterior by a Gaussian centred at the maximum a posteriori parameter

estimate.

I Bayesian Information Criterion (BIC)
I an asymptotic (N →∞) approximation.

I Variational Bayes
I Lower bound on the marginal probability.
I Biased estimate.
I Easy and fast, and often better than Laplace or BIC.

I Monte Carlo methods:
I (Annealed) Importance sampling: estimate evidence using samples θ(i) from arbitrary f (θ):∑

i

P(D|θ(i),m)P(θ(i)|m)

f (θ(i))
→
∫

dθ f (θ)
P(D,θ|m)

f (θ)
= P(D|m)

I “Reversible jump” Markov Chain Monte Carlo: sample from posterior on composite (m,θm).
# samples for each m ∝ p(m|D).

I Both exact in the limit of infinite samples, but may have high variance with finite samples.

I Bethe approximations, Expectation propagation . . .

We will encounter many of these approaches later in the course.

Laplace approximation

We want to find P(D|m) =

∫
P(D,θm|m) dθm.

As data size N grows (relative to parameter count d), θm becomes more constrained
⇒ P(D,θm|m) ∝ P(θm|D,m) becomes concentrated on posterior mode θ∗m.

Idea: approximate log P(D,θm|m) to second-order around θ∗.∫
P(D,θm|m)dθm =

∫
elog P(D,θm|m) dθm

≈
∫

elog P(D,θ∗m|m)+∇ log P(D,θ∗m|m)︸ ︷︷ ︸
=0

·(θm−θ∗m)+ 1
2 (θm−θ∗m)T∇2 log P(D,θ∗|m)︸ ︷︷ ︸

=−A

(θm−θ∗m) dθm

=

∫
P(D,θ∗m|m)e−

1
2 (θm−θ∗m)TA(θm−θ∗m) dθm

= P(D|θ∗m,m)P(θ∗m|m)(2π)
d
2 |A|−

1
2

A = −∇2 log P(D,θ∗m|m) is the negative Hessian of log P(D,θ|m) evaluated at θ∗m.

This is equivalent to approximating the posterior by a Gaussian: an approximation which is
asymptotically correct.

Bayesian Information Criterion (BIC)
BIC can be obtained from the Laplace approximation:

log P(D|m) ≈ log P(θ∗m|m) + log P(D|θ∗m,m) +
d
2

log 2π − 1
2

log |A|

We have

A = −∇2 log P(D,θ∗|m) = −∇2 log P(D|θ∗,m)−∇2 log P(θ∗|m)

So as N = |D| → ∞, A→ NA0 + constant, for fixed PD matrix A0 =
〈
−∇2 log P(x|θ∗,m)

〉
.

⇒ log |A| → log |NA0| = log(Nd |A0|) = d log N + log |A0|.
Retaining only terms that grow with N we get:

log P(D|m) ≈ log P(D|θ∗m,m)− d
2

log N

Properties:
I Quick and easy to compute.
I Does not depend on prior.
I We can use the ML estimate of θ instead of the MAP estimate (= as N →∞).
I Related to the “Minimum Description Length” (MDL) criterion (Asst 2).
I Assumes that in the large sample limit, all the parameters are well-determined (i.e. the

model is identifiable; otherwise, d should be the number of well-determined parameters).
I Neglects multiple modes (e.g. permutations in a MoG).



Hyperparameters and Evidence optimisation

In some cases, we need to choose between a family of continuously parameterised models.

P(D|η) =

∫
P(D|θ)P(θ|η

↑
hyperparameters

) dθ

This choice can be made by ascending the gradient in:
I the exact evidence (if tractable).
I the approximated evidence (Laplace, EP, Bethe, . . . )
I a free-energy bound on the evidence (Variational Bayes)

or by placing a hyperprior on the hyperparameters η, and sampling from the posterior

P(η|D) =
P(D|η)P(η)

P(D)

using Markov chain Monte Carlo sampling.

Evidence optimisation in linear regression

Consider simple linear regression:

xi

yi

yi ∼ N
(
wTxi , σ

2
)

w

w ∼ N (0,C)

σ2C

I Maximize

P(y1 . . . yN |x1 . . . xN ,C, σ
2) =

∫
P(y1 . . . yN |x1 . . . xN ,w, σ

2)P(w|C) dw

to find optimal values of C, σ.
I Compute the posterior P(w|y1 . . . yN , x1 . . . xN ,C, σ2) given these optimal values.

The evidence for linear regression

I The posterior on w is normal: Σw = ( XXT

σ2 + C−1)−1; w̄ = Σw
XY T

σ2 .

Note: X is a matrix where columns are input vectors, and Y is a row vector of corresponding
predicted outputs.

I The evidence, E(C, σ2) =
∫

P(Y |X ,w, σ2)P(w|C) dw, is given by:

E(C, σ2) =

√
|2πΣw|

|2πσ2I| |2πC| exp
(
−1

2
Y
(

I
σ2
− X TΣwX

σ4

)
Y T
)

I For optimization, general forms for the gradients are available. If θ is a parameter in C:

∂

∂θ
log E(C, σ2) =

1
2

Tr
[

(C − Σw − w̄w̄T)
∂

∂θ
C−1

]
∂

∂σ2
log E(C, σ2) =

1
σ2

(
−N + Tr

[
I − ΣwC−1]+

1
σ2

(Y − w̄TX)(Y − w̄TX)T
)

Automatic Relevance Determination

The most common form of evidence optimization for regression (due to MacKay and Neal)
takes C−1 = diag(α) (i.e. wi ∼ N (0, α−1

i )) and then optimizes the precisions {αi}.

Setting the gradients to 0 and solving gives

αnew
i =

1− αi [Σw]ii

w̄2
i

(σ2)new =
(Y − w̄TX)(Y − w̄TX)T

N −
∑

i (1− [Σw]iiαi )

During optimization the αi s meet one of two fates

αi →∞ ⇒ wi = 0 irrelevant input xi

αi finite ⇒wi = argmax P (wi | X ,Y , αi ) relevant input xi

This procedure, Automatic Relevance Determination (ARD), yields sparse solutions that
improve on ML regression. (cf. L1-regression or LASSO).

Evidence optimisation is also called maximum marginal likelihood or ML-2 (Type 2 maximum
likelihood).



Prediction averaging

Sometimes, our goal is not to learn the model structure or parameters (or their posteriors);
but rather to predict the (conditional) density at a new data point.

The Bayesian approach in this case should integrate out the parameters:
I Density (unsupervised learning): D = {x1, x2, . . . xn}

p(x|D,m) =

∫
dθ p(x|θ,m)p(θ|D,m)

I Predictions (supervised learning): D = {(x1, y1)(x2, y2) . . . (xn, yn)}

p(y|x,D,m) =

∫
dθ p(y|x, θ,m)p(θ|D,m)

The integral naturally favours predictions associated with large volumes in the posterior, and
so incorporates an Occam-like factor.

In principle, predictions may resist overfitting even with an infinitely complex model [or, put
another way, the marginalised model has no parameters]⇒ Bayesian nonparametrics.

Taking this approach to (non)linear regression leads to a powerful supervised learning
method called Gaussian process regression.

Prediction averaging in linear regression

xi

yi

yi ∼ N
(
wTxi , σ

2
)

w

w ∼ N
(
0, τ 2I

)
σ2τ 2

Let X = [x1 . . . xN ], Y = [y1 . . . yN ]. Then (as we’ve seen)

w|D ∼ N (w̄,Σw)

where Σw =( 1
σ2 XX T + 1

τ2 I)−1 and w̄= 1
σ2 ΣwXY T

Thus, given a new input vector x, the predicted output y (integrating out w) is:

y |x ∼ N (w̄Tx, xTΣwx + σ2) .

Added variance xTΣwx comes from posterior uncertainty in w (cf Factor Analysis).

Marginalised linear regression

y1, . . . , yN

Y T ∼ N
(
0, τ 2X TX + σ2I

)

xi

σ2τ 2

Integrate out w in the model: the joint distribution of y1, . . . , yN given x1, . . . , xN is Gaussian.
The means and covariances are:

E[yi ] = E[wTxi ] = 0Txi = 0

E[(yi − yi )
2] = E[(xT

i w)(wTxi )] + σ2 = τ 2xT
i xi + σ2

E[(yi − yi )(yj − yj )] = E[(xT
i w)(wTxj )] = τ 2xT

i xj
y1

y2

...
yN


∣∣∣∣∣∣∣∣∣ x1, . . . , xN ∼ N




0
0
...
0

 ,

τ 2xT

1x1 + σ2 τ 2xT
1x2 · · · τ 2xT

1xN

τ 2xT
2x1 τ 2xT

2x2 + σ2 τ 2xT
2xN

...
. . .

...
τ 2xT

Nx1 τ 2xT
Nx2 · · · τ 2xT

NxN + σ2




Predictions with marginalised regression
Now, include the test input vector x and test output y :[

Y T

y

]∣∣∣∣X , x ∼ N ([0
0

]
,

[
τ 2X TX + σ2I τ 2X Tx

τ 2xTX τ 2xTx + σ2

])
= N

([
0
0

]
,

[
K̃XX K̃Xx

K̃xX K̃xx

])
We can find y |Y by the standard multivariate Gaussian result:[

a
b

]
∼ N

([
0
0

]
,

[
KAA KAB

KBA KBB

])
⇒ b|a ∼ N

(
KBAK−1

AA a,KBB − KBAKAA
−1KAB

)
So

y |Y ,X , x ∼ N
(

K̃xX K̃−1
XX Y T, K̃xx − K̃xX K̃−1

XX K̃Xx

)
∼ N

(
τ 2xTX(τ 2X TX + σ2I)−1Y T, τ 2xTx + σ2 − τ 2xTX(τ 2X TX + σ2I)−1τ 2X Tx

)
∼ N

(
xT 1
σ2 ΣXY T︸ ︷︷ ︸

w̄

, xTΣx + σ2
)

Σ =
(

1
σ2 XX T + 1

τ2 I
)−1

︸ ︷︷ ︸
Σw

[Matrix Inv. Lem.]

I Same answer as obtained by integrating wrt posterior over w.
I Evidence P(Y |X) is just joint Gaussian probability; reduces to previous expression.
I Thus, Bayesian linear regression can be derived from a joint, parameter-free distribution

on all the outputs conditioned on all the inputs.



Nonlinear regression

xi

yi

y ∼ N
(
wTφ(xi ), σ

2
)

w

w ∼ N
(
0, τ 2I

)
σ2τ 2

Introduce nonlinear mapping x 7→ φ(x). Each element of φ(x) is a (nonlinear) feature
extracted from x. May be many more features than elements in x.

The regression function f (x) = wTφ(x) is nonlinear, but outputs Y are still jointly Gaussian:

Y T|X ∼ N (0N , τ
2ΦTΦ + σ2IN)

where the i th column of matrix Φ is φ(xi ).
Proceeding as before, the predictive distribution over y for a test input x is:

y |x,Y ,X ∼ N
(

K̃xX K̃−1
XX Y T, K̃xx − K̃xX K̃−1

XX K̃Xx

)
where, now K̃XX = τ 2ΦTΦ + σ2I; K̃Xx = τ 2ΦTφ(x) and K̃xx = τ 2φ(x)Tφ(x) + σ2.

The covariance kernel

Y T|X ∼ N
(

0N , τ
2ΦTΦ + σ2IN

)
The covariance of the output vector Y plays a central role in the development of the theory of
Gaussian processes.

Define a covariance kernel function K̃ : X× X 7→ R such that if x, x′ ∈ X are two input
vectors with corresponding outputs y , y ′, then

K̃ (x, x′) = Cov[y , y ′] = E[yy ′]− E[y ]E[y ′]

In the nonlinear regression example we have K̃ (x, x′) = τ 2φ(x)Tφ(x′) + σ2δx=x′ .
Any covariance kernel K has two properties:

I Symmetric: K (x, x′) = K (x′, x) for all x, x′.
I Positive semidefinite: the matrix [K (xi , xj )] formed by any finite set of input vectors

x1, . . . , xN is positive semidefinite.

Theorem: A covariance kernel K : X× X 7→ R is symmetric and positive semidefinite if and
only if there is a feature map φ : X 7→ H such that

K (x, x′) = φ(x)Tφ(x′)

The feature space H might be an infinite-dimensional Hilbert space.

Regression using the covariance kernel

For Bayesian regression, prediction depends on K̃ (x, x) rather than explicitly on φ(x).

So we can define the joint in terms of K̃ implicitly using a (potentially infinite-dimensional)
feature map φ(x).

Y |X , K̃ ∼ N (0N , K̃XX ))

where the i, j entry in the covariance matrix K̃XX is K̃ (xi , xj ).

This is the kernel trick.

Prediction: compute the predictive distribution of y conditioned on Y as before:

y |x,X ,Y , K̃ ∼ N
(

K̃ T
XxK̃−1

XX Y T, K̃xx − K̃ T
XxK̃−1

XX K̃Xx

)
where now [K̃XX ]ij = K̃ (xi , xj ); [K̃Xx]i = K̃ (xi , x) and K̃xx = K̃ (x, x).

Evidence: given by the Gaussian likelihood:

P(Y |X , K̃ ) = |2πK̃XX |−
1
2 e−

1
2 Y K̃−1

XX Y T

Evidence optimisation: the covariance kernel K̃ often has (hyper)parameters, and these
can be optimized by gradient ascent in log P(Y |X , K̃ ).

The Gaussian process

A covariance kernel K (x, x′) (and mean function m(x)) defined on a domain X defines a
Gaussian process (GP): a stochastic process (ie collection of random variables) on R
indexed by x ∈ X, any finite subset of which have (consistent) Gaussian distributions.

Let f (x) be the random variable indexed by x. Then a draw from the whole GP (ie for all x) is
a random function f : X 7→ R. We write

f (·) ∼ GP(m(·),K (·, ·))

where the (·)s emphasise that these are all functions.

The GP is defined such that, given a finite list of points {x1, . . . , xN}, the joint distribution of
the function values f = [f (x1), . . . , f (xN)]T is:

f|X ,K ∼ N (m,KXX )

where, as usual, [KXX ]ij = K (xi , xj ) and [m]i = m(xi ). If we enlarge or reduce the set of xi s
then the means and covariance matrices produced by fixed functions marginalise correctly.

For nonlinear regression, f (·) could instead be defined by drawing the weight vector w ∈ H
from the prior. But H may be infinite dimensional⇒ need an infinite-size object to make even
a single prediction. In the GP view, each f (x) can be drawn separately.



Regression with Gaussian processes
We seek to learn a function that maps inputs x1, . . . , xN to outputs y1, . . . , yN .

Instead of assuming a specific form, consider a random function drawn from a GP prior:

f (·) ∼ GP(0,K (·, ·)) .

Any function is possible (no restriction on support) but some are (much) more likely a priori.

Observations yi are taken to be noisy versions of the (almost surely continuous) latent f (xi ):

yi |xi , f (·) ∼ N
(
f (xi ), σ

2) [so Y ∼ N
(
0, K̃XX

)
with K̃XX = KXX + σ2I]

Evidence: given by the multivariate Gaussian likelihood:

P(Y |X) = |2π(KXX + σ2I)|−
1
2 e−

1
2 Y (KXX +σ2 I)−1Y T

Posterior: on latent f is also a GP:

f (·)|X ,Y ∼ GP(K·X (KXX + σ2I)−1Y T,K (·, ·)− K·X (KXX + σ2I)−1KX·))

Predictions: posterior on f , plus observation noise:

y |X ,Y , x ∼ N
(
E[f (x)|X ,Y ],Var[f (x)|X ,Y ] + σ2) = N

(
KxX K̃−1

XX Y ,KxX K̃−1
XX KXx + σ2

)
Evidence Optimisation: gradient ascent in log P(Y |X).

Samples from a Gaussian process

We can draw sample functions from a GP by fixing a set of input vectors x1, . . . , xN , and
drawing a sample f (x1), . . . , f (xN) from the corresponding multivariate Gaussian.

Example prior and posterior GPs:

Another approach is to
I sample f (x1) first,
I then f (x2)|f (x1),
I and generally f (xn)|f (x1), . . . , f (xn−1) for n = 1, 2, . . ..

Sample from a 2D Gaussian process Examples of covariance kernels

• Polynomial:

K (x, x′) = (1 + xTx′)m m = 1, 2, . . .

input (x)

o
u

tp
u

t 
(y

) m = 1
m = 2
m = 3f is inhomogeneous polynomial of degree m

• Squared-exponential (or exponentiated-quadratic):

K (x, x′) = θ2e
− ‖x−x′‖2

2η2

input (x)

o
u
tp

u
t 
(y

) η = 1
η = 2
η = 4f is smooth (C∞ almost surely) on length scale η

• Periodic (exp-sine):

K (x, x ′) = θ2e
− 2 sin2(π(x−x′)/τ)

η2

input (x)

o
u
tp

u
t 
(y

) τ = 1, η = 2
τ = 2, η = 1
τ = 3, η = 0.5f is smooth and periodic

• Rational Quadratic:

K (x, x′) =

(
1 +
‖x− x′‖2

2αη2

)−α
α > 0

input (x)

o
u
tp

u
t 
(y

) α = 0.5, η = 2
α = 1, η = 2
α = 2, η = 2

f is smooth over multiple scales



Forms of kernels

If K1 and K2 are covariance kernels, then so are:
I Rescaling: αK1 for α > 0.
I Addition: K1 + K2

I Elementwise product: K1K2

I Mapping: K1(φ(x), φ(x′)) for some function φ.

A covariance kernel is translation-invariant if

K (x, x′) = h(x− x′)

A GP with a translation-invariant covariance kernel is stationary: if f (·) ∼ GP(0,K ), then so
is f (· − x) ∼ GP(0,K ) for each x.

A covariance kernel is radial or radially symmetric if

K (x, x′) = h(‖x− x′‖)

A GP with a radial covariance kernel is stationary with respect to translations, rotations, and
reflections of the input space.

GP methods

I With suitable kernels, combinations of kernels, and hyperparameter learning, GPs can
identify a wide range of functional dependence. (The “automated statistician” project
starts with GPs).

I With approximation, the mapping from f to y may be taken to be non-Gaussian, allowing
GP classication, ordinal regression, domain-specific noise and more.

I Functions in more complex hierarchical models may be drawn from GP priors:
I GP latent variable model (GPLVM)
I Stacked GPs
I Deep GP networks

I Inference and learning require inversion of KXX : scales as N3. Sparse approximate
methods reduce this to order N.

I State-of-the-art approach, particularly when data are limited.

Nonparametric Bayesian Models and Occam’s Razor

Overparameterised models can overfit. In the GP, the “parameter” is the function f (x) (or
“weights” in non-linear feature space) which can be infinite-dimensional.

However, the Bayesian treatment integrates over these parameters: we never identify a single
“best fit” f , just a posterior (and posterior mean). So f cannot be adjusted to overfit the data.

The GP is an example of the larger class of nonparametric Bayesian models.

I Infinite number of parameters.
I Often constructed as the infinite limit of a nested family of finite models (sometimes

equivalent to infinite model averaging).
I Parameters integrated out, so effective number of parameters to overfit is zero or small

(hyperparameters).
I No need for model selection. Bayesian posterior on parameters will concentrate on

“submodel” with largest integral automatically.
I No explicit need for Occam’s razor, validation or added regularisation penalty.
I Examples include the Dirichlet process (infinite mixtures), Infinite Binary Prior (infinite

binary factor models), Infinite HMM . . .
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