
Summative Assignments

Probabilistic and Unsupervised Learning

Peter Orbanz

Some questions are marked as BONUS QUESTIONS. Attempt the non-bonus questions before an-
wering these.

1. [25 marks] Models for binary vectors. Consider a data set of binary (black and white)
images. Each image is arranged into a vector of pixels by concatenating the columns of pixels
in the image. The data set has N images {x(1), . . . , x(N)} and each image has D pixels, where
D is (number of rows × number of columns) in the image. For example, image x(n) is a vector

(x
(n)
1 , . . . , x

(n)
D) where x

(n)
d ∈ {0, 1} for all n ∈ {1, . . . , N} and d ∈ {1, . . . , D}.

(a) Explain why a multivariate Gaussian would not be an appropriate model for this data set
of images. [5 marks]

Assume that the images were modelled as independently and identically distributed samples from
a D-dimensional multivariate Bernoulli distribution with parameter vector p = (p1, . . . , pD),
which has the form

P (x|p) =
D∏
d=1

pxdd (1− pd)(1−xd)

where both x and p are D-dimensional vectors

(b) What is the equation for the maximum likelihood (ML) estimate of p? Note that you can
solve for p directly. [5 marks]

(c) Assuming independent Beta priors on the parameters pd

P (pd) =
1

B(α, β)
pα−1d (1− pd)β−1

and P (p) =
∏
d P (pd). Fine the maximum a posteriori (MAP) estimator for p. [5 marks]

Download the data set binarydigits.txt from the course website, which contains N = 100
images with D = 64 pixels each, in an N × D matrix. These pixels can be displayed as 8 × 8
images by rearranging them. View them in Matlab by running bindigit.m or in Python by
running bindigit.py.

(d) Write code to learn the ML parameters of a multivariate Bernoulli from this data set and
display these parameters as an 8× 8 image. Include your code with your submission, and
a visualisation of the learned parameter vector as an image. (You may use Matlab, Octave
or Python) [5 marks]

(e) Modify your code to learn MAP parameters with α = β = 3. Show the new learned
parameter vector for this data set as an image. Explain why this might be better or worse
than the ML estimate. [5 marks]

2. [15 marks] Model selection. In the binary data model above, find the expressions needed
to calculate the (relative) probability of the following three different models:

(a) all D components are generated from a Bernoulli distribution with pd = 0.5

(b) all D components are generated from Bernoulli distributions with unknown, but identical,
pd

(c) each component is Bernoulli distributed with separate, unknown pd

http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/binarydigits.txt
http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/bindigit.m
http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/bindigit.py

Assume that all three models are equally likely a priori, and take the prior distributions for any
unknown probablities to be uniform. Calculate the posterior probabilities of each of the three
models having generated the data in binarydigits.txt.

3. [65 marks + 5 BONUS] EM for Binary Data.

Consider the data set of binary (black and white) images used in the previous question.

(a) Write down the likelihood for a model consisting of a mixture of K multivariate Bernoulli
distributions. Use the parameters π1, . . . , πK to denote the mixing proportions (0 ≤ πk ≤
1;
∑

k πk = 1) and arrange the K Bernoulli parameter vectors into a matrix P with elements
pkd denoting the probability that pixel d takes value 1 under mixture component k. Assume
the images are iid under the model, and that the pixels are independent of each other within
each component distribution. [5 marks]

Just as we can for a mixture of Gaussians, we can formulate this mixture as a latent variable
model, introducing a discrete hidden variable s(n) ∈ {1, . . . ,K} where P (s(n) = k|π) = πk.

(b) Write down the expression for the responsibility of mixture component k for data vector
x(n), i.e. rnk ≡ P (s(n) = k|x(n),π,P). This computation provides the E-step for an EM
algorithm. [5 marks]

(c) Find the maximizing parameters for the expected log-joint

argmax
π,P

〈∑
n

logP (x(n), s(n)|π,P)

〉
q({s(n)})

thus obtaining an iterative update for the parameters π and P in the M-step of EM. [10
marks]

(d) Implement the EM algorithm for a mixture of K multivariate Bernoullis.

Your code should take as input the number K, a matrix X containing the data set, and a
maximum number of iterations to run. The algorithm should terminate after that number
of iterations, or earlier if the log likelihood converges (does not increase by more than a
very small amount).

Hand in clearly commented code.

Run your algorithm on the data set for values of K in {2, 3, 4, 7, 10}. Plot the log likelihood
as a function of the iteration number, and display the parameters found.

[30 marks]

[Hints: Although the implementation may seem simple enough given the equations, there
are many numerical pitfalls (that are common in much of probabilistic learning). A few
suggestions:

• Likelihoods can be very small; it is often better to work with log-likelihoods.

• You may still encounter numerical issues computing responsibilities. Consider scaling
the numerator and denominator of the equation by a suitable constant while still in
the log domain.

• It may also help to introduce (weak) priors on P and π and use EM to find the MAP
estimates, rather than ML. State clearly whether you use this approach; if you do,
specify the prior chosen, and report the log posterior instead of the log likelihood.

(e) Run the algorithm a few times starting from randomly chosen initial conditions. Do you
obtain the same solutions (up to permutation)? Does this depend on K? Show the learned
probability vectors as images.

Comment on how well the algorithm works, whether it finds good clusters (look at the
cluster means and responsibilities and try to interpret them), and how you might improve
the model. [10 marks]

(f) [BONUS] Express the log-likelihoods obtained in bits and relate these numbers to the length
of the naive encoding of these binary data. How does your number compare to gzip (or
another compression algorithm)? Why the difference? [5 marks]

(g) [BONUS] Consider the total cost of encoding both the model parameters and the data given
the model. How does this total cost compare to gzip (or similar)? How does it depend on
K? What might this tell you? [5 marks]

4. [BONUS: 35 marks] LGSSMs, EM and SSID.

Download the datafiles ssm_spins.txt and ssm_spins_test.txt. Both have been generated
by an LGSSM:

yt ∼ N (Ayt−1, Q) [t = 2 . . . T] y1 ∼ N (0, I)

xt ∼ N (Cyt, R) [t = 1 . . . T]

using the parameters:

A = 0.99

cos(2π

180) − sin(2π
180) 0 0

sin(2π
180) cos(2π

180) 0 0
0 0 cos(2π90) − sin(2π90)
0 0 sin(2π90) cos(2π90)

 Q = I −AAT

C =

1 0 1 0
0 1 0 1
1 0 0 1
0 0 1 1

0.5 0.5 0.5 0.5

 R = I

but different random seeds. We shall use the first as a training data set and the second as a test
set.

(a) Run the function ssm_kalman.m or ssm_kalman.py that we have provided (or a re-implementation
in your favourite language if you prefer) on the training data. Warning (for MATLAB ver-
sion): the function expects data vectors in columns; you will need to transpose the loaded
matrices!

Make the following plots (or equivelent):

logdet = @(A)(2*sum(log(diag(chol(A)))));

[Y,V,~,L] = ssm_kalman(X’,Y0,Q0,A,Q,C,R, ’filt’);

plot(Y’):

plot(cellfun(logdet,V));

[Y,V,Vj,L] = ssm_kalman(X’,Y0,Q0,A,Q,C,R, ’smooth’);

plot(Y’):

plot(cellfun(logdet,V));

Explain the behaviour of Y and V in both cases (and the differences between them).

[5 marks]

(b) Write a function to learn the parameters A, Q, C and R using EM (we will assume that the
distribution on the first state is known a priori). The M-step update equations for A and
C were derived in lecture. You should show that the updates for R and Q can be written:

Rnew =
1

T

[T∑
t=1

xtx
T
t −

(T∑
t=1

xt
〈
yTt
〉)
CT
new

]

Qnew =
1

T − 1

[T∑
t=2

〈
yty

T
t

〉
−
(T∑
t=2

〈
yty

T
t−1
〉)
AT

new

]

where Cnew and Anew are as in the lecture notes. Store the log-likelihood at every step (easy
to compute from the fourth value returned by ssm_kalman) and check that it increases.

[Hint: the matlab code
cellsum=@(C)(sum(cat(3,C{:}),3))

defines an inline function cellsum() that sums the entries of a cell array of matrices.]

Run at least 50 iterations of EM starting from a number of different initial conditions: (1)
the generating parameters above (why does EM not terminate immediately?) and (2) 10
random choices.

Show how the likelihood increases over the EM iterations (hand in a plot showing likelihood
vs iteration for each run, plotted in the same set of axes). Explain the features of this plot
that you think are salient.

[If your code and/or computer is fast enough, try running more EM iterations. What
happens?]

[25 marks]

(c) Evaluate the likelihood of the test data under the true parameters, and all of the parameters
found above (EM initialised at the true parameters, random parameters and the SSID
parameters, as well as the SSID parameters without EM). Show these numbers on or next
to the training data likelihoods plotted above. Comment on the results.

[5 marks]

5. [70 points] Decrypting Messages with MCMC. You are given a passage of English text
that has been encrypted by remapping each symbol to a (usually) different one. For example,

a → s

b → !

〈space〉 → v

...

Thus a text like ‘a boy. . . ’ might be encrypted by ‘sv!op. . . ’. Assume that the mapping between
symbols is one-to-one. The file symbols.txt gives the list of symbols, one per line (the second
line is 〈space〉). The file message.txt gives the encrypted message.

Decoding the message by brute force is impossible, since there are 53 symbols and thus 53!
possible permutations to try. Instead we will set up a Markov chain Monte Carlo sampler to
find modes in the space of permutations.

We model English text, say s1s2 · · · sn where si are symbols, as a Markov chain, so that each
symbol is independent of the preceding text given only the symbol before:

p(s1s2 · · · sn) = p(s1)
n∏
i=2

p(si|si−1)

(a) Learn the transition statistics of letters and punctuation in English: Download a large text
[say the English translation of War and Peace, which you can find here1] from the web and
estimate the transition probabilities p(si = α|si−1 = β) ≡ ψ(α, β), as well as the stationary
distribution limi→∞ p(si = γ) ≡ φ(γ). Assume that the first letter of your text (and also
that of the encrypted text provided) is itself sampled from the stationary distribution.

Give formulae for the ML estimates of these probabilities as functions of the counts of
numbers of occurrences of symbols and pairs of symbols.

Compute the estimated probabilities. Report the values as a table. [6 marks]

(b) The state variable for our MCMC sampler will be the symbol permutation. Let σ(s) be the
symbol that stands for symbol s in the encrypted text, e.g., σ(a) = s and σ(b) =! above.
Assume a uniform prior distribution over permutations.

Are the latent variables σ(s) for different symbols s independent?

Let e1e2 · · · en be an encrypted English text. Write down the joint probability of e1e2 · · · en
given σ. [6 marks]

(c) We use a Metropolis-Hastings (MH) chain, with the proposal given by choosing two symbols
s and s′ at random and swapping the corresponding encrypted symbols σ(s) and σ(s′).

How does the proposal probability S(σ → σ′) depend on the permutations σ and σ′? What
is the MH acceptance probability for a given proposal? [10 marks]

(d) Implement the MH sampler, and run it on the provided encrypted text. Report the current
decryption of the first 60 symbols after every 100 iterations. Your Markov chain should
converge to give you a fairly sensible message. (Hint: it may help to initialize your chain
intelligently and to try multiple times; in any case, please describe what you did). [30
marks]

(e) Note that some ψ(α, β) values may be zero. Does this affect the ergodicity of the chain?
If the chain remains ergodic, give a proof; if not, explain and describe how you can restore
ergodicity. [5 marks]

(f) Analyse this approach to decoding. For instance, would symbol probabilities alone (rather
than transitions) be sufficient? If we used a second order Markov chain for English text,
what problems might we encounter? Will it work if the encryption scheme allows two
symbols to be mapped to the same encrypted value? Would it work for Chinese with
> 10000 symbols? [13 marks]

1https://www.gutenberg.org/files/2600/2600-0.txt

https://www.gutenberg.org/files/2600/2600-0.txt

6. [BONUS 60 points] Implementing Gibbs sampling for LDA. Take a look at the ac-
companying code, which sets up a framework in which you will implement both the standard and
collapsed Gibbs sampling inference for LDA. Read the README which lays out the MATLAB
variables used.

(a) Implement both standard and collapsed Gibbs sampline updates, and the log joint prob-
abilities in question 1(a), 1(c) above. The files you need to edit are stdgibbs logjoint,
stdgibbs update, colgibbs logjoint,colgibbs update. Debug your code by running toyexam-
ple. Show sample plots produced by toyexample, and attach and document the MATLAB
code that you wrote. [20 points]

(b) Based upon the plots of log predictive and joint probabilities produced by toyexample, how
many iterations do you think are required for burn-in? Discarding the burn-in iterations,
compute and plot the autocorrelations of the log predictive and joint probabilities for both
Gibbs samplers. You will need to run toyexample for a larger number of iterations to reduce
the noise in the autocorrelation. Based upon the autocorrelations how many samples do
you think will be need to have a representative set of samples from the posterior? Describe
what you did and justify your answers with one or two sentences. [10 points]

(c) Based on the computed autocorrelations, which of the two Gibbs samplers do you think
converge faster, or do they converge at about the same rate? If they differ, why do you
think this might be the case? Justify your answers. [5 points]

(d) Try varying α, β and K. What effects do these have on the posterior and predictive
performance of the model? Justify your answers. [5 points]

Topic modelling of NeurIPS papers. Now that we have code for LDA, we can try
our hands on finding the topics at a major machine learning conference (NeurIPS). In the
provided code there is a file nips.data which contains preprocessed data. The vocabulary is
given in nips.vocab.

(e) The data in nips.data is probably too big so that our MATLAB implementation will be too
slow. We will try to reduce the data set to a more tractable size, by removing words from the
vocabulary. Come up with a metric for how informative/relevant/topical a vocabulary word
is. You may want to experiment and try multiple metrics, and make sure that keywords
like “Bayesian”, “graphical”, “Gaussian”, “support”, “vector”, “kernel”, “representation”,
“regression”, “classification” etc have high metric. Report on your experiences, and use
your metric to prune the data set to just the top few hundred words (say 500, or lower
if the implementation is still too slow). You may find it useful to read up on tf-idf on
wikipedia. [10 points]

(f) Now run LDA on the reduced NeurIPS data, using one of the Gibbs samplers you have just
written. You will need to experiment with various settings of α, β and K until the topics
discovered looks “reasonable”. Describe the topics you found. How do the topics change
(qualitatively) as α, β and K are varied? [10 points]

7. [15 marks] Optimization.

(a) Find the local (!) extrema of the function f(x, y) := x + 2y subject to the constraint
y2 + xy = 1. For illustration, here are plots of the function f (left) and the set of points
satisfying the constraints (right) on the square [−3, 3]2:

Please derive your solution using a Lagrange multiplier, and denote this multiplier by λ.
We are asking for the points at which the local extrema occur, not for the function values
at these points. [9 marks]

(b) Suppose we have a numerical routine to evaluate the exponential function exp(x). How can
we compute the function ln(a), for a given a ∈ R+, using Newton’s method?

i. Derive a function f(x, a) to which Newton’s method can be applied to find x such that
x = ln(a).

ii. Specify the update equation xn+1 = . . . in Newton’s algorithm for this problem.

[6 marks]

8. [BONUS: 20 marks] Eigenvalues as solutions of an optimization problem. Let
A be a symmetric n× n-matrix, and define

qA(x) := x
T
Ax and RA(x) :=

x
T
Ax

xTx
=
qA(x)

‖x‖2
for x ∈ Rn .

We have already encountered the quadratic form qA in class. The purpose of this problem is to
verify the following fact:
If A is a symmetric n× n-matrix, the optimization problem

x∗ := argmax
x∈Rn

RA(x)

has a solution, RA(x∗) is the largest eigenvalue of A, and x∗ is a corresponding eigenvector.

This result is very useful in machine learning, where we are often interested in the largest
eigenvalue specifically—it allows us to compute the largest eigenvalue without computing the
entire spectrum, and it replaces an algebraic characterization (the eigenvalue equation) by an
optimization problem. We will assume as known that the function qA is continuous.

(a) Use the extreme value theorem of calculus (recall: a continuous function on a compact
domain attains its maximum and minimum) to show that supx∈Rn RA(x) is attained.
Hint: Since Rn is not compact, transform the supremum over Rn into an equivalent supre-
mum over the unit sphere S = {x ∈ Rn| ‖x‖ = 1}. The set S is compact (which you can
assume as known). [6 marks]

(b) Let λ1 ≥ . . . ≥ λn be the eigenvalues of A enumerated by decreasing size, and ξ1, . . . , ξn
corresponding eigenvectors that form an ONB. Recall from class that we can represent any
vector x ∈ Rn as

x =

n∑
i=1

(ξ
T

i x)ξi .

Show that RA(x) ≤ λ1. [9 marks]

Since clearly RA(ξ1) = λ1, we have in fact shown the existence of the maximum twice, using
two different arguments! In summary, we now know the maximum exists, and that ξ1 attains
it. What we still have to show is that any vector in S that is not an eigenvector for λ1 does not
maximize RA.

(c) Recall that there may be several linearly independent eigenvectors that all have eigenvalue
λ1. Let these be ξ1, . . . , ξk, for some k ≤ n. Show that, if x ∈ Rn is not contained in
span{ξ1, . . . , ξk}, then RA(x) < λ1. [5 marks]

