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1. Gaussian graphical models. Consider a multivariate Gaussian variable x = (x1, . . . , xn)
with given mean vector µ and covariance matrix Σ.

(a) Write out the probability density function for x.

(b) Let n = 4, µ = (0, 1, 1, 0) and

Σ =
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draw the corresponding undirected graph and define clique potentials consistent with
the above Gaussian. [Hint: multiply out the terms that appear in the exponent.]

2. Conditional independencies and expressiveness of graphical models. Consider the
following graphical models:
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(a) For graphs 2, 4, 6 and 8, write down all the conditional independence relationships that
hold for variable C of the form C⊥⊥X|V, where X and V are sets of other variables.

(b) Two graphs are equivalent if they express all the same marginal and conditional inde-
pendence relationships between their variables. A graph G is subsumed by graph H if
all conditional independence relationships in H are exhibited in G. Divide the above 8
graphs into the smallest number of non-overlapping sets of equivalent graphs, and state
which of these sets of equivalent graphs are subsumed by one of other sets.

3. Noisy ICA Consider a noisy independent factor model for data x ∈ RD:

x ∼ N (Az,Ψ) A ∈ RD×K ; Ψ ∈ RD×D, diagonal.
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(a) Derive the resulting marginal P (zk) (integrating out uk). What distribution is this?
Sketch the density function and explain the relationship between this model and ICA.

This two-stage representation of the prior on zk is valuable because it allows us to design
approximate methods for inference in noisy ICA. For example, consider variational Bayes
(VB).

(b) Write down a minimal VB factorisation of the joint posterior on latents and parameters
that would make approximate learning tractable. By minimal we mean that you should
not assume any factorisations beyond those necessary to obtain a tractable algorithm.

(c) Derive the update for the term q(Ψ, . . . ) (where the dots stand for any other variables
that may be included in the factor according to your factorisation). You may assume
conjugate priors wherever needed.

(d) Derive hyperparameter optimisation rules to:

(i) learn the shape of the marginal distributions P (zk);

(ii) learn the number of factors.

You may need to alter the model parameterisation in the second case. Explain the
reasoning behind your choice of hyperparametrisation, and derive the corresponding
update rules.

4. EP for sign constraints

Consider a linear dynamical system:

y1 ∼ N (0, σ2) (1)

yi|yi−1 ∼ N (yi−1, σ
2) for i = 2, 3, . . . (2)

xi|yi ∼ N (yi, τ
2) for i = 1, 2, . . . (3)

with each random variable being scalar. Suppose we observe only the signs si = ±1 of
the outputs xi, rather than their magnitudes. Derive two different expectation propagation
algorithms to approximate the resulting posterior over the yis.

(a) To incorporate the sign observations, we could include additional factors of the form:

fi(xi) =

{
1 if sixi > 0,

0 otherwise

Derive an expectation propagation algorithm to estimate the marginal distributions over
all xi and yi in the joint distribution given by the (normalized) product of these factors
with the distribution of equations (1-3). Approximate each factor with a Gaussian. You
may assume access to a function which can compute the mean E(m, v2) and variance
V (m, v2) of the truncated Gaussian:

P (z|m, v) ∝

e−
(z−m)2

2v2 if z > 0;

0 otherwise



(b) An alternative approach would be to first compute the probabilities:

gi(yi) = P (sign(xi) = si|yi),

and then use expectation propagation to estimate the marginals of yi’s in the joint
distribution given by the product of the gi factors with the prior P (y1, . . . , yt) given in
equations (1-2). Show that both EP algorithms are equivalent in that they should have
the same fixed points.

5. Inconsistency of Local Marginals Loopy belief propagation approximates the distribution
over a pairwise MRF using a set of locally consistent beliefs {bi(xi), bij(xi, xj)}:∑

xi

bi(xi) = 1 for all i;∑
xi

bij(xi, xj) = bj(xj) for all i, j and xj .

(a) Give an example set of beliefs that are locally consistent but not globally consistent.
That is, there is no distribution p(X) over all variables such that

p(Xi = xi) = bi(xi) for all i, xi;

p(Xi = xi, Xj = xj) = bij(xi, xj) for all i, j, xi, xj .

Explain why this set of beliefs is not globally consistent.

(b) Construct a graphical model with specific parameter settings, such that the local marginals
you came up with in the previous question form a fixed point of the loopy belief propa-
gation algorithm run on this model.


