
Assignment 6

Probabilistic and Unsupervised Learning / Approximate Inference

Maneesh Sahani

Note: As usual, please attempt the main questions before the bonus ones.

1. [20 marks] EP for sign constraints

Consider a linear dynamical system:

y1 ∼ N (0, σ2) (1)

yi|yi−1 ∼ N (yi−1, σ
2) for i = 2, 3, . . . (2)

xi|yi ∼ N (yi, τ
2) for i = 1, 2, . . . (3)

with each random variable being scalar. Suppose we observe only the signs si = ±1 of the out-
puts xi, rather than their magnitudes. Derive two different expectation propagation algorithms to
approximate the resulting posterior over the yis.

(a) To incorporate the sign observations, we could include additional factors of the form:

fi(xi) =

{
1 if sixi > 0,

0 otherwise

Derive an expectation propagation algorithm to estimate the marginal distributions over all xi
and yi in the joint distribution given by the (normalized) product of these factors with the dis-
tribution of equations (1-3). Approximate each factor with a Gaussian. You may assume access
to a function which can compute the mean E(m, v2) and variance V (m, v2) of the truncated
Gaussian:

P (z|m, v) ∝

e−
(z−m)2

2v2 if z > 0;

0 otherwise

(b) An alternative approach would be to first compute the probabilities:

gi(yi) = P (sign(xi) = si|yi),

and then use expectation propagation to estimate the marginals of yi’s in the joint distribution
given by the product of the gi factors with the prior P (y1, . . . , yt) given in equations (1-2). Show
that both EP algorithms are equivalent in that they should have the same fixed points.

2. [30 marks] EP for the binary factor model

Now derive an EP algorithm to infer the marginals on the source variables in the binary latent factor
model of question 1 of assignment 5.

(a) First, write down the log-joint probability for a single observation-source pair log(p(s, x)). Re-
arrange the terms to form a sum of log-factors on s (assuming x is observed), each defined either
on a single source variable, or on a pair:

log(p(s, x)) =
∑
i

log fi(si) +
∑
ij

log gij(si, sj).

Relate your result to the Boltzmann Machine. [Remember that, since the sources s are binary,
s2i = si.] [5 marks]



(b) Next, derive a message passing scheme to find iterative approximations f̃i and g̃ij to each factor.
Start your derivation from the KL divergence KL[p‖q] and identify clearly each time you make
an approximate step. You don’t need to make all of the EP approximations: which one(s) is(are)
missing?

Give the final message-passing scheme in terms of updates to the natural parameters of the site
approximations. There will be two different types of update: for the f̃i and the g̃ij respectively.
[10 marks]

(c) Rewrite your message passing approximation to use factored approximate messages. Explain
how this leads to a loopy BP algorithm. [5 marks]

(d) Describe a Bayesian method for selecting K, the number of hidden binary variables using EP.
Does your method pose any computational difficulties and if so how would you tackle them?
[10 marks]

3. [Bonus: 50 marks] Implement the EP/loopy-BP algorithm that you derived in the previous ques-
tion, and compare your results to those of the variational mean-field algorithm.

4. [Bonus 10 marks] Inconsistency of Local Marginals Loopy belief propagation approximates
the distribution over a pairwise MRF using a set of locally consistent beliefs {bi(xi), bij(xi, xj)}:∑

xi

bi(xi) = 1 for all i;∑
xi

bij(xi, xj) = bj(xj) for all i, j and xj .

(a) Give an example set of beliefs that are locally consistent but not globally consistent. That is,
there is no distribution p(X) over all variables such that

p(Xi = xi) = bi(xi) for all i, xi;

p(Xi = xi, Xj = xj) = bij(xi, xj) for all i, j, xi, xj .

Explain why this set of beliefs is not globally consistent. [5 marks]

(b) Construct a graphical model with specific parameter settings, such that the local marginals
you came up with in the previous question form a fixed point of the loopy belief propagation
algorithm run on this model. [5 marks]


