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Exponential families: the log partition function

Consider an exponential family distribution with sufficient statistic s(X) and natural parameter
θ (and no base factor in X alone). We can write its probability or density function as

p(X |θ) = exp
(
θTs(X)− Φ(θ)

)
where Φ(θ) is the log partition function

Φ(θ) = log
∑

x

exp
(
θTs(x)

)

Φ(θ) plays an important role in the theory of the exponential family. For example, it maps
natural parameters to the moments of the sufficient statistics:

∂

∂θ
Φ(θ) = e−Φ(θ)

∑
x

s(x)eθTs(x) = Eθ [s(X)] = µ(θ) = µ

∂2

∂θ2 Φ(θ) = e−Φ(θ)
∑

x

s(x)2eθTs(x) − e−2Φ(θ)
[∑

x

s(x)eθTs(x)
]2

= Vθ [s(X)]

The second derivative is thus positive semi-definite, and so Φ(θ) is convex in θ.
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Exponential families: mean parameters and negative entropy

A (minimal) exponential family distribution can also be parameterised by the means of the
sufficient statistics.

µ(θ) = Eθ [s(X)]

Consider the negative entropy of the distribution as a function of the mean parameter:

Ψ(µ) = Eθ [log p(X |θ(µ))] = θTµ− Φ(θ)

so

θTµ= Φ(θ) + Ψ(µ)

The negative entropy is dual to the log-partition function. For example,

d
dµ

Ψ(µ) =
∂

∂µ

(
θTµ− Φ(θ)

)
+

dθ
dµ

∂

∂θ

(
θTµ− Φ(θ)

)
= θ +

dθ
dµ

(µ− µ) = θ
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Exponential families: duality

The log partition function and negative entropy are Legendre dual or convex conjugate
functions.

Consider the KL divergence between distributions with natural parameters θ and θ′:

KL
[
θ
∥∥θ′] = KL

[
p(X |θ)

∥∥p(X |θ′)
]

= Eθ

[
− log p(X |θ′) + log p(X |θ)

]
= −θ′Tµ + Φ(θ′) + Ψ(µ) ≥ 0

⇒ Ψ(µ) ≥ θ′Tµ− Φ(θ′)

where µ are the mean parameters corresponding to θ.

Now, the minimum KL divergence of zero is reached iff θ = θ′, so

Ψ(µ)= sup
θ′

[
θ′Tµ− Φ(θ′)

]
and, if finite θ(µ)= argmax

θ′

[
θ′Tµ− Φ(θ′)

]
The left-hand equation is the definition of the conjugate dual of a convex function.

Continuous functions are reciprocally dual, so we also have:

Φ(θ)= sup
µ′

[
θTµ′ −Ψ(µ′)

]
and, if finite µ(θ)= argmax

µ′

[
θTµ′ −Ψ(µ′)

]
Thus, duality gives us another relation between θ and µ.
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Duality, inference and the free energy

Consider a joint exponential family distribution on observed x and latent z.

p(x, z) = exp
[
θTs(x, z)− ΦXZ (θ)

]

The posterior on z is also in the exponential family, with the clamped sufficient statistic
sZ (z; x) = sXZ (xobs, z); the same (now possibly redundant) natural parameter θ; and partition
function ΦZ (θ) = log

∑
z expθTsZ (z).

The likelihood is

L(θ) = p(x|θ) =
∑

z

eθTs(x,z)−ΦXZ (θ) =
∑

z

eθTsZ (z;x)e−ΦXZ (θ) = exp[ΦZ (θ)−ΦXZ (θ)]

So we can write the log-likelihood as

`(θ) = sup
µZ

[θTµZ − ΦXZ (θ)︸ ︷︷ ︸
〈log p(x,z)〉q

−Ψ(µZ )︸ ︷︷ ︸
−H[q]

] = sup
µZ

F(θ,µZ )

This is the familiar free energy with q(z) represented by its mean parameters µZ !
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Inference with mean parameters
We have described inference in terms of the distribution q, approximating as needed, then
computing expected suff stats. Can we describe it instead as an optimisation over µ directly?

µ∗Z = argmax
µZ

[θTµZ −Ψ(µZ )]

Concave maximisation(!), but two complications:

I The optimum must be found over feasible means. Interdependance of the sufficient
statistics may prevent arbitrary sets of mean sufficient statistics being achieved

I Feasible means are convex combinations of all the single-configuration sufficient
statistics.

µ =
∑

x

ν(x)s(x)
∑

x

ν(x) = 1

I Take a Boltzmann machine on two variables, x1, x2.
I The sufficient stats are s(x) = [x1, x2, x1x2].
I Clearly only the stats S = {[0, 0, 0], [0, 1, 0], [1, 0, 0], [1, 1, 1]} are possible.
I Thus µ ∈ convex hull(S).

I For a discrete distribution, this space of possible means is bounded by
exponentially many hyperplanes connecting the discrete configuration stats: called
the marginal polytope.

I Even when restricted to the marginal polytope, evaluating Ψ(µ) can be challenging.
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Convexity and undirected trees
I We can parametrise a discrete pairwise MRF as follows:

p(X) =
1
Z

∏
i

fi (X)
∏
(ij)

fij (Xi ,Xj )

= exp

∑
i

∑
k

θi (k)δ(Xi = k) +
∑
(ij)

∑
k,l

θij (k , l)δ(Xi = k)δ(Xj = l)− Φ(θ)



I So discrete MRFs are always exponential family, with natural and mean parameters:

θ =
[
θi (k),θij (k , l) ∀i, j, k , l

]
µ =

[
p(Xi = k), p(Xi = k ,Xj = l) ∀i, j, k , l

]
In particular, the mean parameters are just the singleton and pairwise probability tables.

I If the MRF has tree structure T , the negative entropy can be written in terms of the
single-site entropies and mutual informations on edges:

Ψ(µT ) = EθT

log
∏

i

p(Xi )
∏

(ij)∈T

p(Xi ,Xj )

p(Xi )p(Xj )


= −

∑
i

H(Xi ) +
∑

(ij)∈T

I(Xi ,Xj )
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The Bethe free energy again

We can see the Bethe free energy problem as a relaxation of the true free-energy
optimisation:

µ∗Z = argmax
µZ∈M

[θTµZ −Ψ(µZ )]

whereM is the set of feasible means.

1. RelaxM→ L, where L is the set of locally consistent means (i.e. all nested means
marginalise correctly).

2. Approximate Ψ(µZ ) by the tree-structured form

ΨBethe(µZ ) = −
∑

i

H(Xi ) +
∑

(ij)∈G

I(Xi ,Xj )

L is still a convex set (polytope for discrete problems). However ΨBethe is not convex.
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1. RelaxM→ L, where L is the set of locally consistent means (i.e. all nested means
marginalise correctly).

2. Approximate Ψ(µZ ) by the tree-structured form

ΨBethe(µZ ) = −
∑

i

H(Xi ) +
∑

(ij)∈G

I(Xi ,Xj )

L is still a convex set (polytope for discrete problems). However ΨBethe is not convex.
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Convexifying BP

Consider instead an upper bound on Φ(θ):

Imagine a set of spanning trees T for the MRF, each with its own parameters θT ,µT . By
padding entries corresponding to off-tree edges with zero, we can assume that θT has the
same dimensionality as θ.

Suppose also that we have a distribution β over the spanning trees so that Eβ [θT ] = θ.

Then by the convexity of Φ(θ),

Φ(θ) = Φ(Eβ [θT ]) ≤ Eβ [Φ(θT )]

If we were to tighten the upper bound we might obtain a good approximation to Φ:

Φ(θ) ≤ inf
β,θT :Eβ [θT ]=θ

Eβ [Φ(θT )]



Convex Upper Bounds on the Log Partition Function

Φ(θ) ≤ inf
θT :Eβ [θT ]=θ

Eβ [Φ(θT )]
def
= Φβ(θ)

Solve the constrained optimisation problem using Lagrange multipliers:

L = Eβ [Φ(θT )]− λT(Eβ [θT ]− θ)

Setting the derivatives wrt θT to zero, we get:

∂

∂θT

∑
T

β(T )Φ(θT )− λT ∂

∂θT

∑
T

β(T )θT = 0

β(T )µT − β(T )ΠT (λ) = 0

µT = ΠT (λ)

where ΠT (λ) selects the Lagrange multipliers corresponding to elements of θ that are
non-zero in the tree T .

Although each tree has its own parameters θT , at the optimum they are all constrained: their
mean parameters are all consistent with each other (c.f. the tree-reparametrisation view of
BP) and with the Lagrange multipliers λ.



Convex Upper Bounds on the Log Partition Function

Φβ(θ) = sup
λ

inf
θT

Eβ [Φ(θT )]− λT(Eβ [θT ]− θ)

= sup
λ

λTθ + Eβ
[

inf
θT

Φ(θT )− θT
T ΠT (λ)

]
= sup

λ
λTθ + Eβ [−Ψ(ΠT (λ))]

= sup
λ

λTθ + Eβ

∑
i

Hλ(Xi )−
∑

(ij)∈T

Iλ(Xi ,Xj )


= sup

λ
λTθ +

∑
i

Hλ(Xi )−
∑
(ij)

βij Iλ(Xi ,Xj )

I This is a convexified version of the Bethe free energy.
I Optimisation wrt λis approximate inference applied to the tighest bound on Φ(θ) for

fixed β.
I The bound holds for any β and can be tightened by further minimisation.



EP free energy
A Bethe-like approach also casts EP as a variational energy fixed point method.

Consider finding marginals of a (posterior) distribution defined by clique potentials:

P(Z) ∝ f0(Z)
∏

i

fi (Zi )

where all factor have exponential form, f0 is in a tractable exponential family (possibly uniform)
bu the fi are jointly intractable – i.e. product cannot be marginalised, although individual terms
may be (numerically) tractable.

Augment by including tractable ExpFam terms with zero natural parameters

P(Z) ∝ eθT
0 s0(Z)

∏
i

eθT
i si (Zi )e0T s̃i (Zi ) = eθT

0 s0(Z)+
∑

i (θ
T
i si (Zi )+θ̃T s̃(Zi ))

Now, the variational dual principle tells us that the expected sufficient statistics:

µ∗0 = 〈s0〉P ; µ∗i = 〈si (Zi )〉P ; µ̃∗i = 〈s̃i〉P

are given by

{µ∗0 ,µ
∗
i , µ̃

∗
i } = argmax

{µ0,µi ,µ̃i}∈M

[
θT

0µ0 +
∑

i

(
θT

i µi + 0Tµ̃i

)
−Ψ(µ0,µi , µ̃i )

]



EP relaxation

The EP algorithm relaxes this optimisation:

I RelaxM to locally consistent marginals, retaining consistency across each edge
connecting {µ0, µ̃i} (as in BP on a junction graph); and between pairs (µi , µ̃i ).

I Replace negative entropy by ΨBethe({µ0, µ̃i})−
∑

i (H[µi , µ̃i ]− H[µ̃i ]).

I In effect, drop links between different µi and run reparameterisation on a junction graph.

The free-energy-based approximate marginals include µi which are refined during updates.

I Direct learning on the EP free-energy uses these marginals rather than the approximate
ones and a local normaliser formed by integrating over fi (Zi )q¬i (Zi ).

I A different derivation to the result from that in EP lecture.
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