
PROBABILISTIC AND UNSUPERVISED
LEARNING

PETER ORBANZ • FALL 2024

Version: 19 September 2024

SUPERVISED LEARNING

Here are two types of learning problems you may have encountered before:

x
o

x

x
x x

x
x

o

o
o

o
o o

x

x

x

x
o

−2 0 2 4 6 8 10 12
−20

−10

0

10

20

30

40

50

x

y

classification regression

• These are both supervised learning problems.
• In both cases we are fitting a function to data—statistically speaking we are performing

regression. The function takes finitely many values (classification) or is continuous-valued
(regression).

• The term supervised indicates that we have examples of (possibly noisy) solutions,
namely input and output values.

Peter Orbanz 2

THREE LEARNING PROBLEMS

© Gatsby Unit

• Predicting new outcomes: generalising.
• Supervised learning. Observe input/output pairs (“teaching”):

(x1, y1), (x2, y2), (x3, y3), (x4, y4), . . .

Predict the correct y∗ for new input x∗.

• Systematising (noisy) observations: discovering structure.
• Unsupervised learning. Observe (sensory) input alone:

x1, x2, x3, x4, . . .

Describe pattern of data [p(x)], identify and extract underlying structural variables
[xi → yi].

• Choosing actions wisely.
• Reinforcement learning. Rewards or payoffs (and possibly also inputs) depend on

actions:
x1 : a1 → r1, x2 : a2 → r2, x3 : a3 → r3 . . .

Find a policy for action choice that maximises payoff.

Peter Orbanz 3

SUPERVISED VS UNSUPERVISED

Consider a data source generating points in R2. Each point belongs to one of three groups. Here is a sample:

We are asked to assign data points to groups. There is a supervised and an unsupervised versions of this
problem.

Classification

• Given: The data above, and the group
assignment of each point.

• Task: Assign new points generated by the
same source to their groups.

• Supervised problem.
• Jargon: Groups are called “classes”.
• Solution is typically a function.

Clustering

• Given: The data above only.
• Task: Assign each point in the data to a

group.
• Unsupervised problem.
• Jargon: Groups are called “clusters”.
• Solution is typically a distribution.

Peter Orbanz 4

PENDULUM
(WORK OF MARC DEISENROTH AND CARL EDWARD RASMUSSEN)

Task
Balance the pendulumn upright by moving the
sled left and right.

• The computer can control only the motion
of the sled.

• Available data: Current state of system
(measured 25 times/second).

Formalization
State = 4 variables (sled location, sled velocity, angle, angular velocity)

Actions = sled movements

The system can be described by a function

f : S ×A → S
(state, action) 7→ state

Peter Orbanz 5

PENDULUM

Peter Orbanz 6

OUR TOPICS

In Part I
• Models and learning approaches

Review of Bayesian learning, maximum likelihood estimation, Gaussian distributions

• Latent variable models
Latent variable models, free energies, the EM algorithm

• Markov and hidden Markov models
A special class of latent variable models for sequence data.

• Sampling algorithms and MCMC
Fitting and evaluating models by randomized simulation can be an alternative to optimization.

• Optimization
Arguably the most widely used way to fit a model to data is by optimization.

In Part II
• (Approximate) inference in graphical models.

Peter Orbanz 7

BASICS

REPRESENTING A DATA SOURCE

Our approach to learning starts with a model of data production:

P(data|parameters) P(x|θ) or P(y|x, θ)

Machine learning jargon also calls this a generative model.

In more detail
• We observe data D = (x1, . . . , xn) from a data source, in a sample space X .
• Our mathematical description of the source is a probability distribution P on X .
• A (statistical) model is a setM of probability distributions. “I assume modelM” means

“I assume P is contained inM”.
• We typically index the elements ofM by the elements of a parameter space T . The

model then takes the form
M = {P(• |θ) | θ ∈ T }

• Example:M = {Gaussian distributions with variance 1 and mean θ | θ ∈ R}

Terminology varies, and the term “model” may refer to other mathematical objects.

Peter Orbanz 9

BASIC RULES OF PROBABILITY

© Gatsby Unit

• Probabilities are non-negative P(x) ≥ 0 ∀x.

• Probabilities normalise:
∑

x∈X P(x) = 1 for distributions if x is a discrete variable and∫
X p(x)dx = 1 for probability densities over continuous variables

• The joint probability of x and y is: P(x, y).

• The marginal probability of x is: P(x) =
∑

y P(x, y), assuming y is discrete.

• The conditional probability of x given y is: P(x|y) = P(x, y)/P(y)

• Bayes’ Formula: Since P(x, y) = P(x)P(y|x) = P(y)P(x|y), we have

P(y|x) = P(x|y)P(y)
P(x)

posterior =
likelihood× prior

evidence

Warning: We will not be obsessively careful in our use of p and P for probability density and probability
distribution. Should be obvious from context.

Peter Orbanz 10

INDEPENDENCE

Recall that two random variables X1 with (marginal) distribution P1 and X2 with distribution P2
are independent if their joint distribution P factorizes,

P(x1, x2) = P1(x1)P2(x2) or equivalently P(x1|x2) = P1(x1) .

Informally:

Two random variables are independent if knowing the value of one does not provide any
information about the outcome of the other.

Random variables are called iid (independent and identically distributed) if they are
independent and have identical marginal distributions: P(x1, . . . , xn) =

∏n
i=1 P(xi)

Peter Orbanz 11

EXPONENTIAL FAMILIES

A modelM = {p(• |θ) | θ ∈ T } is an exponential family if

p(x|θ) = f (x)g(θ)eϕ(θ)
T

T(x) for all x ∈ X and θ ∈ T .

The components of the model are:
• A function T : X → Rm, for some dimension m ∈ N. This function is the sufficient

statistic of the model.
• A function ϕ : T → Rm. Its values ϕ(θ) are called natural parameters.
• Functions f : X → R≥0 and g : T → R>0.

Note g is completely determined by T, f and ϕ.

Relevance
• These are arguably the most common types of distributions in machine learning.
• They often arise as building blocks of more complicated models.
• The class of exponential families includes most elementary probability distributions. As

we will see, it is also very convenient to work with.

Peter Orbanz 12

EXAMPLES OF EXPONENTIAL FAMILIES

Model Sample space Sufficient statistic

Gaussian Rd T(x) = (xxt, x)
Gamma R+ T(x) = (ln(x), x)
Poisson N0 T(x) = x
Multinomial {1, . . . ,K} T(x) = x
Wishart Positive definite matrices (requires more details)
Mallows Rankings (permutations) (requires more details)
Beta [0, 1] T(x) = (ln(x), ln(1− x))
Dirichlet Probability distributions on d events T(x) = (ln x1, . . . , ln xd)
Bernoulli {0, 1} T(x) = x

A non-example: Student’s t-distribution, and other heavy-tailed distributions.

Informally
• A given sample space X often has a “natural” statistic T. (A statistic is a function of the

data.)
• The exponential family defined by T is often the “natural” distribution for simple sources

generating data in X .

Peter Orbanz 13

LEARNING PARAMETERS

We distinguish two approaches:
• Point estimation of a parameter θ assumes there is a true but unknown value θ0. An

estimate θ̂ is a function of observed data that approximates θ0.
• Bayesian inference represents lack of knowledge as randomness; the parameter is a

random variable Θ. This means we have to specify the distribution of Θ, called the prior
distribution. We ask not for a true value of the parameter, but for its distribution p(θ|D)
given the observed data, called the posterior distribution.
(We assume that you are familiar with Bayes’ equation and basics of Bayesian inference.)

Specific approaches we will discuss:
• Maximum likelihood estimation is the most common form of point estimation.
• Bayesian inference may compute a posterior distribution from data (e.g. conjugate

posteriors), approximate complicated posteriors by simpler distributions (e.g. variational
inference), or use sampling algorithms to generate random draws from the posterior,
which are then processed further.

• The MAP estimate (maximum a posteriori estimate) is the parameter value most probable
under the posterior,

θMAP = argmaxP(θ|D) = argmaxP(θ)P(D|θ) .
Although it is defined in terms of a posterior, it is a point estimate.

Peter Orbanz 14

BASIC BAYESIAN LEARNING

Modeling assumption
• ModelM = {p(• |θ)|θ ∈ T }. Each element p(• |θ) is the distribution of a single

random element X of X .
• As prior, we choose a distribution π on T .
• We assume data is generated as follows: Generate

Θ ∼ π

X1, . . . ,Xn|Θ ∼iid p(• |Θ) .

and explain data D = {x1, . . . , xn} as the values assumed by X1, . . . ,Xn.
• X1, . . . ,Xn are conditionally iid (iid = independently identically distributed).

The term Bayesian model often refers to the pair (M, π).

Posterior
The independence assumption implies p(D|θ) =∏n

i=1 p(xi|θ). Bayes’ rule then takes the form

π(θ|D) =

∏n
i=1 p(xi|θ)∫

T
∏n

i=1 p(xi|θ)π(θ)dθ
π(θ) ∝

n∏
i=1

p(xi|θ)π(θ)

Bayesian inference without the conditional i.i.d. assumption is also possible, but typically more complicated.

Peter Orbanz 15

EXAMPLE: UNKNOWN GAUSSIAN MEAN

Model
• Observations are generated by a Gaussian, with unknown mean θ and fixed, known

standard deviation σ.
• That means our model isM = {p(• |θ, σ)|θ ∈ R}, where p is the Gaussian density on

the real line.

Prior
• We choose a Gaussian prior π(• |µ, ξ) with known

mean µ and standard deviation ξ.
• In the figure, µ = 2 and ξ = 5. Hence, we assume
µ = 2 is the most probable value of θ, and that
θ ∈ [−3, 7] with a probability ∼ 0.68.

Posterior
Application of Bayes’ formula shows the posterior is again a Gaussian,

π(θ|x1:n, µ, ξ) = π(θ|µn, ξn) where µn :=
σ2µ+ ξ2∑n

i=1 xi

σ2 + nξ2
and ξ2

n :=
σ2ξ2

σ2 + nξ2

Peter Orbanz 16

EXAMPLE: UNKNOWN GAUSSIAN MEAN

Model

prior

most probable data source
under the prior

the posterior below is based on
data from this source

observation model

θ̂MAP

posterior

Posterior under increasing sample size

Prior

Posterior

n = 1 n = 2 n = 10

Peter Orbanz 17

A SLIGHTLY DIFFERENT PERSPECTIVE

Parameters
Intuitively, we can think of θ as the common pattern underlying the data:

P(X|θ) = Probability(data|pattern)

Inference idea
data = underlying pattern + independent randomness

Broadly speaking, the goal of inference is to extract the underlying pattern from the data.
Bayesian statistics models the pattern as a random quantity.

Peter Orbanz 18

BAYESIAN LEARNING AND MODEL SELECTION

© Gatsby Unit

Choosing a modelM from a setM1,M2, . . . of candidate models is called model selection.
Bayesian inference can be extended to model selection.

• Problem specification:

Models:Mi = {P(x|θi,Mi)|θi ∈ Ti}.
Prior probability of models: P(Mi).
Prior probabilities of model parameters: P(θi|Mi)

• Data probability (likelihood)

P(D|θi,Mi) =
n∏

j=1

P(xj|θi,Mi) ≡ L(θi)

Note we are assuming the data is conditionally i.i.d. given the model and parameter.

• Parameter learning (posterior):

P(θi|D,Mi) =
P(D|θi,Mi)P(θi|Mi)

P(D|Mi)
; P(D|Mi) =

∫
dθi P(D|θi,Mi)P(θi|Mi)

P(D|Mi) is called the marginal likelihood or evidence forMi. It is proportional to the
posterior probability modelMi being the one that generated the data.

• Model selection:
P(Mi|D) =

P(D|Mi)P(Mi)

P(D)

Peter Orbanz 19

BAYESIAN LEARNING: A COIN TOSS EXAMPLE

© Gatsby Unit

Coin toss: One parameter q — the probability of obtaining heads
So our space of models is the set of distributions over q ∈ [0, 1].
Learner A believes (Bayesian) modelMA: all values of q are equally plausible;
Learner B believes (Bayesian) modelMB: “fair” coin (q ≈ 0.5) more plausible than “biased”.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

q

P
(q

)

A: α1 = α2 = 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

q

P
(q

)

B: α1 = α2 = 4.0
Both prior beliefs can be described by the Beta distribution:

p(q|α1, α2) =
q(α1−1)(1− q)(α2−1)

B(α1, α2)
= Beta(q|α1, α2)

Peter Orbanz 20

BAYESIAN LEARNING: THE COIN TOSS (CONT)

© Gatsby Unit

Now we observe a toss. Two possible outcomes:

p(H|q) = q p(T|q) = 1− q

Suppose our single coin toss comes out heads

The probability of the observed data (likelihood) is:

p(H|q) = q

Using Bayes’ formula, we multiply the prior, p(q) by the likelihood and renormalise to get the
posterior probability:

p(q|H) =
p(q)p(H|q)

p(H)
∝ q Beta(q|α1, α2)

∝ q q(α1−1)(1− q)(α2−1) = Beta(q|α1 + 1, α2)

Peter Orbanz 21

BAYESIAN LEARNING: THE COIN TOSS (CONT)

© Gatsby Unit

A B

Prior

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

q

P
(q

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

q

P
(q

)

Beta(q|1, 1) Beta(q|4, 4)

Posterior

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

q

P
(q

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

q

P
(q

)

Beta(q|2, 1) Beta(q|5, 4)

Peter Orbanz 22

BAYESIAN LEARNING: THE COIN TOSS (CONT)

© Gatsby Unit

What about multiple tosses? Suppose we observe D = { H H T H T T }:

p({ H H T H T T }|q) = qq(1− q)q(1− q)(1− q) = q3(1− q)3

This is still straightforward:

p(q|D) =
p(q)p(D|q)

p(D) ∝ q3(1− q)3 Beta(q|α1, α2)

∝ Beta(q|α1 + 3, α2 + 3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

q

P
(q

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

q

P
(q

)

Peter Orbanz 23

CONJUGATE PRIORS

© Gatsby Unit

Updating the prior to form the posterior was particularly easy in these examples. This is
because we used a conjugate prior for an exponential family likelihood.
Recall that exponential family distributions take the form:

P(x|θ) = g(θ)f (x)eϕ(θ)TT(x)

with g(θ) the normalising constant. Given n conditionally iid observations,

P({xi}|θ) =
∏

i

P(xi|θ) = g(θ)ne
ϕ(θ)T

(∑
i T(xi)

)∏
i

f (xi)

A conjugate prior for an exponentially family is of the form

P(θ) = F(τ , ν)g(θ)νeϕ(θ)Tτ ,

with normaliser F(τ , ν). The posterior is then

P(θ|{xi}) ∝ P({xi}|θ)P(θ) ∝ g(θ)ν+ne
ϕ(θ)T

(
τ+

∑
i T(xi)

)
with the normaliser given by F

(
τ +

∑
i T(xi), ν + n

)
.

Peter Orbanz 24

CONJUGATE PRIORS

© Gatsby Unit

The posterior given an exponential family likelihood and conjugate prior is:

P(θ|{xi}) = F
(
τ +

∑
i T(xi), ν + n

)
g(θ)ν+n exp

[
ϕ(θ)T

(
τ +

∑
i T(xi)

)]
Here,

τ ∈ T specifies the expected value of the prior.
ν ∈ R>0 is the concentration or scale of the prior

(roughly: larger scale→ smaller variance).

As new data come in, each one increments the sufficient statistics vector and the scale to define
the posterior.

Interpretation
• The posterior effectively interpolates between the prior assumption τ and the

observational evidence
∑

i T(xi).
• The concentration ν specifies how much weight we assign to the prior belief τ . (Large ν
→ strong prior assumption.)

• Some authors interpret τ as τ =
∑

T(x′i) for “fictitious observations” or
“pseudo-observations” x′1, . . . , x

′
ν . (If ν is an integer, which it need not be.)

Peter Orbanz 25

CONJUGACY IN THE COIN FLIP

© Gatsby Unit

Distributions are not always written in their natural exponential form.

The Bernoulli distribution (a single coin flip) with parameter q and observation x ∈ {0, 1}, can
be written:

P(x|q) = qx(1− q)(1−x)

= ex log q+(1−x) log(1−q)

= elog(1−q)+x log(q/(1−q)) = (1− q)elog(q/(1−q))x

So the natural parameter is the log odds log(q/(1− q)), and the sufficient stats (for multiple
tosses) is the number of heads. The conjugate prior is

P(q) = F(τ, ν) (1− q)νelog(q/(1−q))τ

= F(τ, ν) (1− q)νeτ log q−τ log(1−q) = F(τ, ν) (1− q)ν−τqτ

which has the form of the Beta distribution⇒ F(τ, ν) = 1/B(τ + 1, ν − τ + 1).

In general, then, the posterior will be P(q|{xi}) = Beta(α1, α2), with

α1 = 1 + τ +
∑

i xi α2 = 1 + (ν + n)−
(
τ +

∑
i xi

)
If we observe a head, we add 1 to the sufficient statistic

∑
xi, and also 1 to the count n. This

increments α1. If we observe a tail we add 1 to n, but not to
∑

xi, incrementing α2.

Peter Orbanz 26

BAYESIAN COINS – COMPARING MODELS

© Gatsby Unit

We have seen how to update posteriors within each model. To study the choice of model,
consider two more extreme models: “fair” and “bent”. A priori, we may think that “fair” is
more probable, eg:

p(fair) = 0.8, p(bent) = 0.2
For the bent coin, we assume all parameter values are equally likely, whilst the fair coin has a
fixed probability:

0 0.5 1
0

0.5

1

p(
q|

be
nt

)

parameter, q
0 0.5 1

0

0.5

1

p(
q|

fa
ir)

parameter, q

We make 10 tosses, and get: D = (T H T H T T T T T T).

Peter Orbanz 27

BAYESIAN COINS – COMPARING MODELS

© Gatsby Unit

Which model should we prefer a posteriori (i.e. after seeing the data)?

The evidence for the fair model is:

P(D|fair) = (1/2)10 ≈ 0.001

and for the bent model is:

P(D|bent) =

∫
dq P(D|q, bent)p(q|bent) =

∫
dq q2(1− q)8 = B(3, 9) ≈ 0.002

Thus, the posterior for the models, by Bayes’ formula:

P(fair|D) ∝ 0.0008, P(bent|D) ∝ 0.0004,

ie, a two-thirds probability that the coin is fair.

How do we make predictions? Could choose the fair model (model selection).
Or could weight the predictions from each model by their probability (model averaging).
Probability of H at next toss is:

P(H|D) = P(H|D, fair)P(fair|D) + P(H|D, bent)P(bent|D) = 1
2
× 2

3
+

3
12
× 1

3
=

5
12
.

Peter Orbanz 28

MAXIMUM LIKELIHOOD ESTIMATION

Problem specification
• Data D = {x1, . . . , xn} is generated iid from modelM = {p(x|θ) | θ ∈ T }.

We assume iid rather than conditionally iid since the parameter is not assumed to be random.

• Objective: Find the distribution inM that best explains the data.
That means we have to identify a "best" parameter value θ̂.

Maximum Likelihood approach
The maximum likelihood estimator (MLE) is defined as

θ̂ML := argmax
θ∈T

p(x1, . . . , xn|θ) .

We hence assume the data is best explained by that distribution inM under which it is most
likely to occur (has the highest probability or density value).

If differentiability holds, θ̂ML is the solution of the maximum likelihood equation

∇θp(D|θ) = ∇θ

(n∏
i=1

p(xi|θ)
)

= 0

Peter Orbanz 29

LOGARITHM TRICK

Instead of the likelihood p(D|θ), we often work with the log-likelihood log p(D|θ).

Recall two properties of the logarithm function:
• It turns products into sums: log

(∏
i fi
)
=
∑

i log(fi)

• Since it is monotonically increasing on R+, it does not change the location of maxima
and minima:

max
y

log(g(y)) ̸= max
y

g(y) The value changes.

argmax
y

log(g(y)) = argmax
y

g(y) The location does not change.

MLE with the log-likelihood: Since

θ̂ML = argmax
θ

n∏
i=1

p(xi|θ) = argmax
θ

log
(n∏

i=1

p(xi|θ)
)
= argmax

θ

n∑
i=1

log p(xi|θ) ,

the MLE θ̂ML is the solution of

n∑
i=1

∇θ log p(xi|θ) = 0

Peter Orbanz 30

BACKGROUND: LAW OF LARGE NUMBERS

For iid random variables X1,X2, . . . and any function f with E[| f (X1)|] <∞,

1
n

n∑
i=1

f (Xi)
n→∞−−−−→ E[f (X1)] with probability 1 .

In short: We know how to estimate expectations.

Consequences for parameter estimation
Idea: Reduce parameter estimation to the problem of estimating an expectation.

• Suppose θ0 is the parameter value that has generated the data.
• Find some function g such that

EPθ0
[g(X, θ)] = 0 if and only if θ = θ0

• By the law of large numbers, we can then estimate θ0 as the solution of

1
n

n∑
i=1

g(Xi, θ) = 0

Peter Orbanz 31

MLE DERIVED FROM THE LAW OF LARGE NUMBERS

• It can be shown (under some conditions on the model) that the function

g(x, θ) := ∇θ log p(x, θ)

satsifies the property above. That is,

EPθ0
[∇θ log p(X, θ)] = 0 if and only if θ = θ0

• The function θ 7→ ∇θ log p(x, θ) is called the score function, or the Fisher score.
• Substituting the law of large numbers estimate for the expectation gives

1
n

n∑
i=1

∇θ log p(Xi, θ) = 0 .

The solution of the equation is exactly the maximum likelihood estimator.

Peter Orbanz 32

TOOLS: GAUSSIAN DISTRIBUTIONS

GAUSSIAN DISTRIBUTION

Gaussian density in one dimension

p(x;µ, σ) :=
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
• µ = expected value of x, σ2 = variance, σ = standard deviation

• The quotient x−µ
σ

measures deviation of x from its expected value in
units of σ (i.e. σ defines the length scale)

The Gaussian Distribution

Chris Williams, School of Informatics, University of Edinburgh
Overview

• Probability density functions

• Univariate Gaussian

• Multivariate Gaussian

• Mahalanobis distance

• Properties of Gaussian distributions

• Graphical Gaussian models

• Read: Tipping chs 3 and 4

Continuous distributions
• Probability density function (pdf) for a continuous random variable X

P (a ≤ X ≤ b) =

∫ b

a
p(x)dx

therefore
P (x ≤ X ≤ x + δx) " p(x)δx

• Example: Gaussian distribution

p(x) =
1

(2πσ2)1/2
exp−

{
(x − µ)2

2σ2

}

shorthand notation X ∼ N(µ, σ2)

• Standard normal (or Gaussian) distribution Z ∼ N(0,1)

• Normalization ∫ ∞

−∞
p(x)dx = 1

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

• Cumulative distribution function

Φ(z) = P (Z ≤ z) =

∫ z

−∞
p(z′)dz′

• Expectation

E[g(X)] =

∫
g(x)p(x)dx

• mean, E[X]

• Variance E[(X − µ)2]

• For a Gaussian, mean = µ, variance = σ2

• Shorthand: x ∼ N(µ, σ2)

Recall: Standard deviation around the mean
• Recall that the interval [µ− σ, µ+ σ] (“one standard deviation”) always contains the

same amount of probability mass (ca. 68.27%), regardless of the choice of µ and σ.
• Similarly, the intervall [µ− 2σ, µ+ 2σ] contains ∼ 95.45% of the mass, and

[µ− 3σ, µ+ 3σ] contains ∼ 99.73%.

Peter Orbanz 34

COMPONENTS OF A 1D GAUSSIAN

µ = 2, σ = 2

-5 5 10

-2

-1

1

2

• Red: x 7→ x

• Green: x 7→ x− µ
• Blue: x 7→ − 1

2 (x− µ)2

• Brown: x 7→ − 1
2

(
x−µ
σ

)2

• Black: x 7→ exp
(
− 1

2

(
x−µ
σ

)2)
Peter Orbanz 35

COVARIANCE MATRICES

Recall: Covariance
The covariance of two random variables X1,X2 is

Cov[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])] .

If X1 = X2, the covariance is the variance: Cov[X,X] = Var[X].

Covariance matrix
If X = (X1, . . . ,XD) is a random vector with values in RD, the matrix of all covariances

Cov[X] := (Cov[Xi,Xj])i,j =

Cov[X1,X1] · · · Cov[X1,XD]
...

...
Cov[XD,X1] · · · Cov[XD,XD]


is called the covariance matrix of X.

Notation
It is customary to denote the covariance matrix Cov[X] by Σ.

Peter Orbanz 36

GAUSSIAN IN MULTIPLE DIMENSIONS

Gaussian density in D dimensions
The quadratric function

− (x− µ)2

2σ2
= −1

2
(x− µ)(σ2)−1(x− µ)

is replaced by a quadratic form:

p(x;µµµ,Σ) :=
1√

(2π)d |Σ|
exp
(
− 1

2

〈
(x−µµµ),Σ−1(x−µµµ)

〉)
for a positive definite matrix Σ.

Covariance matrix of a Gaussian
If a random vector X ∈ RD has Gaussian distribution with density p(x;µ,Σ), its covariance
matrix is Cov[X] = Σ. In other words, a Gaussian is parameterized by its covariance.

Assuming a multivariate Gaussian model means we assume that all stochastic
dependence between dimensions is captured by the covariance.

Peter Orbanz 37

GAUSSIAN DENSITY: EXAMPLE

p(x;µµµ,Σ) with µµµ = (0, 0) and Σ =

(
2 1
1 2

)

density contour lines 1000 sample points

Peter Orbanz 38

CONTOUR LINES

Intersect density with a horizontal plane, draw intersection
as a curve, and project it down onto the plane.

Each elliptical line is such a contour,
for planes at different heights.

Contours and standard deviation
• Each ellipse consists of all points x ∈ R2 that satisfy the equation〈

x,Σ−1x
〉
= c for some fixed c > 0 .

Changing c changes the size of the ellipse.
• The ellipses play the same role as intervals around the mean for 1D Gaussians: The ellipse

with
〈

x,Σ−1x
〉
= 1 contains ∼ 68.27% of the probability mass, etc.

• That is: The area within the ellipse given by
〈

x,Σ−1x
〉
= k corresponds to k standard

deviations.

Peter Orbanz 39

TOOLS:
SPECTRA AND GEOMETRY OF GAUSSIANS

EIGENVALUES

The properties of covariance matrices are summarized by their spectral properties (their eigenvalues and
eigenvectors). That makes spectral properties the key to understanding Gaussian distributions.

Recall the definition
We consider a square matrix A ∈ RD×D.

A vector ξ ∈ RD is an eigenvector of A if there is a scalar λ such that

Aξ = λξ .

λ is called an eigenvalue of A for the eigenvector ξ.

In words: The direction of ξ does not change under application of A. Only its length changes,
by a factor λ.

The set of eigenvalues of a matrix is called its spectrum.

Properties
• In general, eigenvalues are complex numbers λ ∈ C.
• The class of matrices with the nicest eigen-structure are symmetric matrices, for which all

eigenvalues are real and the eigenvectors are mutually orthogonal.

Peter Orbanz 41

EIGENSTRUCTURE OF SYMMETRIC MATRICES

If a matrix is symmetric:
• There are rank(A) distinct eigendirections.
• The eigenvectors are pair-wise orthogonal.
• If rank(A) = D, the eigenvectors form an orthogonal basis of RD. We can normalise each

eigenvector (which again produces an eigenvector) and obtain an orthonormal basis of RD.

Definiteness
type if ...

positive definite all eigenvalues > 0
positive semi-definite all eigenvalues ≥ 0
negative semi-definite all eigenvalues ≤ 0

negative definite all eigenvalues < 0
indefinite none of the above

Peter Orbanz 42

ORTHONORMAL BASES

Recall that a basis {v1, . . . , vD} of RD is called an orthonormal basis (ONB) if

⟨vi, vj⟩ =
{

1 i = j
0 i ̸= j

That is: The vi are pairwise orthogonal and each of length 1.

Orthogonal matrices
A matrix is orthogonal precisely if its rows form an ONB. Any two ONBs can be transformed
into each other by an orthogonal matrix.

Transforming between ONBs
If V = {v1, . . . , vD} andW = {w1, . . . ,wD} are ONBs, there is an orthogonal matrix O such
that

A[V] = OA[W]O
−1

for any matrix A. By A[V], we denote the representation of A in V .

Peter Orbanz 43

EIGENVECTOR ONB

Setting
• Suppose A symmetric, ξ1, . . . , ξD are eigenvectors and form an ONB.
• λ1, . . . , λD are the corresponding eigenvalues.

How does A act on a vector v ∈ RD?
1. Represent v in basis ξ1, . . . , ξD:

v =
D∑

j=1

vA
j ξj where vA

j ∈ R

2. Multiply by A: Eigenvector definition (recall: Aξj = λξj) yields

Av = A
(D∑

j=1

vA
j ξj

)
=

D∑
j=1

vA
j Aξj =

D∑
j=1

vA
j λjξj

A symmetric matrix acts by scaling along the directions of its eigenvectors.

Peter Orbanz 44

ILLUSTRATION

Suppose we repeatedly apply a symmetric matrix A to a vector v ∈ RD: We compute

Av, A(Av) = A2v, A(A(Av))) = A3v, . . .

How does v change?

Example 1: v is an eigenvector with eigenvalue 2

v
Av

A2v

The direction of v does not change, but its length doubles with each application of A.

Example 2: v is an eigenvector with eigenvalue − 1
2

v

Av

A2v

A3v

Peter Orbanz 45

EFFECT OF A SYMMETRIC MATRIX

If v is an arbitrary vector, we can represent it as a linear
combination v =

∑
j vA

j ξj of eigenvectors of A, and obtain

Anv =
D∑

j=1

vA
j λ

n
j ξj

The weight λn
j grows most rapidly for eigenvalue with largest

absolute value.

The direction of Anv converges to the direction of the
eigenvector with largest eigenvalue as n grows large.

v
Av

A2v

A3v

A =

(
2 1
1 2

)
v =

(
− 1

2
1

)
eigenvectors shown in blue

length proportional to eigenvalue

Peter Orbanz 46

QUADRATIC FORMS

In applications, symmetric matrices often occur in quadratic forms.

Definition
The quadratic form defined by a symmetric matrix A is the function

qA : RD →R
x 7→ ⟨x,Ax⟩

Intuition
A quadratic form is the D-dimensional analogue of a quadratic function ax2, with a vector
substituted for the scalar x and the matrix A substituted for the scalar a ∈ R.

The Quadratic Form 5

(c)

1

2

1

(d)

1

2

1

(a)

1

2

1

(b)

1

2

1

Figure 5: (a) Quadratic form for a positive-definite matrix. (b) For a negative-definite matrix. (c) For a
singular (and positive-indefinite) matrix. A line that runs through the bottom of the valley is the set of
solutions. (d) For an indefinite matrix. Because the solution is a saddle point, Steepest Descent and CG
will not work. In three dimensions or higher, a singular matrix can also have a saddle.

solution is a minimum of , so can be solved by finding an that minimizes . (If is not
symmetric, then Equation 6 hints that CG will find a solution to the system 1

2 . Note that
1
2 is symmetric.)

Why do symmetric positive-definite matrices have this nice property? Consider the relationship between
at some arbitrary point and at the solution point 1 . FromEquation 3 one can show (AppendixC1)

that if is symmetric (be it positive-definite or not),

1
2

(8)

If is positive-definite as well, then by Inequality 2, the latter term is positive for all . It follows that
is a global minimum of .

The fact that is a paraboloid is our best intuition of what it means for a matrix to be positive-definite.
If is not positive-definite, there are several other possibilities. could be negative-definite — the result
of negating a positive-definite matrix (see Figure 2, but hold it upside-down). might be singular, in which
case no solution is unique; the set of solutions is a line or hyperplane having a uniform value for . If
is none of the above, then is a saddle point, and techniques like Steepest Descent and CG will likely fail.
Figure 5 demonstrates the possibilities. The values of and determine where the minimum point of the
paraboloid lies, but do not affect the paraboloid’s shape.

Why go to the trouble of converting the linear system into a tougher-looking problem? The methods
under study — Steepest Descent and CG — were developed and are intuitively understood in terms of
minimization problems like Figure 2, not in terms of intersecting hyperplanes such as Figure 1.

The Quadratic Form 5

(c)

1

2

1

(d)

1

2

1

(a)

1

2

1

(b)

1

2

1

Figure 5: (a) Quadratic form for a positive-definite matrix. (b) For a negative-definite matrix. (c) For a
singular (and positive-indefinite) matrix. A line that runs through the bottom of the valley is the set of
solutions. (d) For an indefinite matrix. Because the solution is a saddle point, Steepest Descent and CG
will not work. In three dimensions or higher, a singular matrix can also have a saddle.

solution is a minimum of , so can be solved by finding an that minimizes . (If is not
symmetric, then Equation 6 hints that CG will find a solution to the system 1

2 . Note that
1
2 is symmetric.)

Why do symmetric positive-definite matrices have this nice property? Consider the relationship between
at some arbitrary point and at the solution point 1 . FromEquation 3 one can show (AppendixC1)

that if is symmetric (be it positive-definite or not),

1
2

(8)

If is positive-definite as well, then by Inequality 2, the latter term is positive for all . It follows that
is a global minimum of .

The fact that is a paraboloid is our best intuition of what it means for a matrix to be positive-definite.
If is not positive-definite, there are several other possibilities. could be negative-definite — the result
of negating a positive-definite matrix (see Figure 2, but hold it upside-down). might be singular, in which
case no solution is unique; the set of solutions is a line or hyperplane having a uniform value for . If
is none of the above, then is a saddle point, and techniques like Steepest Descent and CG will likely fail.
Figure 5 demonstrates the possibilities. The values of and determine where the minimum point of the
paraboloid lies, but do not affect the paraboloid’s shape.

Why go to the trouble of converting the linear system into a tougher-looking problem? The methods
under study — Steepest Descent and CG — were developed and are intuitively understood in terms of
minimization problems like Figure 2, not in terms of intersecting hyperplanes such as Figure 1.

The Quadratic Form 5

(c)

1

2

1

(d)

1

2

1

(a)

1

2

1

(b)

1

2

1

Figure 5: (a) Quadratic form for a positive-definite matrix. (b) For a negative-definite matrix. (c) For a
singular (and positive-indefinite) matrix. A line that runs through the bottom of the valley is the set of
solutions. (d) For an indefinite matrix. Because the solution is a saddle point, Steepest Descent and CG
will not work. In three dimensions or higher, a singular matrix can also have a saddle.

solution is a minimum of , so can be solved by finding an that minimizes . (If is not
symmetric, then Equation 6 hints that CG will find a solution to the system 1

2 . Note that
1
2 is symmetric.)

Why do symmetric positive-definite matrices have this nice property? Consider the relationship between
at some arbitrary point and at the solution point 1 . FromEquation 3 one can show (AppendixC1)

that if is symmetric (be it positive-definite or not),

1
2

(8)

If is positive-definite as well, then by Inequality 2, the latter term is positive for all . It follows that
is a global minimum of .

The fact that is a paraboloid is our best intuition of what it means for a matrix to be positive-definite.
If is not positive-definite, there are several other possibilities. could be negative-definite — the result
of negating a positive-definite matrix (see Figure 2, but hold it upside-down). might be singular, in which
case no solution is unique; the set of solutions is a line or hyperplane having a uniform value for . If
is none of the above, then is a saddle point, and techniques like Steepest Descent and CG will likely fail.
Figure 5 demonstrates the possibilities. The values of and determine where the minimum point of the
paraboloid lies, but do not affect the paraboloid’s shape.

Why go to the trouble of converting the linear system into a tougher-looking problem? The methods
under study — Steepest Descent and CG — were developed and are intuitively understood in terms of
minimization problems like Figure 2, not in terms of intersecting hyperplanes such as Figure 1.

Peter Orbanz 47

QUADRATIC FORMS

Here is the quadratic form for the matrix A =

(
2 1
1 2

)
:

• Left: The function value qA is graphed on the vertical axis.

• Right: Contours. Each line in R2 corresponds to a constant function value of qA .
Dark color = small values.

• The red lines are eigenvector directions of A. Their lengths represent the (absolute) values
of the eigenvalues.

• In this case, both eigenvalues are positive. If all eigenvalues are positive, the contours are
ellipses. So:

positive/negative definite matrices ↔ elliptic quadratic forms

Peter Orbanz 48

QUADRATIC FORMS

In this plot, the eigenvectors are axis-parallel, and one eigenvalue is negative:

The matrix here is A =

(
2 0
0 −2

)
.

Intuition
• If we change the sign of one of the eigenvalue, the quadratic function along the

corresponding eigen-axis flips.
• There is a point which is a minimum of the function along one axis direction, and a

maximum along the other. Such a point is called a saddle point.

Peter Orbanz 49

APPLICATION: COVARIANCE MATRIX

Recall: Covariance
The covariance of two random variables X1,X2 is

Cov[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])] .

If X1 = X2, the covariance is the variance: Cov[X,X] = Var[X].

Covariance matrix
If X = (X1, . . . ,XD) is a random vector with values in RD, the matrix of all covariances

Cov[X] := (Cov[Xi,Xj])i,j =

Cov[X1,X1] · · · Cov[X1,XD]
...

...
Cov[XD,X1] · · · Cov[XD,XD]


is called the covariance matrix of X.

Notation
It is customary to denote the covariance matrix Cov[X] by Σ.

Peter Orbanz 50

GEOMETRY OF GAUSSIANS

Covariance matrix of a Gaussian
If a random vector X ∈ RD has Gaussian distribution with density p(x;µ,Σ), its covariance
matrix is Cov[X] = Σ. In other words, a Gaussian is parameterized by its covariance.

Observation
Since Cov[Xi,Xj] = Cov[Xj,Xi], the covariance matrix is symmetric.

What is the eigenstructure of Σ?
• We know: Σ symmetric⇒ there is an eigenvector ONB
• Call the eigenvectors in this ONB ξ1, . . . , ξD and their eigenvalues λ1, . . . , λD

• We can rotate the coordinate system to ξ1, . . . , ξD. In the new coordinate system, Σ has
the form

Σ[ξ1,...,ξn] =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λD

 = diag(λ1, . . . , λD)

Peter Orbanz 51

EXAMPLE

Quadratic form

⟨x,Σx⟩ with Σ =

(
2 1
1 2

)
The eigenvectors are (1, 1) and (−1, 1) with eigenvalues
3 and 1.

Gaussian density
p(x;µµµ,Σ) with µµµ = (0, 0).

density density contour 1000 sample points

Peter Orbanz 52

INTERPRETATION

The ξi as random variables
Write e1, . . . , eD for the ONB of axis vectors. We can represent each ξi as

ξi =
D∑

j=1

αijej

Then O = (αij) is the orthogonal transformation matrix between the two bases.
We can represent random vector X ∈ RD sampled from the Gaussian in the eigen-ONB as

X[ξ1,...,ξD] = (X′
1, . . . ,X

′
D) with X′

i =
D∑

j=1

αijXj

Since the Xj are random variables (and the αij are fixed), each X′
i is a scalar random variable.

Peter Orbanz 53

INTERPRETATION

Meaning of the random variables ξi
For any Gaussian p(x;µµµ,Σ), we can

1. shift the origin of the coordinate system into µµµ

2. rotate the coordinate system to the eigen-ONB of Σ.
In this new coordinate system, the Gaussian has covariance matrix

Σ[ξ1,...,ξD] = diag(λ1, . . . , λD)

where λi are the eigenvalues of Σ.

Gaussian in the new coordinates

A Gaussian vector X[ξ1,...,ξD] represented in the new
coordinates consists of D independent 1D Gaussian
variables X′

i . Each X′
i has mean 0 and variance λi.

A multidimensional Gaussian consists of independent, orthogonal scalar normal variables
in some coordinate system.

Peter Orbanz 54

MLE FOR GAUSSIANS

Consider data D = (x1, . . . , xn) in Rd , and the Gaussian model

M = {g(• |µ,Σ) |µ ∈ Rd,Σ ∈ Rd×d positive definite }
where g denotes the Gaussian density on Rd .

Ansatz
ML estimation treats the two parameters separately. I will write θ to denote either θ = µ (for fixed Σ), or
θ = Σ (for fixed µ), depending on which parameter we estimate.

To find the maximum likelihood estimator, we have to solve

0 = ∇θ log
n∏

i=1

g(xi|θ) = ∇θ

n∑
i=1

log
(1√

(2π)d|Σ|

)
− 1

2
(xi − µ)

T
Σ−1(xi − µ))

Maximum likelihood estimators
The solutions are

µ̂ML :=
1
n

n∑
i=1

xi and Σ̂ML :=
1
n

n∑
i=1

(xi − µ)(xi − µ)
T
.

Note µ̂ does not depend on Σ. We can estimate µ̂ first, then plug in µ̂ for µ in Σ̂ML.

Peter Orbanz 55

REFRESHER – MATRIX DERIVATIVES OF SCALAR FORMS

© Gatsby Unit

We will use the following facts:

xTAy = yTATx = Tr
[
xTAy

]
(scalars equal their own transpose and trace)

Tr [A] = Tr
[

AT
]

Tr [ABC] = Tr [CAB] = Tr [BCA]

∂

∂Aij
Tr

[
ATB

]
=

∂

∂Aij

∑
n

[ATB]nn =
∂

∂Aij

∑
n

∑
m

AT
nmBmn =

∂

∂Aij

∑
mn

AmnBmn = Bij

⇒ ∂

∂A
Tr

[
ATB

]
= B

∂

∂A
Tr

[
ATBAC

]
=

∂

∂A
Tr

[
F1(A)TBF2(A)C

]
with F1 and F2 both identity maps

=
∂

∂F1
Tr

[
FT

1 BF2C
] ∂F1

∂A
+

∂

∂F2
Tr

[
FT

1 BF2C
] ∂F2

∂A

=
∂

∂F1
Tr

[
FT

1 BF2C
] ∂F1

∂A
+

∂

∂F2
Tr

[
CFT

1 BF2

] ∂F2

∂A

=
∂

∂F1
Tr

[
FT

1 BF2C
] ∂F1

∂A
+

∂

∂F2
Tr

[
FT

2 BTF1CT
] ∂F2

∂A

= BF2C + BTF1CT
= BAC + BTACT

∂

∂Aij
log |A| =

1
|A|

∂

∂Aij
|A| =

1
|A|

∂

∂Aij

∑
k

(−1)i+kAik |[A]ik| =
1
|A| (−1)i+j |[A]ij|

⇒ ∂

∂A
log |A| = (A−1

)
T

Peter Orbanz 56

GAUSSIAN DERIVATIVES

© Gatsby Unit

∂(−ℓ)
∂µ

=
∂

∂µ

[
N
2
log |2πΣ|+ 1

2

∑
n

(xn − µ)TΣ−1(xn − µ)

]

=
1
2

∑
n

∂

∂µ

[
(xn − µ)TΣ−1(xn − µ)

]
=

1
2

∑
n

∂

∂µ

[
xT

nΣ
−1xn + µTΣ−1µ− 2µTΣ−1xn

]
=

1
2

∑
n

∂

∂µ

[
µTΣ−1µ

]
− 2

∂

∂µ

[
µTΣ−1xn

]
=

1
2

∑
n

[
2Σ−1µ− 2Σ−1xn

]
= NΣ−1µ− Σ−1

∑
n

xn

= 0⇒ µ̂ =
1
N

∑
n

xn

Peter Orbanz 57

GAUSSIAN DERIVATIVES

© Gatsby Unit

∂(−ℓ)
∂Σ−1

=
∂

∂Σ−1

[
N
2
log |2πΣ|+ 1

2

∑
n

(xn − µ)TΣ−1(xn − µ)

]

=
∂

∂Σ−1

[
N
2
log |2πI|

]
− ∂

∂Σ−1

[
N
2
log |Σ−1|

]
+

1
2

∑
n

∂

∂Σ−1

[
(xn − µ)TΣ−1(xn − µ)

]
= −N

2
ΣT +

1
2

∑
n

(xn − µ)(xn − µ)T

= 0⇒ Σ̂ =
1
N

∑
n

(xn − µ)(xn − µ)T

Peter Orbanz 58

MULTIVARIATE LINEAR REGRESSION

© Gatsby Unit

The relationship between variables can also be modelled as a conditional distribution.

−1 0 1
−1

0

1

 x
i1

 x
i2

• data D = {(x1, y1) . . . , (xN , yN)}
• each xi (yi) is a vector of Dx (Dy) features,
• yi is conditionally independent of all else, given xi.

A simple form of supervised (predictive) learning: model y as a linear function of x, with
Gaussian noise.

p(y|x,W,Σy) = |2πΣy|−
1
2 exp

{
− 1

2
(y−Wx)TΣ−1

y (y−Wx)
}

Peter Orbanz 59

Peter Orbanz 60

MULTIVARIATE LINEAR REGRESSION – ML ESTIMATE

© Gatsby Unit

ML estimates are obtained by maximising the (conditional) likelihood, as before:

ℓ =
∑

i

log p(yi|xi,W,Σy)

= −N
2
log |2πΣy| −

1
2

∑
i

(yi −Wxi)
TΣ−1

y (yi −Wxi)

∂(−ℓ)
∂W

=
∂

∂W

[
N
2
log |2πΣy|+

1
2

∑
i

(yi −Wxi)
TΣ−1

y (yi −Wxi)

]

=
1
2

∑
i

∂

∂W

[
(yi −Wxi)

TΣ−1
y (yi −Wxi)

]
=

1
2

∑
i

∂

∂W

[
yT

i Σ
−1
y yi + xT

i WTΣ−1
y Wxi − 2xT

i WTΣ−1
y yi

]
=

1
2

∑
i

[
∂

∂W
Tr
[
WTΣ−1

y WxixT
i

]
− 2

∂

∂W
Tr
[
WTΣ−1

y yixT
i

]]
=

1
2

∑
i

[
2Σ−1

y WxixT
i − 2Σ−1

y yixT
i

]
= 0 ⇒ Ŵ =

∑
i

yixT
i

(∑
i

xixT
i

)−1

Peter Orbanz 61

MULTIVARIATE LINEAR REGRESSION – POSTERIOR

© Gatsby Unit

Let yi be scalar (so that W is a row vector) and write w for the column vector of weights.
A conjugate prior for w is

P(w|A) = N
(

0,A−1
)

Then the log posterior on w is

log P(w|D,A, σy) = log P(D|w,A, σy) + log P(w|A, σy)− log P(D|A, σy)

= − 1
2

wTAw− 1
2

∑
i

(yi − wTxi)
2σ−2

y + const

= −1
2

wT(A + σ−2
y

∑
i

xixT
i)︸ ︷︷ ︸

Σ−1
w

w + wT
∑

i

(yixi)σ
−2
y + const

= −1
2

wTΣ−1
w w + wTΣ−1

w Σw
∑

i

(yixi)σ
−2
y︸ ︷︷ ︸

µw

+ const

= log N
(
Σw
∑

i(yixi)σ
−2
y ,Σw

)
Peter Orbanz 62

MAP AND ML FOR LINEAR REGRESSION

© Gatsby Unit

As the posterior is Gaussian, the MAP and posterior mean weights are the same:

wMAP =

(
A +

∑
i xixT

i

σ2
y

)−1

︸ ︷︷ ︸
Σw

∑
i yixi

σ2
y

=
(

Aσ2
y +

∑
i

xixT
i

)−1∑
i

yixi

Compare this to the (transposed) ML weight vector for scalar outputs:

wML = ŴT =
(∑

i

xixT
i

)−1∑
i

yixi

• The prior acts to “inflate” the apparent covariance of inputs.
• As A is positive (semi)definite, shrinks the weights towards the prior mean (here 0).
• If A = αI this is known as the ridge regression estimator.
• The MAP/shrinkage/ridge weight estimate often has lower squared error (despite bias)

and makes more accurate predictions on test inputs than the ML estimate.
• An example of prior-based regularisation of estimates.

Remarks
• Models the conditional P(y|x).
• If we also model P(x), then learning is indistinguishable from unsupervised. In particular

if P(x) is Gaussian, and P(y|x) is linear-Gaussian, then x, y are jointly Gaussian.

Peter Orbanz 63

REFERENCE POINTERS

© Gatsby Unit

• It is very important that you understand all the material in the following cribsheet:
http:
//www.gatsby.ucl.ac.uk/teaching/courses/ml1/cribsheet.pdf

• The following notes by (the late) Sam Roweis are quite useful:
• Matrix identities and matrix derivatives:
http://www.cs.nyu.edu/~roweis/notes/matrixid.pdf

• Gaussian identities:
http://www.cs.nyu.edu/~roweis/notes/gaussid.pdf

• Here is a useful statistics / pattern recognition glossary:
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/

• Tom Minka’s in-depth notes on matrix algebra:
http://research.microsoft.com/en-us/um/people/minka/papers/
matrix/

Peter Orbanz 64

http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/cribsheet.pdf
http://www.gatsby.ucl.ac.uk/teaching/courses/ml1/cribsheet.pdf
http://www.cs.nyu.edu/~roweis/notes/matrixid.pdf
http://www.cs.nyu.edu/~roweis/notes/gaussid.pdf
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/
http://research.microsoft.com/en-us/um/people/minka/papers/matrix/
http://research.microsoft.com/en-us/um/people/minka/papers/matrix/

LATENT VARIABLE MODELS

LATENT VARIABLE MODELS

© Gatsby Unit

Explain correlations in x by assuming dependence on latent variables z

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

z ∼ P[θz]

x | z ∼ P[θx]

p(x, z; θx, θz) = p(x | z; θx)p(z; θz)

p(x; θx, θz) =

∫
dz p(x | z; θx)p(z; θz)

Peter Orbanz 66

LATENT VARIABLE MODELS

© Gatsby Unit

• Describe structured distributions.

• Correlations in high-dimensional x may be captured by fewer parameters.

• Capture an underlying generative process.

• z may describe causes of x.
• help to separate signal from noise.

• Combine exponential family distributions into richer, more flexible forms.

• P(z), P(x|z) and even P(x, z) may be in the exponential family
• P(x) rarely is. (Exception: Linear Gaussian models).

Peter Orbanz 67

LATENT VARIABLES AND GAUSSIANS

© Gatsby Unit

Gaussian correlation can be composed from latent components and uncorrelated noise.

x ∼ N
(

0,
[

3 2
2 3

])
⇔ z ∼ N (0, 1) x ∼ N

(√
2
[

1
1

]
z,
[

1 0
0 1

])

Peter Orbanz 68

PROBABILISTIC PRINCIPAL COMPONENTS ANALYSIS
(PPCA)

© Gatsby Unit

If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Z = {z1, z2, . . . , zN}; zi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk zk + ϵd

• zk are independentN (0, 1) Gaussian factors
• ϵd are independentN (0, ψ) Gaussian noise
• K<D

x1 x2 xD

z1 z2 zK• • •

• • •

Model for observations x is a correlated Gaussian:

p(z) = N (0, I)

p(x|z) = N (Λz, ψI)

p(x) =
∫

p(z)p(x|z)dz = N
(
Ez [Λz] ,Ez

[
ΛzzTΛT

]
+ ψI

)
Note: Ex [f (x)] = Ez

[
Ex|z [f (x)]

]
Vx [x] = Ez [V [x|z]] + Vz [E [x|z]]

= N
(

0,ΛΛT + ψI
)

where Λ is a D× K matrix.

Peter Orbanz 69

MULTIVARIATE GAUSSIANS AND LATENT VARIABLES

© Gatsby Unit

Two models:

p(x) = N (0,Σ)

• Descriptive density model: correlations
are captured by off-diagonal elements of
Σ.

• Σ has D(D+1)
2 free parameters.

• Only constrained to be positive definite.
• Simple ML estimate.

p(z) = N (0, I)
p(x|z) = N (Λz, ψI)

⇒ p(x) = N
(

0,ΛΛT + ψI
)

• Interpretable causal model: correlations
captured by common influence of latent
variable.

• ΛΛT + ψI has DK + 1 free parameters.
• For K < D covariance structure is

constrained (“blurry pancake”)
• ML estimation is more complex.

Peter Orbanz 70

PPCA LIKELIHOOD

© Gatsby Unit

The marginal distribution on x gives us the PPCA likelihood:

log p(X|Λ, ψ) = −N
2
log
∣∣∣2π(ΛΛT + ψI)

∣∣∣− 1
2

Tr
[
(ΛΛT + ψI)−1

∑
n

xxT

︸ ︷︷ ︸
NS

]

To find the ML values of (Λ, ψ) we could optimise numerically (gradient ascent / Newton’s
method), or we could use a different iterative algorithm called EM which we’ll introduce soon.

In fact, however, ML for PPCA is more straightforward in principle, as we will see by first
considering the limit ψ → 0.

[Note: We may also add a constant mean µ to the output, so as to model data that are not
distributed around 0. In this case, the ML estimate µ̂ = 1

N

∑
n xn and we can define

S = 1
N

∑
n(x− µ̂)(x− µ̂)T in the likelihood above.]

Peter Orbanz 71

THE ψ → 0 LIMIT

© Gatsby Unit

As ψ → 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K-dimensional space of most variance.

Peter Orbanz 72

PRINCIPAL COMPONENTS ANALYSIS

© Gatsby Unit

This leads us to an (old) algorithm called Principal Components Analysis (PCA).

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

Assume data D = {xi} have zero mean (if not, subtract it).

• Find direction of greatest variance – λ(1).

λ(1) = arg max
∥v∥=1

∑
n

(xT
n v)2

• Find direction orthogonal to λ(1) with greatest variance –
λ(2)

...
• Find direction orthogonal to {λ(1),λ(2), . . . ,λ(n−1)}

with greatest variance – λ(n).
• Terminate when remaining variance drops below a

threshold.

Peter Orbanz 73

EIGENDECOMPOSITION OF A COVARIANCE MATRIX

© Gatsby Unit

The eigendecomposition of a covariance matrix makes finding the PCs easy.

Recall that u is an eigenvector, with scalar eigenvalue ω, of a matrix S if

Su = ωu

u can have any norm, but we will define it to be unity (i.e., uTu = 1).

For a covariance matrix S =
〈
xxT〉 (which is D× D, symmetric, positive semi-definite):

• In general there are D eigenvector-eigenvalue pairs (u(i), ω(i)), except if two or more
eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate —
any linear combination is also an eigenvector).

• The D eigenvectors are orthogonal (or orthogonalisable, if ω(i) = ω(j)). Thus, they form
an orthonormal basis.

∑
i u(i)u(i)

T = I.
• Any vector v can be written as

v =
(∑

i

u(i)u(i)
T
)

v =
∑

i

(u(i)
Tv)u(i) =

∑
i

v(i)u(i)

• The original matrix S can be written:

S =
∑

i

ω(i)u(i)u(i)
T = UWUT

where U = [u(1),u(2), . . . ,u(D)] collects the eigenvectors and
W = diag

[
(ω(1), ω(2), . . . , ω(D))

]
.

Peter Orbanz 74

PCA AND EIGENVECTORS

© Gatsby Unit

• The variance in direction u(i) is〈
(xTu(i))

2
〉
=
〈

u(i)
TxxTu(i)

〉
= u(i)

TSu(i) = u(i)
Tω(i)u(i) = ω(i)

• The variance in an arbitrary direction v is〈
(xTv)2

〉
=
〈(

xT
(∑

i

v(i)u(i)

))2〉
=
∑

ij

v(i)u(i)
TSu(j)v(j)

=
∑

ij

v(i)ω(j)v(j)u(i)
Tu(j) =

∑
i

v2
(i)ω(i)

• If vTv = 1, then
∑

i v2
(i) = 1 and so argmax∥v∥=1

〈
(xTv)2

〉
= u(max)

The direction of greatest variance is the eigenvector the largest eigenvalue.
• In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,

ordered by decreasing eigenvalue.

• The eigenspectrum shows how the variance is
distributed across dimensions; can identify tran-
sitions that might separate signal from noise, or
the number of PCs that capture a pre-determined
fraction of variance.

0 10 20 30
0

20

40

60

80

100

eigenvalue number

ei
ge

nv
al

ue
 (

va
ria

nc
e)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

eigenvalue number

fr
ac

tio
na

l v
ar

ia
nc

e
re

m
ai

ni
ng

Peter Orbanz 75

PCA SUBSPACE

© Gatsby Unit

The K principle components define the K-dimensional subspace of greatest variance.

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

• Each data point xn is associated with a projection x̂n into the principle subspace.

x̂n =
K∑

k=1

xn(k)λ(k)

• This can be used for lossy compression, denoising, recognition, . . .

Peter Orbanz 76

EXAMPLE OF PCA: EIGENFACES

© Gatsby Unitvismod.media.mit.edu/vismod/demos/facerec/basic.htmlPeter Orbanz 77

EXAMPLE OF PCA: GENETIC VARIATION WITHIN EUROPE

© Gatsby Unit Novembre et al. (2008) Nature 456:98-101Peter Orbanz 78

EQUIVALENT DEFINITIONS OF PCA

© Gatsby Unit

• Find K directions of greatest variance in data.

• Find K-dimensional orthogonal projection that preserves greatest
variance.

• Find K-dimensional vectors zi and matrix Λ so that x̂i = Λzi is as
close as possible (in squared distance) to xi.

• . . . (many others)

Peter Orbanz 79

ML LEARNING FOR PPCA

© Gatsby Unit

ℓ = −N
2
log |2πC| − N

2
Tr
[

C−1S
]

where C = ΛΛT + ψI

∂ℓ

∂Λ
=

N
2

(
− ∂

∂Λ
log |C| − ∂

∂Λ
Tr
[

C−1S
])

= N
(
−C−1Λ + C−1SC−1Λ

)
So at the stationary points we have SC−1Λ = Λ. This implies either:

• Λ = 0, which turns out to be a minimum.
• C = S⇒ ΛΛT = S− ψI. Now rank(ΛΛT) ≤ K ⇒ rank(S− ψI) ≤ K
⇒ S has D− K eigenvalues = ψ and Λ aligns with space of remaining eigenvectors.

• or, taking the SVD: Λ = ULVT:

S(ULVTVLUT + ψI)−1ULVT = ULVT ×VL−1

⇒ S(UL2UT + ψI)−1U = U U(L2
+ ψI) = (UL2UT

+ ψI)U
⇒ (UL2UT

+ψI)−1U = U(L2
+ψI)−1

⇒ SU(L2 + ψI)−1 = U ×(L2
+ ψI)

⇒ SU = U (L2 + ψI)︸ ︷︷ ︸
diagonal

⇒ columns of U are eigenvectors of S with eigenvalues given by l2i + ψ.
Thus, Λ = ULVT spans a space defined by K eigenvectors of S; and the lengths of the
column vectors of L are given by the eigenvalues −ψ (V selects an arbitrary basis in the
latent space).

Remains to show (we won’t, but it’s intuitively reasonable) that the global ML solution is
attained when Λ aligns with the K leading eigenvectors.Peter Orbanz 80

PPCA LATENTS

© Gatsby Unit

• In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̂n trivially.
• In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value zn = E [zn|xn] and then take x̂n = Λzn.
• Tactic: write p(zn, xn|θ), consider xn to be fixed. What is this as a function of zn?

p(zn, xn) = p(zn)p(xn|zn)

= (2π)−
K
2 exp{− 1

2
zT

n zn} |2πΨ|−
1
2 exp{−1

2
(xn − Λzn)

TΨ−1(xn − Λzn)}

= c× exp{−1
2
[zT

n zn + (xn − Λzn)
TΨ−1(xn − Λzn)]}

= c’× exp{−1
2
[zT

n (I + ΛTΨ−1Λ)zn − 2zT
nΛ

TΨ−1xn]}

= c”× exp{− 1
2
[zT

nΣ
−1zn − 2zT

nΣ
−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where
β = ΣΛTΨ−1.

• Thus, x̂n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT +Ψ)−1xn

• This is not the same projection. PPCA takes into account noise in the principal subspace.
• As ψ → 0, the PPCA estimate→ the PCA value.

Peter Orbanz 81

PPCA LATENTS

© Gatsby Unit

principal subspace

PCA projectionPPCA noise

PPCA latent prior

PPCA projection

PPCA posterior

Peter Orbanz 82

MIXTURE DISTRIBUTIONS

© Gatsby Unit

−1 0 1

−1

0

1

 x
i1

 x
i2

A (finite) mixture distribution has a single discrete latent variable:

si
iid∼ Discrete[π]

xi | si ∼ Psi [θsi]

Mixtures arise naturally when observations from different sources have been collated.
They can also be used to approximate arbitrary distributions.

Peter Orbanz 83

THE MIXTURE LIKELIHOOD

© Gatsby Unit

The mixture model is

si
iid∼ Discrete[π]

xi | si ∼ Psi [θsi]

Under the discrete distribution

P(si = m) = πm; πm ≥ 0,
k∑

m=1

πm = 1

Thus, the probability (density) at a single data point xi is

P(xi) =
k∑

m=1

P(xi | si = m)P(si = m)

=
k∑

m=1

πmPm(xi; θm)

The mixture distribution (density) is a convex combination (or weighted average) of the
component distributions (densities).

Peter Orbanz 84

APPROXIMATION WITH A MIXTURE OF GAUSSIANS
(MOG)

© Gatsby Unit

The component densities may be viewed as elements of a “basis” which can be combined to
approximate arbitrary distributions.

Here are examples where non-Gaussian densities are modelled (aproximated) as a mixture of
Gaussians. The red curves show the (weighted) Gaussians, and the blue curve the resulting
density.

−0.5 0 0.5 1 1.5
0

0.5

1

Uniform

−0.5 0 0.5 1 1.5
0

1

2

Triangle

−2 0 2
0

0.5

1

Heavy tails

Given enough mixture components we can model (almost) any density (as accurately as
desired), but still only need to work with the well-known Gaussian form.

Peter Orbanz 85

CLUSTERING WITH A MOG

© Gatsby UnitPeter Orbanz 86

CLUSTERING WITH A MOG

© Gatsby UnitPeter Orbanz 87

CLUSTERING WITH A MOG

© Gatsby Unit

In clustering applications, the latent variable si represents the (unknown) identity of the cluster
to which the ith observation belongs.

Thus, the latent distribution gives the prior probability of a data point coming from each cluster.

P(si = m | π) = πm

Data from the mth cluster are distributed according to the mth component:

P(xi | si = m) = Pm(xi)

Once we observe a data point, the posterior probability distribution for the cluster it belongs to
is

P(si = m | xi) =
Pm(xi)πm∑
m Pm(xi)πm

This is often called the responsibility of the mth cluster for the ith data point.

Peter Orbanz 88

THE MOG LIKELIHOOD

© Gatsby Unit

Each component of a MoG is a Gaussian, with mean µm and covariance matrix Σm. Thus, the
probability density evaluated at a set of n iid observations, D = {x1 . . . xn} (i.e. the likelihood)
is

p(D | {µm}, {Σm},π) =
n∏

i=1

k∑
m=1

πmN (xi | µm,Σm)

=
n∏

i=1

k∑
m=1

πm
1√
|2πΣm|

e−
1
2 (xi−µm)TΣ−1

m (xi−µm)

The log of the likelihood is

log p(D | {µm}, {Σm},π) =

n∑
i=1

log

k∑
m=1

πm
1√
|2πΣm|

e−
1
2 (xi−µm)TΣ−1

m (xi−µm)

Note that the logarithm fails to simplify the component density terms. A mixture distribution
does not lie in the exponential family. Direct optimisation is not easy.

Peter Orbanz 89

MAXIMUM LIKELIHOOD FOR A MIXTURE MODEL

© Gatsby Unit

The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi; θm)

∂Pm(xi; θm)

∂θm

or, using ∂P/∂θ = P× ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi; θm)∑k
m=1 πmPm(xi; θm)︸ ︷︷ ︸

∂ log Pm(xi; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi; θm)∑k
m=1 πmPm(xi; θm)

=
n∑

i=1

rim

πm

Peter Orbanz 90

MOG DERIVATIVES

© Gatsby Unit

For a MoG, with θm = {µm,Σm} we get

∂L
∂µm

=
n∑

i=1

rimΣ
−1
m (xi − µm)

∂L
∂Σ−1

m
=

1
2

n∑
i=1

rim

(
Σm − (xi − µm)(xi − µm)

T
)

These equations can be used (along with Lagrangian derivatives wrt πm that enforce
normalisation) for gradient based learning; e.g., taking small steps in the direction of the
gradient (or using conjugate gradients).

Peter Orbanz 91

THE K-MEANS ALGORITHM

© Gatsby Unit

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA).

Take πm = 1/k and Σm = σ2I, with σ2 → 0. Then the responsibilities become binary

rim → δ(m, argmin
l
∥xi − µl∥2)

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:

• assign each point to its closest mean
(

set rim = δ(m, argmin
l
∥xi − µl∥2)

)
• update the means to the average of their assigned points

(
set µm =

∑
i rimxi∑

i rim

)

This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for µm. The algorithm has no learning rate, but the assumptions are quite
limiting.

Peter Orbanz 92

ILLUSTRATION: k-MEANS

(a)

−2 0 2

−2

0

2 (b)

−2 0 2

−2

0

2 (c)

−2 0 2

−2

0

2

(d)

−2 0 2

−2

0

2 (e)

−2 0 2

−2

0

2 (f)

−2 0 2

−2

0

2

(g)

−2 0 2

−2

0

2 (h)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

Illustration: Bishop, “Pattern recognition and machine learning”Peter Orbanz 93

A PREVIEW OF THE EM ALGORITHM

© Gatsby Unit

We wrote the k-means algorithm in terms of binary responsibilities. Suppose, instead, we used
the fractional responsibilities from the full (non-limiting) MoG, but still neglected the
dependence of the responsibilities on the parameters. We could then solve for both µm and Σm.

The EM algorithm for MoGs iterates these two steps:
• Evaluate the responsibilities for each point given the current parameters.
• Optimise the parameters assuming the responsibilities stay fixed:

µm =

∑
i rimxi∑

i rim
and Σm =

∑
i rim(xi − µm)(xi − µm)T∑

i rim

Although this appears ad hoc, we will see (later) that it is a special case of a general algorithm,
and is actually guaranteed to increase the likelihood at each iteration.

Peter Orbanz 94

ISSUES

© Gatsby Unit

There are several problems with these algorithms:
• slow convergence for the gradient based method
• gradient based method may develop invalid covariance matrices
• local minima; the end configuration may depend on the starting state
• how do you adjust k? Using the likelihood alone is no good.
• singularities; components with a single data point will have their covariance going to zero

and the likelihood will tend to infinity.

We will attempt to address many of these as the course goes on.

Peter Orbanz 95

TOOLS: INFORMATION THEORY

MEASURING INFORMATION

Information content of a random variable
We consider a random variable X with distribution P.

• P expresses what we know before we observe X.
• How much information do we gain by observing X?

That is: By information content of X, we mean the difference in information between knowing
P and knowing both P and X = x.

To reiterate
For the definition of information, it is useful to think of...

• ...the distribution P as what we expect to happen.
• ...the sample outcome X = x as what actually happens.

Peter Orbanz 97

INFORMATION

Heuristic motivation
Suppose we sample X = x from a distribution P.

• If P(x) is large: Small surprise; we have not gained
much additional information.

• If P(x) is small: We have gained more information.

Conclusions
• The information in X = x increases with 1

P(x) .

• Intuitively, the information gain in two unrelated
observations should be additive, so 1

P(x) itself is not a
useful measure of information.

Definition
The information in observing X = x under P is

JP(x) := log
1

P(x)
= − log P(x) .

X=1:
not very surprising,
low information gain

X=23:
unexpected, high
information gain

Peter Orbanz 98

SHANNON’S ENTROPY

We first consider discrete random variables, i.e. X is finite or countably infinite.

Definition
Let X be a discrete random variable with distribution P. The expected information in a draw
from P,

H[X] := EP[JP(X)] = −
∑
x∈X

P(x) log P(x)

is called the Shannon entropy of X, or the entropy for short.
We use the notation H[X] and H(P) interchangeably.

Basic Properties
1. The entropy is non-negative:

H[X] ≥ 0

2. H(P) = 0 means there is no uncertainty in P:

H(P) = 0 ⇔ P(x0) = 1 for some x0 ∈ X .

3. If X is finite with d elements, the distribution with the largest entropy is the uniform
distribution Ud , with

H(Ud) = log d

4. H(P) is concave as a function of P.

Peter Orbanz 99

ALTERNATIVE DERIVATION

Suppose we define some measureH[X] of information in X. Instead of a definition, we
postulate a number of properties (axioms) that a meaningful measure should satisfy.

Axioms
• We should be able to "remove the joint information" in X and Y from Y by conditioning:

(Axiom I) H[X, Y] = H[X] +H[Y|X]
That implies in particular that the information of independent variables is additive:

X⊥⊥Y ⇒ H[X, Y] = H[X] +H[Y]

• If we make a small change to P, thenH(P) should not "jump". That is:

(Axiom II) H(P) should be continuous as a function of P.

• If we increase d, the uncertainty in Ud increases; hence, the information gained by
sampling should be higher for d + 1 than for d:

(Axiom III) H(Ud) < H(Ud+1)

Theorem
If a real-valued functionH on X satisfies Axioms I–III, then

H(P) = c · H(P) for all P ,

for some constant c ∈ R+. (The constant is the same for all P.)
Over the years, about a dozen different axioms for information measures have been proposed. Loosely speaking, any
meaningful combination of two or three of these axioms leads to the same result (i.e. determines the entropy up to scaling).

Peter Orbanz 100

EXAMPLE: CODING

Suppose we would like to compress a text document (lossless compression).

Huffman Coding
Here is a simple but efficient coding scheme:

1. Given a text, determine the frequency with which each word occurs.

2. Assign short code words to words that occur often, long code words to words that are rare.
This idea (with a specific algorithm for finding determining the code words) is called Huffman
coding. If all we are allowed to do is to replace text words by code words, this compression
method is optimal.

Information-theoretic problems
Suppose we know the distribution P of words in texts. Then we can ask:

1. What is the expected compression rate for a random document?

2. Does our encoder achieve the optimal expected rate for P?

Peter Orbanz 101

EXAMPLE: CODING

The Source Coding Theorem (Shannon)
Suppose we are given a distribution P on words or symbols and sample a string (a sequence of
categorical variables) X1, . . . ,Xn iid from P. Then for every ε > 0, there is a lossless encoder
for which

H(P) ≤ E
[1

n
· length(encoding(X1, . . . ,Xn))

]
< H(P) + ε

for sufficiently large n.

Remarks
• In other words: We can encode the sequence X1, . . . ,Xn without loss of information using

n H(P) bits on average.
• The entropy H(P) is a lower bound for lossless compression: If an encoder achieves a

better (=smaller) expectation than above, the probability that it will result in information
loss approaches 1 for n→∞.

Peter Orbanz 102

HOW WELL CAN WE COMPRESS ENGLISH TEXT?

Character-by-character compression

• We can compress text by splitting the text into
characters and assigning a code to each character.

• An empirical estimate of the distribution of
characters is shown on the right. The entropy is
4.11 bit/character.

• This compression is not very effective: There are
27 characters and 24 < 27 ≤ 25, hence we can
trivially encode with 5 bits/character.

Word-by-word compression
• The ranked frequency of words in English is

well-approximated by a Zipf distribution with
parameter between 1.5 and 2 (lower plot).

• The distribution is highly concentrated on a few
common words. That means it has relatively low
entropy.

• Splitting into words instead of characters hence
achieves much better compression rates.

• Commonly used lossless compression algorithms
(e.g. Lempel-Ziv) split into substrings which are
not necessarily words.

Peter Orbanz 103

KULLBACK-LEIBLER DIVERGENCE

Heuristic motivation
Suppose we wish to compare two distributions P and Q on X .

• The entropy H[Q] = EQ[JQ(X)] measures how much information gain (in terms of Q) we
can expect from a random sample from Q.

• Now ask instead: How much information gain in terms of Q can we expect from a random
sample drawn from P? We compute: EP[JQ(X)].

• A measure of difference between P and Q should vanish if Q = P. Since P = Q means
EP[JQ(X)] = H(P), which is usually not 0, we have to normalize by subtracting H(P).

Definition
The Kullback-Leibler divergence or the relative entropy of P and Q is

KL[P∥Q] := EP[JQ(X)]− H(P) =
∑
x∈X

P(x) log
P(x)
Q(x)

Properties
• Positive definiteness

KL[P∥Q] ≥ 0 and KL[P∥Q] = 0⇔ P = Q .

• KL[P∥Q] is convex in both P and Q.

Peter Orbanz 104

ASYMMETRY OF THE KULLBACK-LEIBLER DIVERGENCE

• The KL divergence is not symmetric: KL[p∥q] ̸= KL[q∥p] in general.
• It does not satisfy a triangle inequality.
• In particular, it is not a metric on probability distributions.

That holds in both the discrete and continuous case.

Asymmetry
• If p puts mass in a region where q almost vanishes, then

p/q is very large in that region.
• Since both are normalized, there is some other regions

where p/q is small.
• Because of the logarithm, these two do not cancel out.
• For instance, the low-variance (red) Gaussian on the

right has small mass in regions where the
higher-variance Gaussian puts mass.

z1

z2

(a)
0 0.5 1
0

0.5

1

Remark
Although the KL divergence is not a metric, it exhibits much more geometric structure than an
arbitrary two-argument function—in particular, it satisfies a property similar to Pythagoras’
theorem that we will not discuss here.

Illustration: Bishop (2006)Peter Orbanz 105

MUTUAL INFORMATION

Heuristic Motivation
• Another question we can ask about a pair X, Y of random variables is: How much

information do they share?
• In other words: How much does observing X tell us about Y?
• If X and Y contain no shared information, they are independent, and their joint distribution

is P(x, y) = P(x)P(y).
• Idea: Compare the actual joint distribution to the independent case using KL divergence.

Definition
The mutual information of X and Y is

I[X, Y] := KL[P(x, y)∥P(x)P(y)] =
∑
x,y

P(x, y) log
P(x, y)

P(x)P(y)

Mutual information characterizes independence

I[X, Y] = 0 ⇔ X⊥⊥Y

Peter Orbanz 106

THE CONTINUOUS CASE

If the sample space X is uncountable (e.g. X = R), instead of P and Q we consider densities p
and q, we have to substitute integrals for sums.

Differential entropy
The definition of entropy we use for continuous distributions is

H[X] := −
∫
X

p(x) log p(x)dx

• Since p is a density, we can have log p(x) > 0, and H[X] can be negative.
• This form of entropy is also called differential entropy to distinguish it from the

(Shannon) entropy.
Since p is a density, we can have log p(x) > 0, and H[X] can be negative. To distinguish it from
the entropy, H[X] is called the differential entropy.

KL divergence and mutual information
KL and I are defined analagously to the discrete case:

KL[p∥q] :=
∫
X

p(x) log
p(x)
q(x)

dx

I[X, Y] :=
∫
X

p(x, y) log
p(x, y)

p(x)p(y)
dx

Unlike the entropy, these have the same properties as we have listed in the discrete case.

Peter Orbanz 107

INFORMATION THEORY AND STATISTICS

Here are some points that we do not have time to discuss in detail:
• Exponential families are maximum entropy models: If T is a statistic with values in Rd ,

and t ∈ Rd , the distribution that maximizes the entropy under the constraint E[T(X)] = t
is an exponential family distibution with sufficient statistic T.

• Maximum likelihood minimizes the KL divergence between empirical distribution and
model.

• Variance, covariance and the χ2-statistic can be regarded as first-order approximations to
entropy, mutual information and KL divergence.

• Various methods can be derived by substituting information-theoretic for traditional
statistical quantities.

• Example: A dimension-reduction technique called independent component analysis can
be motivated as (roughly speaking) a PCA-like method which measures independence in
terms of mutual information rather than covariance.

Peter Orbanz 108

EXPECTATION MAXIMISATION

LOG-LIKELIHOODS

© Gatsby Unit

• Exponential family models: p(x|θ) = f (x)eθ
TT(x)/Z(θ)

ℓ(θ) = θT
∑

n

T(xn)− N log Z(θ) (+ constants)

• Concave function.
• Maximum may be closed-form.
• If not, numerical optimisation is still generally straightforward.

• Latent variable models: p(x|θx,θz) =

∫
dz fx(x)

eϕ(θx,z)TTx(x)

Zx(ϕ(θx, z))︸ ︷︷ ︸
p(x|z,θx)

fz(z)
eθ

T
z Tz(z)

Zz(θz)︸ ︷︷ ︸
p(z|θz)

ℓ(θx, θz) =
∑

n

log

∫
dz fx(x)

eϕ(θx,z)TTx(x)

Zx(ϕ(θx, z))
fz(z)

eθ
T
z Tz(z)

Zz(θz)

• Usually no closed form optimum.
• Often multiple local maxima.
• Direct numerical optimisation may be possible but infrequently easy.

Peter Orbanz 110

EXAMPLE: MIXTURE OF GAUSSIANS

© Gatsby Unit

Data: X = {x1 . . . xN}

Latent process:
si

iid∼ Disc[π]

Component distributions:
xi | (si = m) ∼ Pm[θm] = N (µm,Σm)

Marginal distribution:

P(xi) =
k∑

m=1

πmPm(x; θm)

Log-likelihood:

ℓ({µm}, {Σm},π) =

n∑
i=1

log

k∑
m=1

πm√
|2πΣm|

e−
1
2 (xi−µm)TΣ−1

m (xi−µm)

Peter Orbanz 111

THE JOINT-DATA LIKELIHOOD AND EM

© Gatsby Unit

• For many models, maximisation might be straightforward if z were not latent, and we
could just maximise the joint-data likelihood:

ℓ(θx, θz) =
∑

n

ϕ(θx, zn)
TTx(xn)+θT

z

∑
n

Tz(zn)−
∑

n

log Zx(ϕ(θx, zn))−N log Zz(θz)

• Conversely, if we knew θ, we might easily compute (the posterior over) the values of z.

• Idea: update θ and (the distribution on) z in alternation, to reach a self-consistent answer.
Will this yield the right answer?

• Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.

Peter Orbanz 112

THE EXPECTATION MAXIMISATION (EM) ALGORITHM

© Gatsby Unit

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a
(local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

• Decomposes difficult problems into series of tractable steps.
• An alternative to gradient-based iterative methods.
• No learning rate.
• In ML, the E step is called inference, and the M step learning. In stats, these are often

imputation and inference or estimation.
• Not essential for simple models (like MoGs/FA), though often more efficient than

alternatives. Crucial for learning in complex settings.
• Provides a framework for principled approximations.

Peter Orbanz 113

JENSEN’S INEQUALITY

© Gatsby Unit

One view: EM iteratively refines a lower bound on the log-likelihood.

log(x)

x1 x2αx1 + (1− α)x2

log(αx1 + (1− α)x2)

α log(x1) + (1− α) log(x2)

In general:

For αi ≥ 0,
∑
αi = 1 (and {xi > 0}):

log
(∑

i

αixi

)
≥
∑

i

αi log(xi)

For probability measure α and concave f

f (Eα [x]) ≥ Eα [f (x)]

Equality (if and) only if f (x) is almost surely constant or linear on (convex) support of α.

Peter Orbanz 114

THE LOWER BOUND FOR EM – “FREE ENERGY”

© Gatsby Unit

Observed data X = {xi}; Latent variables Z = {zi}; Parameters θ = {θx, θz}.
Log-likelihood:

ℓ(θ) = log P(X|θ) = log

∫
dZ P(Z,X|θ)

By Jensen, any distribution, q(Z), over the latent variables generates a lower bound:

ℓ(θ) = log

∫
dZ q(Z)P(Z,X|θ)

q(Z) ≥
∫

dZ q(Z) log P(Z,X|θ)
q(Z)

def
= F(q, θ).

Now, ∫
dZ q(Z) log P(Z,X|θ)

q(Z) =

∫
dZ q(Z) log P(Z,X|θ)−

∫
dZ q(Z) log q(Z)

=

∫
dZ q(Z) log P(Z,X|θ) + Hq,

where Hq is the entropy of q(Z).

So:
F(q, θ) = ⟨log P(Z,X|θ)⟩q(Z) + Hq

Peter Orbanz 115

THE E AND M STEPS OF EM

© Gatsby Unit

The free-energy lower bound on ℓ(θ) is a function of θ and a distribution q:

F(q, θ) = ⟨log P(Z,X|θ)⟩q(Z) + Hq,

The EM steps can be re-written:
• E step: optimize F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Z) := argmax
q(Z)

F
(
q(Z), θ(k−1)).

• M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ
⟨log P(Z,X|θ)⟩q(k)(Z)

The second equality comes from the fact that Hq(k)(Z) does not depend directly on θ.

Peter Orbanz 116

THE E STEP

© Gatsby Unit

The free energy can be re-written

F(q, θ) =
∫

q(Z) log P(Z,X|θ)
q(Z) dZ

=

∫
q(Z) log P(Z|X , θ)P(X|θ)

q(Z) dZ

=

∫
q(Z) log P(X|θ) dZ +

∫
q(Z) log P(Z|X , θ)

q(Z) dZ

= ℓ(θ)− KL[q(Z)∥P(Z|X , θ)]
The second term is the Kullback-Leibler divergence.

This means that, for fixed θ, F is bounded above by ℓ, and achieves that bound when
KL[q(Z)∥P(Z|X , θ)] = 0.

But KL[q∥p] is zero if and only if q = p (see appendix.)

So, the E step sets

q(k)(Z) = P(Z|X , θ(k−1)) [inference / imputation]

and, after an E step, the free energy equals the likelihood.

Peter Orbanz 117

COORDINATE ASCENT IN F (DEMO)

© Gatsby Unit

To visualise, we consider a one parameter / one latent mixture:

s ∼ Bernoulli[π]
x|s = 0 ∼ N [−1, 1] x|s = 1 ∼ N [1, 1] .

Single data point x1 = .3.
q(s) is a distribution on a single binary latent, and so is represented by r1 ∈ [0, 1].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Peter Orbanz 118

COORDINATE ASCENT IN F (DEMO)

© Gatsby UnitPeter Orbanz 119

EM NEVER DECREASES THE LIKELIHOOD

© Gatsby Unit

The E and M steps together never decrease the log likelihood:

ℓ
(
θ(k−1)) =

E step
F
(
q(k), θ(k−1)) ≤

M step
F
(
q(k), θ(k)) ≤

Jensen
ℓ
(
θ(k)),

• The E step brings the free energy to the likelihood.
• The M-step maximises the free energy wrt θ.
• F ≤ ℓ by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that θ(k) ̸= θ(k−1) iff F increases, then the overall EM iteration
will step to a new value of θ iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see
appendices).

Peter Orbanz 120

EM SUMMARY

© Gatsby Unit

• An iterative algorithm that finds (local) maxima of the likelihood of a latent variable
model.

ℓ(θ) = log P(X|θ) = log

∫
dZ P(X|Z, θ)P(Z|θ)

• Increases a variational lower bound on the likelihood by coordinate ascent.

F(q, θ) = ⟨log P(Z,X|θ)⟩q(Z) + Hq = ℓ(θ)− KL[q(Z)∥P(Z|X)] ≤ ℓ(θ)

• E step:
q(k)(Z) := argmax

q(Z)

F
(
q(Z), θ(k−1)) = P(Z|X , θ(k−1))

• M step:

θ(k) := argmax
θ

F
(
q(k)(Z), θ

)
= argmax

θ
⟨log P(Z,X|θ)⟩q(k)(Z)

• After E-step F(q, θ) = ℓ(θ)⇒ maximum of free-energy is maximum of likelihood.

Peter Orbanz 121

PARTIAL M STEPS AND PARTIAL E STEPS

© Gatsby Unit

Partial M steps: The proof holds even if we just increase F wrt θ rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step

∂

∂θ

∣∣∣∣∣
θ(k−1)

⟨log P(X ,Z|θ)⟩q(k)(Z)[=P(Z|X ,θ(k−1))] =
∂

∂θ

∣∣∣∣∣
θ(k−1)

log P(X|θ)

[cf. mixture gradients from last lecture.] So E-step (inference) can be used to construct other
gradient-based optimisation schemes (e.g. “Expectation Conjugate Gradient”, Salakhutdinov et
al. ICML 2003).

Partial E steps: We can also just increase F wrt to some of the qs.

For example, sparse or online versions of the EM algorithm would compute the posterior for a
subset of the data points or as the data arrives, respectively. One might also update the posterior
over a subset of the hidden variables, while holding others fixed...

Peter Orbanz 122

EM FOR MOGS

© Gatsby Unit

• Evaluate responsibilities

rim =
Pm(xi)πm∑

m′ Pm′ (xi)πm′

• Update parameters

µm ←
∑

i rimxi∑
i rim

Σm ←
∑

i rim(xi − µm)(xi − µm)T∑
i rim

πm ←
∑

i rim

N

Peter Orbanz 123

THE GAUSSIAN MIXTURE MODEL (E-STEP)

© Gatsby Unit

In a univariate Gaussian mixture model, the density of a data point x is:

p(x|θ) =
k∑

m=1

p(s = m|θ)p(x|s = m, θ) ∝
k∑

m=1

πm

σm
exp

{
− 1

2σ2
m

(
x− µm)

2},
where θ is the collection of parameters: means µm, variances σ2

m and mixing proportions
πm = p(s = m|θ).
The hidden variable si indicates which component generated observation xi.

The E-step computes the posterior for si given the current parameters:

q(si) = p(si|xi, θ) ∝ p(xi|si, θ)p(si|θ)

rim
def
= q(si = m) ∝ πm

σm
exp

{
− 1

2σ2
m
(xi − µm)

2} (responsibilities) ← ⟨δsi=m⟩q

with the normalization such that
∑

m rim = 1.

Peter Orbanz 124

THE GAUSSIAN MIXTURE MODEL (M-STEP)

© Gatsby Unit

In the M-step we optimize the sum (since s is discrete):

E = ⟨log p(x, s|θ)⟩q(s) =
∑

q(s) log[p(s|θ) p(x|s, θ)]

=
∑
i,m

rim
[
log πm − log σm −

1
2σ2

m
(xi − µm)

2].

Optimum is found by setting the partial derivatives of E to zero:

∂

∂µm
E =

∑
i

rim
(xi − µm)

2σ2
m

= 0 ⇒ µm =

∑
i rimxi∑
i rim

,

∂

∂σm
E =

∑
i

rim

[
− 1
σm

+
(xi − µm)2

σ3
m

]
= 0 ⇒ σ2

m =

∑
i rim(xi − µm)2∑

i rim
,

∂

∂πm
E =

∑
i

rim
1
πm
,

∂E
∂πm

+ λ = 0 ⇒ πm =
1
n

∑
i

rim,

where λ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.

Peter Orbanz 125

EM FOR EXPONENTIAL FAMILIES

© Gatsby Unit

EM is often applied to models whose joint over ξ = (z, x) has exponential-family form:

p(ξ|θ) = f (ξ) exp{θTT(ξ)}/Z(θ)(
with Z(θ) =

∫
f (ξ) exp{θTT(ξ)}dξ

)
but whose marginal p(x) ̸∈ ExpFam.

The free energy dependence on θ is given by:

F(q, θ) =
∫

q(z) log p(z, x|θ)dz + Hq

=

∫
q(z)

[
θTT(z, x)− log Z(θ)

]
dz + const wrt θ

= θT⟨T(z, x)⟩q(z) − log Z(θ) + const wrt θ

So, in the E step all we need to compute are the expected sufficient statistics under q.
We also have:

∂

∂θ
log Z(θ) =

1
Z(θ)

∂

∂θ
Z(θ) =

1
Z(θ)

∂

∂θ

∫
f (ξ) exp{θTT(ξ)}

=

∫
1

Z(θ) f (ξ) exp{θTT(ξ)}︸ ︷︷ ︸
p(ξ|θ)

· T(ξ) = ⟨T(ξ)⟩p(ξ|θ)

Thus, the M step solves:
∂F
∂θ

= ⟨T(z, x)⟩q(z) − ⟨T(z, x)⟩p(ξ|θ) = 0

Peter Orbanz 126

EM FOR EXPONENTIAL FAMILY MIXTURES

© Gatsby Unit

To derive EM formally for models with discrete latents (including mixtures) it is useful to
introduce an indicator vector s in place of the discrete s.

si = m ⇔ si = [0, 0, . . . , 1︸︷︷︸
mth position

, . . . 0]

Collecting the M component distributions’ natural params into a matrix Θ = [θm]:

log P(X ,S) =
∑

i

[
(logπ)Tsi + sT

i Θ
TT(xi)− sT

i log Z(Θ)
]
+ const

where log Z(Θ) collects the log-normalisers for all components into an M-element vector.
Then, the expected sufficient statistics (E-step) are:∑

i

⟨si⟩q (responsibilities rim)

∑
i

T(xi)
〈

sT
i

〉
q

(responsibility-weighted sufficient stats)

And maximisation of the expected log-joint (M-step) gives:

π(k+1) ∝
∑

i

⟨si⟩q〈
T(x)|θ(k+1)

m

〉
=
(∑

i

T(xi)
〈
[si]m

〉
q

)/(∑
i

〈
[si]m

〉
q

)
Peter Orbanz 127

EM FOR MAP

© Gatsby Unit

What if we have a prior?

p(ξ|θ) = f (ξ) exp{θTT(ξ)}/Z(θ) p(θ) = F(ν, τ) exp{θTτ}/Z(θ)ν

Augment the free energy by adding the log prior:

FMAP(q, θ) =
∫

q(Z) log p(Z,X , θ)dZ + Hq ≤ log P(X|θ)+ log P(θ)

=

∫
q(Z)

[
θT(
∑

i

T(ξi) + τ)− (N + ν) log Z(θ)
]
dZ + const wrt θ

= θT(⟨T(ξ)⟩q(z) + τ)− (N + ν) log Z(θ) + const wrt θ

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy
maxima are log-joint maxima (i.e. MAP values).

Can we find posteriors? Only approximately – we’ll return to this later as “Variational Bayes”.

Peter Orbanz 128

REFERENCES

© Gatsby Unit

• A. P. Dempster, N. M. Laird and D. B. Rubin (1977).
Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the
Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1 (1977), pp. 1-38.

http://www.jstor.org/stable/2984875

• R. M. Neal and G. E. Hinton (1998).
A view of the EM algorithm that justifies incremental, sparse, and other variants.
In M. I. Jordan (editor) Learning in Graphical Models, pp. 355-368, Dordrecht: Kluwer
Academic Publishers.

http://www.cs.utoronto.ca/∼radford/ftp/emk.pdf

• R. Salakhutdinov, S. Roweis and Z. Ghahramani, (2003).
Optimization with EM and expectation-conjugate-gradient.
In ICML (pp. 672-679).

http://www.cs.utoronto.ca/∼rsalakhu/papers/emecg.pdf

• Z. Ghahramani and G. E. Hinton (1996).
The EM Algorithm for Mixtures of Factor Analyzers.
University of Toronto Technical Report CRG-TR-96-1.

http://learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

Peter Orbanz 129

KL[q(x)∥p(x)] ≥ 0, WITH EQUALITY IFF ∀x : p(x) = q(x)

© Gatsby Unit

First consider discrete distributions; the Kullback-Liebler divergence is:

KL[q∥p] =
∑

i

qi log
qi

pi
.

To minimize wrt distribution q we need a Lagrange multiplier to enforce normalisation:

E def
= KL[q∥p] + λ

(
1−

∑
i

qi
)
=
∑

i

qi log
qi

pi
+ λ

(
1−

∑
i

qi
)

Find conditions for stationarity

∂E
∂qi

= log qi − log pi + 1− λ = 0⇒ qi = pi exp(λ− 1)

∂E
∂λ

= 1−
∑

i

qi = 0⇒
∑

i

qi = 1

⇒ qi = pi.

Check sign of curvature (Hessian):

∂2E
∂qi∂qi

=
1
qi
> 0,

∂2E
∂qi∂qj

= 0,

so unique stationary point qi = pi is indeed a minimum. Easily verified that at that minimum,
KL[q∥p] = KL[p∥p] = 0.
A similar proof holds for continuous densities, using functional derivatives.

Peter Orbanz 130

FIXED POINTS OF EM ARE STATIONARY POINTS IN ℓ

© Gatsby Unit

Let a fixed point of EM occur with parameter θ∗. Then:

∂

∂θ
⟨log P(Z,X | θ)⟩P(Z|X ,θ∗)

∣∣∣∣
θ∗

= 0

Now, ℓ(θ) = log P(X|θ) = ⟨log P(X|θ)⟩P(Z|X ,θ∗)

=

〈
log

P(Z,X|θ)
P(Z|X , θ)

〉
P(Z|X ,θ∗)

= ⟨log P(Z,X|θ)⟩P(Z|X ,θ∗) − ⟨log P(Z|X , θ)⟩P(Z|X ,θ∗)

so, d
dθ
ℓ(θ) =

d
dθ
⟨log P(Z,X|θ)⟩P(Z|X ,θ∗) −

d
dθ
⟨log P(Z|X , θ)⟩P(Z|X ,θ∗)

The second term is 0 at θ∗ if the derivative exists (minimum of KL[·∥·]), and thus:

d
dθ
ℓ(θ)

∣∣∣∣
θ∗

=
d

dθ
⟨log P(Z,X|θ)⟩P(Z|X ,θ∗)

∣∣∣∣
θ∗

= 0

So, EM converges to a stationary point of ℓ(θ).

Peter Orbanz 131

MAXIMA IN F CORRESPOND TO MAXIMA IN ℓ

© Gatsby Unit

Let θ∗ now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt θ again we find

d2

dθ2
ℓ(θ) =

d2

dθ2
⟨log P(Z,X|θ)⟩P(Z|X ,θ∗) −

d2

dθ2
⟨log P(Z|X , θ)⟩P(Z|X ,θ∗)

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

θ∗ is a maximum of ℓ.

[. . . as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].

Peter Orbanz 132

LATENT VARIABLE MODELS FOR TIME
SERIES

MODELING TIME SERIES

© Gatsby Unit

Thus far, our data have been (marginally) iid. Now consider a sequence of observations:

x1, x2, x3, . . . , xt

that are not independent.

Examples:
• Sequence of images
• Stock prices
• Recorded speech or music, English sentences
• Kinematic variables in a robot
• Sensor readings from an industrial process
• Amino acids, DNA, etc. . .

Goal: To build a joint probabilistic model of the data p(x1, . . . , xt).
• Predict p(xt|x1, . . . , xt−1)

• Detect abnormal/changed behaviour (if p(xt, xt+1, . . . |x1, . . . , xt−1) small)
• Recover underlying/latent/hidden causes linking entire sequence

Peter Orbanz 134

MARKOV MODELS

© Gatsby Unit

In general:

P(x1, . . . , xt) = P(x1)P(x2|x1)P(x3|x1, x2) · · ·P(xt|x1, x2 . . . xt−1)

First-order Markov model:

P(x1, . . . , xt) = P(x1)P(x2|x1) · · ·P(xt|xt−1)

x1 x2 x3 xT• • •

The term Markov refers to a conditional independence relationship. In this case, the Markov
property is that, given the present observation (xt), the future (xt+1, . . .) is independent of the
past (x1, . . . , xt−1).
Second-order Markov model:

P(x1, . . . , xt) = P(x1)P(x2|x1) · · ·P(xt−1|xt−3, xt−2)P(xt|xt−2, xt−1)

x1 x2 x3 xT• • •

x4 is independent
of x1 given x2, x3

x4 may depend on x2 and x3

Peter Orbanz 135

CAUSAL STRUCTURE AND LATENT VARIABLES

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •

Temporal dependence captured by latents, with observations conditionally independent.
Speech recognition:

• z - underlying phonemes or words
• x - acoustic waveform

Vision:
• z - object identities, poses, illumination
• x - image pixel values

Industrial Monitoring:
• z - current state of molten steel in caster
• x - temperature and pressure sensor readings

Peter Orbanz 136

LATENT-CHAIN MODELS

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •

Joint probability factorizes:

P(z1:T , x1:T) = P(z1)P(x1|z1)

T∏
t=2

P(zt|zt−1)P(xt|zt)

where zt and xt are both real-valued vectors, and □1:T ≡ □1, . . . ,□T .

Two frequently-used tractable models:
• Linear-Gaussian state-space models
• Hidden Markov models

Peter Orbanz 137

LINEAR-GAUSSIAN STATE-SPACE MODELS (SSMS)

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •

In a linear Gaussian SSM all conditional distributions are linear and Gaussian:

Output equation: xt= Czt + vt

State dynamics equation: zt= Azt−1 + wt

where vt and wt are uncorrelated zero-mean multivariate Gaussian noise vectors.

Also assume z1 is multivariate Gaussian. The joint distribution over all variables x1:T , z1:T is
(one big) multivariate Gaussian.

These models are also known as stochastic linear dynamical systems, Kalman filter models.

Peter Orbanz 138

LINEAR DYNAMICAL SYSTEMS

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •

Interpretation 2:

• Markov chain with linear dynamics zt = Azt−1 . . .
• . . . perturbed by Gaussian innovations noise – may describe stochasticity, unknown

control, or model mismatch.
• Observations are a linear projection of the dynamical state, with additive iid Gaussian

noise.
• Note:

• Dynamical process (zt) may be higher dimensional than the observations
(xt).

• Observations do not form a Markov chain – longer-scale dependence
reflects/reveals latent dynamics.

Peter Orbanz 139

HIDDEN MARKOV MODELS

© Gatsby Unit

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Discrete hidden states st ∈ {1 . . . ,K}; outputs xt can be discrete or continuous.
Joint probability factorizes:

P(s1:T , x1:T) = P(s1)P(x1|s1)
T∏

t=2

P(st|st−1)P(xt|st)

Generative process:
• A first-order Markov chain generates the hidden state sequence (path):

initial state probs: πj = P(s1 = j) transition matrix: Φij = P(st+1 = j|st = i)

• A set of emission (output) distributions Aj(·) (one per state) converts state path to a
sequence of observations xt .

Aj(x) = P(xt = x|st = j) (for continuous xt)
Ajk = P(xt = k|st = j) (for discrete xt)

Peter Orbanz 140

HIDDEN MARKOV MODELS

© Gatsby Unit

Two interpretations:
• a Markov chain with stochastic measurements:

s1 s2 s3 sT

x1 x2 x3 xT

• • •

• or a mixture model with states coupled across time:

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Even though hidden state sequence is first-order Markov, the output process may not be Markov
of any order (for example: 1111121111311121111131 . . .).

Discrete state, discrete output models can approximate any continuous dynamics and
observation mapping even if nonlinear; however this is usually not practical.

HMMs are related to stochastic finite state machines/automata.

Peter Orbanz 141

HMMS AND SSMS

© Gatsby Unit

(Linear Gaussian) State space models are the continuous state analogue of hidden Markov
models.

z1 z2 z3 zT

x1 x2 x3 xT

• • •

⇔
s1 s2 s3 sT

x1 x2 x3 xT

• • •

• A continuous vector state is a very powerful representation.
For an HMM to communicate N bits of information about the past, it needs 2N states! But
a real-valued state vector can store an arbitrary number of bits in principle.

z1 z2 z3 zT

x1 x2 x3 xT

• • •

• Linear-Gaussian output/dynamics are very weak.
The types of dynamics linear SSMs can capture is very limited. HMMs can in principle
represent arbitrary stochastic dynamics and output mappings.

Peter Orbanz 142

CHAIN MODELS: ML LEARNING WITH EM

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •

z1 ∼ N (µ0,Q0)

zt|zt−1 ∼ N (Azt−1,Q)

xt|zt ∼ N (Czt,R)

s1 s2 s3 sT

x1 x2 x3 xT

• • •

s1 ∼ π

st|st−1 ∼ Φst−1,·

xt|st ∼ Ast

The structure of learning and inference for both models is dictated by the factored structure.

P(x1, . . . , xT , z1, . . . , zT) = P(z1)
T∏

t=2

P(zt|zt−1)
T∏

t=1

P(xt|zt)

Learning (M-step):

argmax ⟨log P(x1, . . . , xT , z1, . . . , zT)⟩q(z1,...,zT)
=

argmax

[
⟨log P(z1)⟩q(z1)

+
T∑

t=2

⟨log P(zt|zt−1)⟩q(zt,zt−1)
+

T∑
t=1

⟨log P(xt|zt)⟩q(zt)

]
So the expectations needed (in E-step) are derived from singleton and pairwise marginals.

Peter Orbanz 143

CHAIN MODELS: INFERENCE

© Gatsby Unit

Three general inference problems:

Filtering: P(zt|x1, . . . , xt)

Smoothing: P(zt|x1, . . . , xT) (also P(zt, zt−1|x1, . . . , xT) for learning)
Prediction: P(zt|x1, . . . , xt−∆t)

Naively, these marginal posteriors seem to require very large integrals (or sums)

P(zt|x1, . . . , xt) =

∫
· · ·
∫

dz1 . . . dzt−1 P(z1, . . . , zt|x1, . . . , xt)

but again the factored structure of the distributions will help us. The algorithms rely on a form
of temporal updating or message passing.

Peter Orbanz 144

© Gatsby Unit

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Consider an HMM, where we want to find P(st = k|x1 . . . xt) =∑
k1,...,kt−1

P(s1 = k1, . . . , st = k|x1 . . . xt) ∝∑
k1,...,kt−1

πk1 Ak1 (x1)Φk1,k2 Ak2 (x2) . . .Φkt−1,kAk(xt)

Naïve algorithm:
• start a “bug” at each of the k1 = 1 . . .K states at t = 1 holding value πk1 Ak1 (x1)
• move each bug forward in time: make copies of each bug to each subsequent state and

multiply the value of each copy by transition prob. × output emission prob.
• repeat

until all bugs have reached time t

• sum up values on all Kt−1 bugs that reach state st = k (one bug per state path)

Clever recursion:
• at every step, replace bugs at each node with a single bug carrying sum of values

Peter Orbanz 145

© Gatsby Unit

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Consider an HMM, where we want to find P(st = k|x1 . . . xt) =∑
k1,...,kt−1

P(s1 = k1, . . . , st = k|x1 . . . xt) ∝∑
k1,...,kt−1

πk1 Ak1 (x1)Φk1,k2 Ak2 (x2) . . .Φkt−1,kAk(xt)

Naïve algorithm:
• start a “bug” at each of the k1 = 1 . . .K states at t = 1 holding value πk1 Ak1 (x1)
• move each bug forward in time: make copies of each bug to each subsequent state and

multiply the value of each copy by transition prob. × output emission prob.
• repeat

until all bugs have reached time t

• sum up values on all Kt−1 bugs that reach state st = k (one bug per state path)

Clever recursion:
• at every step, replace bugs at each node with a single bug carrying sum of values

Peter Orbanz 145

© Gatsby Unit

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Consider an HMM, where we want to find P(st = k|x1 . . . xt) =∑
k1,...,kt−1

P(s1 = k1, . . . , st = k|x1 . . . xt) ∝∑
k1,...,kt−1

πk1 Ak1 (x1)Φk1,k2 Ak2 (x2) . . .Φkt−1,kAk(xt)

Naïve algorithm:
• start a “bug” at each of the k1 = 1 . . .K states at t = 1 holding value πk1 Ak1 (x1)
• move each bug forward in time: make copies of each bug to each subsequent state and

multiply the value of each copy by transition prob. × output emission prob.
• repeat

until all bugs have reached time t

• sum up values on all Kt−1 bugs that reach state st = k (one bug per state path)

Clever recursion:
• at every step, replace bugs at each node with a single bug carrying sum of values

Peter Orbanz 145

© Gatsby Unit

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Consider an HMM, where we want to find P(st = k|x1 . . . xt) =∑
k1,...,kt−1

P(s1 = k1, . . . , st = k|x1 . . . xt) ∝∑
k1,...,kt−1

πk1 Ak1 (x1)Φk1,k2 Ak2 (x2) . . .Φkt−1,kAk(xt)

Naïve algorithm:
• start a “bug” at each of the k1 = 1 . . .K states at t = 1 holding value πk1 Ak1 (x1)
• move each bug forward in time: make copies of each bug to each subsequent state and

multiply the value of each copy by transition prob. × output emission prob.
• repeat

until all bugs have reached time t

• sum up values on all Kt−1 bugs that reach state st = k (one bug per state path)

Clever recursion:
• at every step, replace bugs at each node with a single bug carrying sum of values

Peter Orbanz 145

© Gatsby Unit

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Consider an HMM, where we want to find P(st = k|x1 . . . xt) =∑
k1,...,kt−1

P(s1 = k1, . . . , st = k|x1 . . . xt) ∝∑
k1,...,kt−1

πk1 Ak1 (x1)Φk1,k2 Ak2 (x2) . . .Φkt−1,kAk(xt)

Naïve algorithm:
• start a “bug” at each of the k1 = 1 . . .K states at t = 1 holding value πk1 Ak1 (x1)
• move each bug forward in time: make copies of each bug to each subsequent state and

multiply the value of each copy by transition prob. × output emission prob.
• repeat until all bugs have reached time t
• sum up values on all Kt−1 bugs that reach state st = k (one bug per state path)

Clever recursion:
• at every step, replace bugs at each node with a single bug carrying sum of values

Peter Orbanz 145

© Gatsby Unit

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Consider an HMM, where we want to find P(st = k|x1 . . . xt) =∑
k1,...,kt−1

P(s1 = k1, . . . , st = k|x1 . . . xt) ∝∑
k1,...,kt−1

πk1 Ak1 (x1)Φk1,k2 Ak2 (x2) . . .Φkt−1,kAk(xt)

Naïve algorithm:
• start a “bug” at each of the k1 = 1 . . .K states at t = 1 holding value πk1 Ak1 (x1)
• move each bug forward in time: make copies of each bug to each subsequent state and

multiply the value of each copy by transition prob. × output emission prob.
• repeat

until all bugs have reached time t

• sum up values on all Kt−1 bugs that reach state st = k (one bug per state path)
Clever recursion:

• at every step, replace bugs at each node with a single bug carrying sum of valuesPeter Orbanz 145

PROBABILITY UPDATING: “BAYESIAN FILTERING”

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •

P(zt|x1:t) =

∫
P(zt, zt−1|xt, x1:t−1) dzt−1

=

∫
P(xt, zt, zt−1|x1:t−1)

P(xt|x1:t−1)
dzt−1

∝
∫

P(xt|zt, zt−1, x1:t−1)P(zt|zt−1, x1:t−1)P(zt−1|x1:t−1) dzt−1

=

Markov property

∫
P(xt|zt)P(zt|zt−1)P(zt−1|x1:t−1) dzt−1

This is a forward recursion based on Bayes rule.

Peter Orbanz 146

THE HMM: FORWARD PASS

© Gatsby Unit

The forward recursion for the HMM is a form of dynamic programming. Define:

αt(i) = P(x1, . . . , xt, st = i|θ)

Then much like the Bayesian filtering updates, we have:

α1(i) = πiAi(x1) αt+1(i) =

 K∑
j=1

αt(j)Φji

Ai(xt+1)

We’ve defined αt(i) to be a joint rather than a posterior. It’s easy to obtain the posterior by
normalisation:

P(st = i|x1, . . . , xt, θ) =
αt(i)∑
k αt(k)

This form enables us to compute the likelihood for θ = {A,Φ,π} efficiently inO(TK2) time:

P(x1 . . . xT |θ) =
∑

s1,...,sT

P(x1, . . . , xT , s1, . . . , sT , θ) =
K∑

k=1

αT(k)

avoiding the exponential number of paths in the naïve sum (number of paths = KT).

Peter Orbanz 147

THE LGSSM: KALMAN FILTERING

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • • z1 ∼ N (µ0,Q0)

zt|zt−1 ∼ N (Azt−1,Q)

xt|zt ∼ N (Czt,R)

For the SSM, the sums become integrals. Let ẑ0
1 = µ0 and V̂0

1 = Q0; then

P(z1|x1) = N
(
ẑ0

1 + K1(x1 − Cẑ0
i)︸ ︷︷ ︸

ẑ1
1

, V̂0
1 − K1CV̂0

1︸ ︷︷ ︸
V̂1

1

)
K1 = V̂0

1 CT(CV̂0
1 CT + R)−1

In general, we define ẑτt ≡ E[zt|x1, . . . , xτ] and V̂τ
t ≡ V[zt|x1, . . . , xτ]. Then,

P(zt|x1:t−1) =

∫
dzt−1P(zt|zt−1)P(zt−1|x1:t−1) = N (Aẑt−1

t−1︸ ︷︷ ︸
ẑt−1

t

, AV̂ t−1
t−1 AT + Q︸ ︷︷ ︸

V̂ t−1
t

)

P(zt|x1:t) = N (ẑt−1
t + Kt(xt − Cẑt−1

t)︸ ︷︷ ︸
ẑt

t

, V̂ t−1
t − KtCV̂ t−1

t︸ ︷︷ ︸
V̂ t

t

)

Kt =

〈
zxT

〉
︷ ︸︸ ︷
V̂ t−1

t CT(

〈
xxT

〉
︷ ︸︸ ︷
CV̂ t−1

t CT + R)−1︸ ︷︷ ︸
Kalman gain

Peter Orbanz 148

BACKGROUND I

Conditioning within a multivariate Gaussian
Let (A,B) be a partition of the set {1, . . . , d} and let X = (XA,XB) be a Gaussian random
vector in Rd = RA × RB, with

E[X] =

(
µA

µB

)
and Cov[X] =

(
ΣA ΣAB

Σt
AB ΣB

)
.

Then the conditional distribution of XA|(XB = xB) is again Gaussian, with mean

E[XA|XB = xB] = µA +ΣABΣ
−1
B (xB − µB)

and covariance
Cov[XA|XB = xB] = ΣA − ΣABΣ

−1
B Σt

AB .

Peter Orbanz 149

BACKGROUND II

Matrix inversion lemma (Woodbury identity)
For k ≤ n, invertible matrices A ∈ Rn×n and C ∈ Rk×k , and any B ∈ Rn×k and D ∈ Rk×n:

(A− BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

n × n k × k

n × k k × n

provided A and C are invertible.
Note: A and C refers to generic matrices, not to A and C defined on the Kalman filter slide.

Intepretation
• In essence: (A− BCD)−1 = f (A−1,C−1,B,D)

• Since C is k × k, the n× n-matrix BCD has rank ≤ k.
• Substracting BCD modifies A on a k-dimensional subspace.
• Typical use case: We already know A−1, and k is small. We can then invert

the n× n matrix (A− BCD) by inverting only a k × k matrix.

Peter Orbanz 150

THE MARGINAL POSTERIOR: “BAYESIAN SMOOTHING”

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •

P(zt|x1:T) =
P(zt, xt+1:T |x1:t)

P(xt+1:T |x1:t)

=
P(xt+1:T |zt)P(zt|x1:t)

P(xt+1:T |x1:t)

The marginal combines a backward message with the forward message found by filtering.

Peter Orbanz 151

THE HMM: FORWARD–BACKWARD ALGORITHM

© Gatsby Unit

State estimation: compute marginal posterior distribution over state at time t:

γt(i) ≡ P(st = i|x1:T) =
P(st = i, x1:t)P(xt+1:T |st = i)

P(x1:T)
=

αt(i)βt(i)∑
j αt(j)βt(j)

where there is a simple backward recursion for

βt(i) ≡ P(xt+1:T |st = i) =
K∑

j=1

P(st+1 = j, xt+1, xt+2:T |st = i)

=
K∑

j=1

P(st+1 = j|st = i)P(xt+1|st+1 = j)P(xt+2:T |st+1 = j) =
K∑

j=1

ΦijAj(xt+1)βt+1(j)

αt(i) gives total inflow of probabilities to node (t, i); βt(i) gives total outflow of probabiilties.

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

s1 s2 s3 s4 s5 s6

Bugs again: the bugs run forward from time 0 to t and backward from time T to t.
Peter Orbanz 152

VITERBI DECODING

© Gatsby Unit

• The numbers γt(i) computed by forward-backward give the marginal posterior
distribution over states at each time.

• By choosing the state i∗t with the largest γt(i) at each time, we can make a “best” state
path. This is the path with the maximum expected number of correct states.

• But it is not the single path with the highest probability of generating the data.
In fact it may be a path of probability zero!

• To find the single best path, we use the Viterbi decoding algorithm which is just Bellman’s
dynamic programming algorithm applied to this problem. This is an inference algorithm
which computes the most probable state sequences: argmax

s1:T

P(s1:T |x1:T , θ)

• The recursions look the same as forward-backward, except with max instead of
∑

.

• Bugs once more: same trick except at each step kill all bugs but the one with the highest
value at the node.

• There is also a modified EM training based on the Viterbi decoder (assignment).

Peter Orbanz 153

THE LGSSM: KALMAN SMOOTHING

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •

We use a slightly different decomposition:

P(zt|x1:T) =

∫
P(zt, zt+1|x1:T) dzt+1

=

∫
P(zt|zt+1, x1:T)P(zt+1|x1:T) dzt+1

=
Markov property

∫
P(zt|zt+1, x1:t)P(zt+1|x1:T) dzt+1

This gives the additional backward recursion:

Jt = V̂ t
t AT(V̂ t

t+1)
−1

ẑT
t = ẑt

t + Jt(ẑT
t+1 − Aẑt

t)

V̂T
t = V̂ t

t + Jt(V̂T
t+1 − V̂ t

t+1)Jt
T

Peter Orbanz 154

ML LEARNING FOR SSMS USING BATCH EM

© Gatsby Unit

z1 z2 z3 zT

x1 x2 x3 xT

• • •A A A A

C C C C

Parameters: θ = {µ0,Q0,A,Q,C,R}
Free energy:

F(q, θ) =
∫

dz1:T q(z1:T)(log P(x1:T , z1:T |θ)− log q(z1:T))

E-step: Maximise F w.r.t. q with θ fixed: q∗(z) = p(z|x, θ)
This can be achieved with a two-state extension of the Kalman smoother.

M-step: Maximize F w.r.t. θ with q fixed.
This boils down to solving a few weighted least squares problems, since all the variables in:

p(z, x|θ) = p(z1)p(x1|z1)
T∏

t=2

p(zt|zt−1)p(xt|zt)

form a multivariate Gaussian.

Peter Orbanz 155

THE M STEP FOR C

© Gatsby Unit

p(xt|zt) ∝ exp
[
− 1

2 (xt − Czt)TR−1(xt − Czt)
]
⇒

Cnew = argmax
C

〈∑
t

ln p(xt|zt)

〉
q

= argmax
C

〈
−1

2

∑
t

(xt − Czt)
TR−1(xt − Czt)

〉
q

+ const

= argmax
C

{
−1

2

∑
t

xT
t R−1xt − 2xT

t R−1C⟨zt⟩+ ⟨zT
t CTR−1Czt⟩

}

= argmax
C

{
Tr

[
C
∑

t

⟨zt⟩xT
t R−1

]
− 1

2
Tr

[
CTR−1C

〈∑
t

ztzT
t

〉]}

using ∂Tr[AB]
∂A = BT, we have

∂{·}
∂C

= R−1
∑

t

xt⟨zt⟩T − R−1C

〈∑
t

ztzT
t

〉

⇒ Cnew =

(∑
t

xt⟨zt⟩T
)(∑

t

〈
ztzT

t

〉)−1

Note the connection to linear regression.

Peter Orbanz 156

THE M STEP FOR A

© Gatsby Unit

p(zt+1|zt) ∝ exp
{
− 1

2 (zt+1 − Azt)TQ−1(zt+1 − Azt)
}
⇒

Anew = argmax
A

〈∑
t

ln p(zt+1|zt)

〉
q

= argmax
A

〈
−1

2

∑
t

(zt+1 − Azt)
TQ−1(zt+1 − Azt)

〉
q

+ const

= argmax
A

{
−1

2

∑
t

zT
t+1Q−1zt+1 − 2

〈
zT

t+1Q−1Azt

〉
+
〈

zT
t ATQ−1Azt

〉}

= argmax
A

{
Tr

[
A
∑

t

〈
ztzT

t+1

〉
Q−1

]
− 1

2
Tr

[
ATQ−1A

∑
t

〈
ztzT

t

〉]}

using ∂Tr[AB]
∂A = BT, we have

∂{·}
∂A

= Q−1
∑

t

〈
zt+1zT

t

〉
− Q−1A

∑
t

〈
ztzT

t

〉

⇒ Anew =

(∑
t

〈
zt+1zT

t

〉)(∑
t

〈
ztzT

t

〉)−1

This is still analagous to linear regression, with an extra expectation.

Peter Orbanz 157

LEARNING (ONLINE GRADIENT)

© Gatsby Unit

Time series data must often be processed in real-time, and we may want to update parameters
online as observations arrive. We can do so by updating a local version of the likelihood based
on the Kalman filter estimates.
Consider the log likelihood contributed by each data point (ℓt):

ℓ =
T∑

t=1

ln p(xt|x1, . . . , xt−1) =
T∑

t=1

ℓt

Then,

ℓt = −
D
2
ln 2π − 1

2
ln |Σ| − 1

2
(xt − Cẑt−1

t)TΣ−1(xt − Cẑt−1
t)

where D is dimension of x, and:

ẑt−1
t = Aẑt−1

t−1

Σ = CV̂ t−1
t CT + R

V̂ t−1
t = AV̂ t−1

t−1 AT + Q

We differentiate ℓt to obtain gradient rules for A,C,Q,R. The size of the gradient step (learning
rate) reflects our expectation about nonstationarity.

Peter Orbanz 158

LEARNING HMMS USING EM

© Gatsby Unit

s1 s2 s3 sT

x1 x2 x3 xT

• • •T T T T

A A A A

Parameters: θ = {π,Φ,A}
Free energy:

F(q, θ) =
∑
s1:T

q(s1:T)(log P(x1:T , s1:T |θ)− log q(s1:T))

E-step: Maximise F w.r.t. q with θ fixed: q∗(s1:T) = P(s1:T |x1:T , θ)

We will only need the marginal probabilities q(st, st+1), which can also be obtained from the
forward–backward algorithm.

M-step: Maximize F w.r.t. θ with q fixed.

We can re-estimate the parameters by computing the expected number of times the HMM was
in state i, emitted symbol k and transitioned to state j.

This is the Baum-Welch algorithm and it predates the (more general) EM algorithm.

Peter Orbanz 159

M STEP: PARAMETER UPDATES ARE GIVEN BY RATIOS OF
EXPECTED COUNTS

© Gatsby Unit

We can derive the following updates by taking derivatives of F w.r.t. θ.
• The initial state distribution is the expected number of times in state i at t = 1:

π̂i = γ1(i)

• The expected number of transitions from state i to j which begin at time t is:

ξt(i→ j) ≡ P(st = i, st+1 = j|x1:T) = αt(i)ΦijAj(xt+1)βt+1(j)/P(x1:T)

so the estimated transition probabilities are:

Φ̂ij =

T−1∑
t=1

ξt(i→ j)

/T−1∑
t=1

γt(i)

• The output distributions are the expected number of times we observe a particular symbol
in a particular state:

Âik =
∑

t:xt=k

γt(i)

/
T∑

t=1

γt(i)

(or the state-probability-weighted mean and variance for a Gaussian output model).

Peter Orbanz 160

HMM PRACTICALITIES

© Gatsby Unit

• Numerical scaling: the conventional message definition is in terms of a large joint:

αt(i) = P(x1:t, st = i) → 0 as t grows, and so can easily underflow.

Rescale:

αt(i) = Ai(xt)
∑

j

α̃t−1(j)Φji ρt =
K∑

i=1

αt(i) α̃t(i) = αt(i)/ρt

Exercise: show that:

ρt = P(xt|x1:t−1, θ)
T∏

t=1

ρt = P(x1:T |θ)

What does this make α̃t(i)?
• Multiple observed sequences: average numerators and denominators in the ratios of

updates.

Peter Orbanz 161

HMM PSEUDOCODE: INFERENCE (E STEP)

© Gatsby Unit

Forward-backward including scaling tricks.
[◦ is the element-by-element (Hadamard/Schur) product: ‘.∗’ in matlab.]

for t = 1 :T, i = 1 :K pt(i) = Ai(xt)

α1 = π ◦ p1 ρ1 =
∑K

i=1 α1(i) α1 = α1/ρ1

for t = 2 :T αt = (ΦT ∗ αt−1) ◦ pt ρt =
∑K

i=1 αt(i) αt = αt/ρt

βT = 1
for t = T − 1 :1 βt = Φ ∗ (βt+1 ◦ pt+1)/ρt+1

log P(x1:T) =
∑T

t=1 log(ρt)

for t = 1 :T γt = αt ◦βt

for t = 1 :T − 1 ξt = Φ ◦(αt ∗ (βt+1 ◦ pt+1)
T)/ρt+1

Peter Orbanz 162

HMM PSEUDOCODE: PARAMETER RE-ESTIMATION (M
STEP)

© Gatsby Unit

Baum-Welch parameter updates:

For each sequence l = 1 : L, run forward–backward to get γ(l) and ξ(l), then

πi =
1
L

∑L
l=1 γ

(l)
1 (i)

Φij =

∑L
l=1
∑T(l)−1

t=1 ξ
(l)
t (ij)∑L

l=1
∑T(l)−1

t=1 γ
(l)
t (i)

Aik =

∑L
l=1
∑T(l)

t=1 δ(xt = k)γ(l)
t (i)∑L

l=1
∑T(l)

t=1 γ
(l)
t (i)

Peter Orbanz 163

APPLICATION: SPEECH RECOGNITION

Problem
Given speech in form of a sound signal, determine the words that have been spoken.

Method
• Words are broken down into small sound units (called phonemes). The states in the HMM

represent phonemes.
• The incoming sound signal is transformed into a sequence of vectors (feature extraction).

Each vector xn is indexed by a time step n.
• The sequence x1:N of feature vectors is the observed data in the HMM.

Peter Orbanz 164

PHONEME MODELS

Phoneme
A phoneme is defined as the smallest unit of sound in a language that distinguishes between
distinct meanings. English uses about 50 phonemes.

Example

Zero Z IH R OW Six S IH K S
One W AH N Seven S EH V AX N
Two T UW Eight EY T

Three TH R IY Nine N AY N
Four F OW R Oh OW
Five F AY V

Subphonemes
Phonemes can be further broken down into subphonemes. The standard in speech processing is
to represent a phoneme by three subphonemes ("triphons").

Peter Orbanz 165

PREPROCESSING SPEECH

A
m

pl
itu

de

Time

Fr
eq

ue
nc

y

Time

Feature extraction
• A speech signal is measured as amplitude over time.
• The signal is typically transformed into various types of features, including (windowed)

Fourier- or cosine-transforms and so-called "cepstral features".
• Each of these transforms is a scalar function of time. All function values for the different

transforms at time t are collected in a vector, which is the feature vector (at time t).

Peter Orbanz 166

LAYERS IN PHONEME MODELS4 WORTKETTENERKENNUNG FÜR GROSSES VOKABULAR 132

4.1.2 HMMs für Phonemstrukturen

Wörter:

Phoneme:

Subphoneme:

akustische Vektoren:

Sprachsignal:

THIS BOOK IS GOOD

th i s b uh k i z g uh d

. . . b b uh uh uh k kcl rel on off cl rel

. . .

. . .

. . .

Abbildung 4.2: Ebenen der akustischen Modellierung.

Die gesprochene Sprache kann auf jeder dieser Ebenen modelliert werden.

Spracherkennung, 12. März 2002 WS 01/02

Words

Phonemes

Subphonemes

Features

Speech signal

HMM speech recognition
• Training: The HMM parameters (emission parameters and transition probabilities) are

estimated from data, often using both supervised and unsupervised techniques.
• Recognition: Given a language signal (= observation sequence x1:N , estimate the

corresponding sequence of subphonemes (= states z1:N). This is a decoding problem.

Peter Orbanz 167

SPEAKER ADAPTATION

Factory model
Training requires a lot of data; software is typically shipped with a model trained on a large
corpus (i.e. the HMM parameters are set to "factory settings").

The adaptation problem
• The factory model represents an average speaker. Recognition rates can be improved

drastically by adapting to the specific speaker using the software.
• Before using the software, the user is presented with a few sentences and asked to read

them out, which provides labelled training data.

Speaker adaptation
• Transition probabilities are properties of the language. Differences between speakers

(pronounciation) are reflected by the emission parameters θk .
• Emission probabilities in speech are typically multi-dimensional Gaussians, so we have to

adapt means and covariance matrices.
• The arguably most widely used method is maximum likelihood linear regression

(MLLR), which uses a regression technique to make small changes to the covariance
matrices.

Peter Orbanz 168

MORE ON MARKOV CHAINS

GRAPHICAL REPRESENTATION

A simple binary chain
We consider a Markov chain X1,X2, . . . with state space X . Suppose X = {0, 1}.

0 1

p0→1

p1→0

p1→1p0→0

• We regard 0 and 1 as possible "states" of X, represented as vertices in a graph.
• Each pair Xn−1 = s,Xn = t in the sequence is regarded as a "transition" from s to t and

represented as an edge in the graph.
• Each edge s→ t is weighted by the probability

ps→t := P(Xn = t|Xn−1 = s) .

Caution: The graph is not a graphical model. (For computer scientists: It is a probabilistic finite automaton.)

Stationarity
The graph representation is only possible if ps→t is independent of n. Otherwise we would have
to draw a different graph for each n.

If ps→t does not depend on n, the Markov chain is called stationary.

Peter Orbanz 170

GRAPHICAL REPRESENTATION

First example: Independent coin flips
Suppose X is a biased coin with P(Xn = 1) = p independently of Xn−1. In other words, the
sequence (Xn) is iid Bernoulli with parameter p.

0 1

p

1− p

p1− p

Breaking independence
Here is a simple modification to the chain above; only p1→0 and p1→1 have changed:

0 1

p

0

11− p

This is still a valid Markov chain, but the elements of the sequence are no longer independent.

Peter Orbanz 171

GRAPHICAL REPRESENTATION

Transition matrix
The probabilities ps→t are called the transition probabilities of the Markov chain. If |X | = d,
the d × d-matrix

p := (pi→j)j,i≤d =

p1→1 . . . pd→1
...

...
p1→d . . . pd→d


is called the transition matrix of the chain. This is precisely the adjacency matrix of the graph
representing the chain. Each column is a probability distribution on d events.

Initial distribution
The distribution of the first state, i.e. the vector

Pinit := (P(X0 = 1), . . . ,P(X0 = d)) ,

is called the initial distribution of the Markov chain.

The distribution of a stationary Markov chain with finite state space is completely
determined by the pair (p,Pinit).

Peter Orbanz 172

STATE PROBABILITIES

Distribution after the first step
• If we know the initial state, then

P(X1 = s1 |X0 = s0) = ps0→s1
.

• Now consider the marginal distribution P1 of X1. This is the distribution X1 if we do not
know the initial state (e.g. before we start the chain):

P1(s1) = P(X1 = s1) =
∑

s0∈X
P(X1 = s1 |X0 = s0)Pinit(s0) =

∑
s0∈X

ps0→s1
Pinit(s0) .

• Since p is a d × d-matrix and Pinit a vector of length d, we can write that as

P1 = p · Pinit .

• The same argument shows that P2 is given by P2 = p · P1 = p · p · Pinit et cetera.

The marginal distribution of chain’s state after n steps is

Pn = pnPinit

Peter Orbanz 173

LIMITS AND EQUILIBRIA

Limiting distribution
Instead of considering Pn for a specific, large n, we take the limit

P∞ := lim
n→∞

Pn = lim
n→∞

pnPinit ,

provided that the limit exists.

Observation
If the limit P∞ exists, then

p · P∞ = p · lim
n→∞

pnPinit = lim
n→∞

pnPinit = P∞ ,

which motivates the next definition.

Let p be the transition matrix of a Markov chain. A distribution P on X which is invariant
under p in the sense that

p · P = P

is called an equilibrium distribution or invariant distribution of the chain.

Peter Orbanz 174

DOES A CHAIN HAVE AN EQUILIBRIUM?

• A stationary Markov chain is: aperiodic if

P(Xn = s |Xn−1 = s) = ps→s > 0 for all s ∈ X .

That is: The transition matrix has non-zero diagonal.
• It is irreducible if there is a path (with non-zero probability) from each state to every

other state in the transition graph.

Theorem
If a first-order, stationary Markov chain with finite state space is aperiodic and
irreducible, then:

• The limit distribution P∞ exists.
• The limit distribution is also the equlibrium distribution.
• The equilibrium distribution is unique.
• The equilibrium does not depend on the initial distribution.

Peter Orbanz 175

MEANING OF THE CONDITIONS

Why an equilibrium distribution may not be unique

3 2

1

• For this chain, both P = (0, 1, 0) and P′ = (0, 0, 1) are
valid equilibria.

• Which one emerges depends on the initial state and (if
we start in state 1) on the first transition.

Remedy: Irreducibility. An irreducible chain could move between states 2 and 3.

Why the limit may not exist
Recall that a sequence in R does not have a limit if it "oscillates". For example, limn 1n = 1, but limn(−1)n does not exist.

• The chain on the right has no limit distribution.
• If we start e.g. in state 0, then 0 can only be reached in

even steps, 1 only in odd steps.
• The distribution Pn oscillates between

Peven = (1, 0) and Podd = (0, 1) .

0 1

Remedy: Require the chain to be aperiodic. That would add two edges to the graph:

0 1

The theorem shows that these simple fixes to the two most obvious problems suffice to ensure existence of a unique equilibrium.
Peter Orbanz 176

COMPUTING THE EQUILIBRIUM

Power method
If the the transition matrix p makes the chain irreducible and aperiodic, we know that

equilibrium distribution = limit distribution .

This means we can approximate the equilibrium P∞ by Pn:
• Initialize with any distribution Pinit (e.g. uniform).
• Repeat Pn+1 = p · Pn.
• Terminate once ∥Pn+1 − Pn∥ < τ for some small τ .

Eigenstructure
• The definition P = p · P of the equilibrium means that P = P∞ is an eigenvector of p

with eigenvalue 1.
• If p is irreducible and aperiodic, it can be shown that 1 is the largest eigenvalue.
• How quickly the power method converges depends on the ratio between the largest and

second-largest eigenvalue (the spectral gap).

Peter Orbanz 177

APPLICATION: WEB SEARCH

The link structure of the web is represented by the web graph, defined by the adjacency matrix

A = (Aij)i, j≤#pages where Aij =

{
1 page i links to page j
0 otherwise

Vertices represent pages, edges represent links. The graph is directed.

Simple random walk
Let G be a directed graph with d vertices. Generate a sequence X0,X1, . . . of vertices:

• Select a vertex X0 in G uniformly at random.
• For n = 1, 2, . . ., select Xn uniformly at random from the children of Xn−1 in the graph.

That defines a Markov chain whose state space is the vertex set of the graph, with

Pinit =
(1

d , . . . ,
1
d

)
and pi→j =

{
1

edges out of i if i links to j
0 otherwise

This Markov chain is called simple random walk on G.

The PageRank Algorithm

(Approximately) compute P∞ for simple random walk on the web graph.

Peter Orbanz 178

INTERPRETATION OF PAGERANK

Problem: Ranking queries
The first step in internet search is query matching:

• The user enters a search query (a string of words).
• The search engine determines all web pages in its database which match the query.
• This is a large set (typically tens or hundreds of millions). The results are only useful if

the “best” links can be filtered out by the engine.

Available data
• Using a web crawler, we can (approximately) determine the link structure of the internet.
• We can determine which pages there are, and which pages they link to.
• We cannot determine how often a link is followed, or how often a page is visited.

PageRank solution
• PageRank uses P∞(v) as the score of web page v. It ranks by decreasing score.
• This uses (i) popularity as a proxy for quality/usefulness, and (ii) the amount of incoming

links as a proxy for popularity.
• P1 would measure how often a page is linked. P2 weights this by how often the linking

page is linked, etc.
• The PageRank paper interpreted P∞(v) as the probability that “random web surfer”

would end up on page v after randomly following a large number of links. Note the start
page does not matter for n→∞.

Peter Orbanz 179

PAGERANK

• Simple random walk on the web graph has transition matrix T with

Tij :=

{
1

edges out of i if i links to j
0 otherwise

This is typically not irreducible (think of web pages which do not link anywhere).
• PageRank therefore uses the regularized transition matrix pij := (1− α)Tij +

α
d , for

some small α ∈ (0, 1). Clearly, this makes p both irreducible and aperiodic.
• The equilibrium can be approximated by the power method. Since the web changes, it can

be re-run every few days with the previous equilibrium as initial distribution.

Example

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 2636

Adjacence matrix of the web graph of 500 web
pages. The root (index 0) is www.harvard.edu.

0 100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Equilibrium distribution computed by PageRank.

Illustration: See K. Murphy, "Machine Learning", MIT Press 2012.Peter Orbanz 180

SAMPLING ALGORITHMS

SAMPLING ALGORITHMS

A sampling algorithm takes a distribution P as input and outputs random values
X1, . . . ,Xn whose marginal distribution is P. Ideally, these draws are independent.

We will see that there are distributions that are hard to work with analytically, but relatively easy
to sample. If so, we can use the sampler output for example to:

• Compute expectations: If X1, . . . ,Xn are independent,

EP[f (X)] ≈ 1
n

n∑
i=1

f (Xi)

by the law of large numbers (for a given function f).
• Approximate the distribution by using the samples as input for density estimation.

Inference in Bayesian models
Suppose we work with a Bayesian model whose posterior Q̂n := L(Θ|X1:n) cannot be
computed analytically.

• We will see that it can still be possible to sample from Q̂n.

• Doing so, we obtain samples Θ1,Θ2, . . . distributed according to Q̂n.
• This reduces posterior estimation to a density estimation problem

(i.e. estimate Q̂n from Θ1,Θ2, . . .).

Peter Orbanz 182

PREDICTIVE DISTRIBUTIONS

Posterior expectations
If we are only interested in some statistic of the posterior of the form EQ̂n

[f (Θ)] (e.g. the
posterior mean), we can again approximate by

EQ̂n
[f (Θ)] ≈ 1

m

m∑
i=1

f (Θi) .

Example: Predictive distribution
The posterior predictive distribution is our best guess of what the next data point xn+1 looks
like, given the posterior under previous observations. In terms of densities:

p(xn+1|x1:n) :=

∫
T

p(xn+1|θ)Q̂n(dθ|X1:n = x1:n) .

This is one of the key quantities of interest in Bayesian statistics.

Computation from samples
The predictive is a posterior expectation, and can be approximated as a sample average:

p(xn+1|x1:n) = EQ̂n
[p(xn+1|Θ)] ≈ 1

m

m∑
i=1

p(xn+1|Θi)

Peter Orbanz 183

THE KEY IDEA

Consider a probability density p on the interval [a, b].

x

p(x)

a b

A

Yi

Xi

Suppose we can define a uniform distribution UA on the blue area A under the curve.

If we generate (X1, Y1), (X2, Y2), . . . ∼iid UA then X1,X2, . . . ∼iid p.

Peter Orbanz 184

REJECTION SAMPLING ON THE INTERVAL

Problem: We do not know how to define a uniform distribution on an arbritrarily shaped area.

Solution: We enclose p in a box B, sample uniformly from the box, and discard all draws
not in the blue area.

x
a b

c

B

Algorithm: Rejection sampling
• Generate (Xi, Yi) uniformly on B, by independently sampling

Xi ∼ Uniform[a, b] and Yi ∼ Uniform[0, c] .

• If Yi ≤ p(Xi), keep the sample.
• Otherwise: Discard ("reject") it.

Result: The remaining (non-rejected) samples are uniformly distributed on A.
Peter Orbanz 185

SCALING

x
a b

c

B

x
a b

k · c

B

• This strategy still works if we scale vertically by some constant k > 0.
• We simply draw Yi ∼ Uniform[0, kc] instead of Yi ∼ Uniform[0, c].

For sampling, it suffices to know a distribution only up to normalization. That is, only the
shape of p needs to be known.

Peter Orbanz 186

DISTRIBUTIONS KNOWN UP TO SCALING

Sampling methods usually assume that we can evaluate the target distribution p up to a constant.
That is:

p(x) =
1
Z̃

p̃(x) ,

and we can compute p̃(x) for any given x, but we do not know Z̃.

We have to pause for a moment and convince ourselves that there are useful examples where
this assumption holds.

Example 1: Simple posterior
For an arbitrary posterior computed with Bayes’ theorem, we could write

Π(θ|x1:n) =

∏n
i=1 p(xi|θ)q(θ)

Z̃
with Z̃ =

∫
T

n∏
i=1

p(xi|θ)q(θ)dθ .

Provided that we can compute the numerator, we can sample without computing the
normalization integral Z̃.

Peter Orbanz 187

DISTRIBUTIONS KNOWN UP TO SCALING

Example 2: Bayesian Mixture Model
Recall that the posterior of the BMM is (up to normalization):

q̂n(c1:K , θ1:K |x1:n) ∝
n∏

i=1

(K∑
k=1

ckp(xi|θk)
)(K∏

k=1

q(θk)
)

qDirichlet(c1:K)

We already know that we can discard the normalization constant, but can we evaluate the
non-normalized posterior q̃n?

• The problem with computing q̃n (as a function of unknowns) is that the term∏n
i=1

(∑K
k=1 . . .

)
blows up into Kn individual terms.

• If we evaluate q̃n for specific values of c, x and θ,
∑K

k=1 ckp(xi|θk) collapses to a single
number for each xi, and we just have to multiply those n numbers.

So: Computing q̃n as a formula in terms of unknowns is difficult; evaluating it for specific
values of the arguments is easy.

Peter Orbanz 188

DISTRIBUTIONS KNOWN UP TO SCALING

Example 3: Markov random field
In a MRF, the normalization function is the real problem.

For example, recall the Ising model:

p(θ1:n) =
1

Z(β)
exp
(∑
(i,j) is an edge

βI{θi = θj}
)

The normalization function is

Z(β) =
∑

θ1:n∈{0,1}n

exp
(∑
(i,j) is an edge

βI{θi = θj}
)

and hence a sum over 2n terms. The general Potts model is even more difficult.

On the other hand, evaluating

p̃(θ1:n) = exp
(∑
(i,j) is an edge

βI{θi = θj}
)

for a given configuration θ1:n is straightforward.

Peter Orbanz 189

REJECTION SAMPLING ON Rd

Problem: If we are not on the interval, sampling uniformly from an enclosing box is not
possible (since there is no uniform distribution on all of R or Rd).

Solution: Instead of a box, we use another distribution r, called a proposal density, to enclose p.

x

p(x)

B

To generate B under r, we apply similar logic as before backwards:
• Sample Xi ∼ r.
• Sample Yi|Xi ∼ Uniform[0, r(Xi)].

We always choose r as a simple distribution that we know how to sample and evaluate.

Peter Orbanz 190

REJECTION SAMPLING ON Rd

x

p(x)

B

• Choose a distribution r from which we know how to sample.
• Scale p̃ such that p̃(x) < r(x) everywhere.

Algorithm: Rejection sampling For i = 1, 2, . . .:
• Sample Xi ∼ r.
• Sample Yi|Xi ∼ Uniform[0, r(Xi)].
• If Yi < p̃(Xi), keep Xi.
• Else, discard Xi and start again at (1).

The retained samples are distributed according to p.
Peter Orbanz 191

PROPERTIES

Independence
If we draw proposal samples i.i.d. from r, the accepted samples are i.i.d.

Rejection samplers produce i.i.d. sequences of samples. If X1,X2, . . . are generated by
rejection sampling, 1

m

∑
i≤m f (Xi) is an unbiased estimate of Ep[f (X)].

Efficiency
The fraction of accepted samples is the ratio |A|

|B| of the areas under the curves p̃ and r.

x

p(x)

If r is not a reasonably close approximation of p, most proposals are rejected.

Peter Orbanz 192

AN IMPORTANT BIT OF IMPRECISE INTUITION

• Sampling is typically used for distributions of multiple, dependent random variables.
• Reason: One-dimensional distributions can usually be handled without sampling.

Multiple independent variables factorize into one-dimensional distributions.
• High-dimensional distributions with dependence often concentrate on many small areas

strewn out over the sample space, with regions of effectively zero probability in between.

Textbook illustrations of target distributions
tend to look like this.

This is a (purely qualitative) attempt to visualize in one
dimension what a high-dimensional distribution might look like.

Peter Orbanz 193

WHY IS NOT EVERY SAMPLER A REJECTION SAMPLER?

• Try to picture the illustration above overlayed with a “simple” proposal distribution.

• Recall that the efficiency is the ratio of the blue and gray areas.
• We can easily end up in situations where we accept only one in 106 (or 1010, or 1020,. . .)

proposal samples.
• Even in moderate dimensions, we have to expect this to be not the exception but the rule.

Peter Orbanz 194

IMPORTANCE SAMPLING

There is a simple way to improve on rejection sampling if we are specifically interested in
approximating an expectation Ep[f (X)].

Simple case: We can evaluate p
Let p be the target and q a proposal density. Rewrite the expecation under p as

Ep[f (X)] =
∫

f (x)p(x)dx =

∫
f (x)

p(x)
q(x)

q(x)dx = Eq

[
f (X)p(X)

q(X)

]

Algorithm

Algorithm: Importance sampling
• Draw X1,X2, . . . i.i.d. from proposal q. Do not discard any samples.
• Approximate the expectation of f as

Ep[f (X)] ≈ 1
m

∑
i≤m f (Xi)

p(Xi)
q(Xi)

• The coefficients p(Xi)
q(Xi)

are called importance weights.

• There are no rejections (but there are samples with small weights).

Peter Orbanz 195

IMPORTANCE SAMPLING: GENERAL CASE

• Now assume we can only evaluate p up to scaling:

p =
1
Zp

p̃ and q =
1
Zq

q̃

where Zp (and possibly Zq) are unknown constants.
• Observe that we can estimate the fraction Zp/Zq using samples X1, . . . ,Xm ∼iid q:

Zp

Zq
=

∫
p̃(x)dx
Zq

=

∫
p̃(x) q(x)

q(x) dx

Zq
=

∫
p̃(x)

q(x)
Zq · q(x)

dx = Eq

[
p̃(X)
q̃(X)

]
≈ 1

m

∑
i≤m

p̃(Xi)
q̃(Xi)

• The estimator of the expectation of f is then:

Ep[f (X)] ≈ 1
m

∑m
i=1 f (Xi)

p(Xi)
q(Xi)

= 1
m

∑m
i=1 f (Xi)

Zq
Zp

p̃(Xi)
q̃(Xi)

=
∑m

i=1

f (Xi)
p̃(Xi)
q̃(Xi)∑m

j=1
p̃(Xj)

q̃(Xj)

Algorithm: Importance sampling (p known up to scaling)
Draw X1,X2, . . . i.i.d. from proposal q, and approximate the expectation as

Ep[f (X)] ≈ ∑m
i=1

f (Xi)
p̃(Xi)
q̃(Xi)∑m

j=1
p̃(Xj)

q̃(Xj)

Peter Orbanz 196

MARKOV RANDOM FIELDS

RANDOM FIELDS

• We define a neighborhood graph, which is a weighted,
undirected graph:

N = (VN ,WN)

vertex set
set of edge weights

• The edge weights are scalars wij ∈ R. An edge weight
wij = 0 means "no edge between vi and vj".

• SinceN is undirected, wij = wji.
• With each vertex vi, we associate a random variable Θi.
• With each vertex vi in the graph, we associate a random

variable Θi. The joint distribution of these variables is
called a random field.

Neighborhoods
• The neighborhood of vertex vi is the set

∂ (i) := { j |wij ̸= 0} .
• The set {Θj, j ∈ ∂ (i)} of random variables associated

with the neighborhood is the Markov blanket of Θi.

ΘiΘi−1 Θi+1

Θk

Θj

Θk−1

Θj−1

Θk+1

Θj+1

wi+1,j+1

wi−1,i

...
...

...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

vi

purple = ∂ (i)

Peter Orbanz 198

MARKOV RANDOM FIELDS

The Markov property
• A random field has the Markov property if

P(θi|θj, j ̸= i) = P(θi|θj, j ∈ ∂ (i)) .
That is: Each Θi is conditionally independent of the remaining field given its Markov
blanket.

• A random field with the Markov property is a Markov random field (MRF).

Energy functions
• Any (strictly positive) probability or density p can be written in the form

p(x) =
1
Z
exp(−H(x)) where H : X → R+ and Z :=

∫
e−H(x)p(x)dx

and Z is a normalization constant.
• The function H is called an energy function or potential, or sometimes a cost function.
• In particular, we can write a MRF density for RVs Θ1:n as

p(θ1, . . . , θn) =
1
Z
exp(−H(θ1, . . . , θn))

Peter Orbanz 199

THE POTTS MODEL

LetN be a neighborhood graph with weights wij, and β > 0. The Markov random field

p(θ1, . . . , θn) :=
1

Z(β)
exp
(
β
∑

i,j

wijI{θi = θj}
)

is called a Potts model.

• Note the energy is additive over pairs.
• Positive weights encourage smoothness:

wij > 0 θi = θj increases probability
wij < 0 θi = θj decreases probability
wij = 0 no interaction between θi and θj

Peter Orbanz 200

THE ISING MODEL

• If θi ∈ {−1,+1} and wij ∈ {0, 1}, we obtain

p(θ1, . . . , θn) =
1

Z(β)
exp
(∑
(i,j) is an edge

βI{θi = θj}
)

• IfN is a d-dim. grid, this model is called the Ising model.
• This is the simplest non-trivial Potts model, but many of its

mathematical properties remain unsolved.

ΘiΘi−1 Θi+1

Θk

Θj

Θk−1

Θj−1

Θk+1

Θj+1

...
...

...

...
...

...

. . .

. . .

. . .

. . .

. . .

. . .

Example
Samples from an Ising model on a 56× 56 grid graph.

Increasing β −→
Color coding: Black = −1, white = +1.

Illustration: Winkler, “Image analysis, random fields, and MCMC methods”Peter Orbanz 201

MRFS AS SMOOTHNESS PRIORS

We consider a spatial problem with observations Xi. Each i is a location on a grid.

Spatial model
Suppose we model each Xi by a distribution L(X|Θi), i.e. each location i has its own parameter
variable Θi. This model is Bayesian (the parameter is a random variable). We use an MRF as
prior distribution.

p(. |θi)

Θi Θi+1

Θj Θj+1

Xi Xi+1

Xj Xj+1

unobserved

observed

We can think of L(X|Θi) as an emission probability, similar to an HMM.

Spatial smoothing
• We can define the joint distribution (Θ1, . . . ,Θn) as a MRF on the grid graph.
• For positive weights, the MRF will encourage the model to explain neighbors Xi and Xj by

the same parameter value.→ Spatial smoothing.

Peter Orbanz 202

BAYESIAN MIXTURE MODELS

Definition
A model of the form

π(x) =
K∑

k=1

Ckp(x|Θk)

is called a Bayesian mixture model if p(x|θ) is an exponential family model and
• Θ1, . . . ,ΘK ∼iid q, where q is a prior we have chosen for Θ.
• (C1, . . . ,CK) is sampled from a K-dimensional Dirichlet distribution.

Posterior distribution
The posterior of a BMM under observations x1, . . . , xn is (up to normalization):

Π(c1:K , θ1:K |x1:n) ∝
n∏

i=1

(K∑
k=1

ckp(xi|θk)
)(K∏

k=1

q(θk)
)

qDirichlet(c1:K)

Peter Orbanz 203

EXAMPLE: SEGMENTATION OF NOISY IMAGES

Mixture model
• A BMM can be used for image segmentation.
• The BMM prior on the component parameters is a natural

conjugate prior q(θ).
• In the spatial setting, we index the parameter of each Xi

separately as θi. For K mixture components, θ1:n contains
only K different values.

• The joint BMM prior on θ1:n is

qBMM(θ1:n) =
n∏

i=1

q(θi) .

Smoothing term
We multiply the BMM prior qBMM(θ) with an MRF prior

qMRF(θ1:n) =
1

Z(β)
exp
(
β
∑

wij ̸=0

I{θi = θj}
)

This encourages spatial smoothnes of the segmentation.

Int J Comput Vis

equipped with a prior probability. The prior is controlled by
means of the hyperparameter α. The number of classes de-
pends on α, but the influence of the hyperparameter can be
overruled by observed evidence. A question of particular in-
terest is therefore the influence of the hyperparameter α on
the number of clusters. Table 1 shows the average number of
clusters selected by the model for a wide range of hyperpa-
rameter values, ranging over several orders of magnitude.
Averages are taken over ten randomly initialized experi-

Fig. 6 A SAR image with a high noise level and ambiguous segments
(upper left). Solutions without (upper right) and with smoothing

Fig. 7 Segmentation results for α = 10, at different levels of smooth-
ing: Unconstrained (left), standard smoothing (λ = 1, middle) and
strong smoothing (λ = 5, right)

ments each. In general, the number of clusters increases
monotonically with an increasing value of the DP scatter pa-
rameter α. With smoothing activated, the average estimate
becomes more conservative, and more stable with respect
to a changing α. The behavior of the estimate depends on
the class structure of the data. If the data is well-separated,
estimation results become more stable, as is the case for
the MRI image (Fig. 8). With smoothing activated, the es-
timated number of clusters stabilizes at NC = 4. In contrast,
the data in Fig. 4 does not provide sufficient evidence for
a particular number of classes, and no stabilization effect
is observed. We thus conclude that, maybe not surprisingly,
the reliability of MDP and MDP/MRF model selection re-
sults depends on how well the parametric clustering model
used with the DP is able to separate the input features into
different classes. The effect of the base measure scatter, de-
fied here by the parameter β , is demonstrated in Fig. 9. The
number of clusters selected is plotted over α at two differ-
ent values of β = 50 and β = 200, each with and without
smoothing. The number of clusters is consistently decreased
by increasing β and activating the smoothing constraint.

The stabilizing effect of smoothing is particularly pro-
nounced for large values of α, resulting in a large number

Fig. 8 MR frontal view image of a monkey’s head. Original image
(upper left), unsmoothed MDP segmentation (upper right), smoothed
MDP segmentation (lower left), original image overlaid with segment
boundaries (smoothed result, lower right)

Table 1 Average number of
clusters (with standard
deviations), chosen by the
algorithm on two images for
different values of the
hyperparameter. When
smoothing is activated (λ = 5,
right column), the number of
clusters tends to be more stable
with respect to a changing α

α Image Fig. 4 Image Fig. 8

MDP Smoothed MDP Smoothed

1e-10 7.7 ± 1.1 4.8 ± 1.4 6.3 ± 0.2 2.0 ± 0.0

1e-8 12.9 ± 0.8 6.2 ± 0.4 6.5 ± 0.3 2.6 ± 0.9

1e-6 14.8 ± 1.7 8.0 ± 0.0 8.6 ± 0.9 4.0 ± 0.0

1e-4 20.6 ± 1.2 9.6 ± 0.7 12.5 ± 0.3 4.0 ± 0.0

1e-2 33.2 ± 4.6 11.8 ± 0.4 22.4 ± 1.8 4.0 ± 0.0

Input image.

Int J Comput Vis

equipped with a prior probability. The prior is controlled by
means of the hyperparameter α. The number of classes de-
pends on α, but the influence of the hyperparameter can be
overruled by observed evidence. A question of particular in-
terest is therefore the influence of the hyperparameter α on
the number of clusters. Table 1 shows the average number of
clusters selected by the model for a wide range of hyperpa-
rameter values, ranging over several orders of magnitude.
Averages are taken over ten randomly initialized experi-

Fig. 6 A SAR image with a high noise level and ambiguous segments
(upper left). Solutions without (upper right) and with smoothing

Fig. 7 Segmentation results for α = 10, at different levels of smooth-
ing: Unconstrained (left), standard smoothing (λ = 1, middle) and
strong smoothing (λ = 5, right)

ments each. In general, the number of clusters increases
monotonically with an increasing value of the DP scatter pa-
rameter α. With smoothing activated, the average estimate
becomes more conservative, and more stable with respect
to a changing α. The behavior of the estimate depends on
the class structure of the data. If the data is well-separated,
estimation results become more stable, as is the case for
the MRI image (Fig. 8). With smoothing activated, the es-
timated number of clusters stabilizes at NC = 4. In contrast,
the data in Fig. 4 does not provide sufficient evidence for
a particular number of classes, and no stabilization effect
is observed. We thus conclude that, maybe not surprisingly,
the reliability of MDP and MDP/MRF model selection re-
sults depends on how well the parametric clustering model
used with the DP is able to separate the input features into
different classes. The effect of the base measure scatter, de-
fied here by the parameter β , is demonstrated in Fig. 9. The
number of clusters selected is plotted over α at two differ-
ent values of β = 50 and β = 200, each with and without
smoothing. The number of clusters is consistently decreased
by increasing β and activating the smoothing constraint.

The stabilizing effect of smoothing is particularly pro-
nounced for large values of α, resulting in a large number

Fig. 8 MR frontal view image of a monkey’s head. Original image
(upper left), unsmoothed MDP segmentation (upper right), smoothed
MDP segmentation (lower left), original image overlaid with segment
boundaries (smoothed result, lower right)

Table 1 Average number of
clusters (with standard
deviations), chosen by the
algorithm on two images for
different values of the
hyperparameter. When
smoothing is activated (λ = 5,
right column), the number of
clusters tends to be more stable
with respect to a changing α

α Image Fig. 4 Image Fig. 8

MDP Smoothed MDP Smoothed

1e-10 7.7 ± 1.1 4.8 ± 1.4 6.3 ± 0.2 2.0 ± 0.0

1e-8 12.9 ± 0.8 6.2 ± 0.4 6.5 ± 0.3 2.6 ± 0.9

1e-6 14.8 ± 1.7 8.0 ± 0.0 8.6 ± 0.9 4.0 ± 0.0

1e-4 20.6 ± 1.2 9.6 ± 0.7 12.5 ± 0.3 4.0 ± 0.0

1e-2 33.2 ± 4.6 11.8 ± 0.4 22.4 ± 1.8 4.0 ± 0.0

Segmentation w/o smoothing.

Int J Comput Vis

equipped with a prior probability. The prior is controlled by
means of the hyperparameter α. The number of classes de-
pends on α, but the influence of the hyperparameter can be
overruled by observed evidence. A question of particular in-
terest is therefore the influence of the hyperparameter α on
the number of clusters. Table 1 shows the average number of
clusters selected by the model for a wide range of hyperpa-
rameter values, ranging over several orders of magnitude.
Averages are taken over ten randomly initialized experi-

Fig. 6 A SAR image with a high noise level and ambiguous segments
(upper left). Solutions without (upper right) and with smoothing

Fig. 7 Segmentation results for α = 10, at different levels of smooth-
ing: Unconstrained (left), standard smoothing (λ = 1, middle) and
strong smoothing (λ = 5, right)

ments each. In general, the number of clusters increases
monotonically with an increasing value of the DP scatter pa-
rameter α. With smoothing activated, the average estimate
becomes more conservative, and more stable with respect
to a changing α. The behavior of the estimate depends on
the class structure of the data. If the data is well-separated,
estimation results become more stable, as is the case for
the MRI image (Fig. 8). With smoothing activated, the es-
timated number of clusters stabilizes at NC = 4. In contrast,
the data in Fig. 4 does not provide sufficient evidence for
a particular number of classes, and no stabilization effect
is observed. We thus conclude that, maybe not surprisingly,
the reliability of MDP and MDP/MRF model selection re-
sults depends on how well the parametric clustering model
used with the DP is able to separate the input features into
different classes. The effect of the base measure scatter, de-
fied here by the parameter β , is demonstrated in Fig. 9. The
number of clusters selected is plotted over α at two differ-
ent values of β = 50 and β = 200, each with and without
smoothing. The number of clusters is consistently decreased
by increasing β and activating the smoothing constraint.

The stabilizing effect of smoothing is particularly pro-
nounced for large values of α, resulting in a large number

Fig. 8 MR frontal view image of a monkey’s head. Original image
(upper left), unsmoothed MDP segmentation (upper right), smoothed
MDP segmentation (lower left), original image overlaid with segment
boundaries (smoothed result, lower right)

Table 1 Average number of
clusters (with standard
deviations), chosen by the
algorithm on two images for
different values of the
hyperparameter. When
smoothing is activated (λ = 5,
right column), the number of
clusters tends to be more stable
with respect to a changing α

α Image Fig. 4 Image Fig. 8

MDP Smoothed MDP Smoothed

1e-10 7.7 ± 1.1 4.8 ± 1.4 6.3 ± 0.2 2.0 ± 0.0

1e-8 12.9 ± 0.8 6.2 ± 0.4 6.5 ± 0.3 2.6 ± 0.9

1e-6 14.8 ± 1.7 8.0 ± 0.0 8.6 ± 0.9 4.0 ± 0.0

1e-4 20.6 ± 1.2 9.6 ± 0.7 12.5 ± 0.3 4.0 ± 0.0

1e-2 33.2 ± 4.6 11.8 ± 0.4 22.4 ± 1.8 4.0 ± 0.0

Segmentation with MRF smoothing.

Peter Orbanz 204

SAMPLING AND INFERENCE

MRFs pose two main computational problems.

Problem 1: Sampling

Generate samples from the joint distribution of (Θ1, . . . ,Θn).

Problem 2: Inference
If the MRF is used as a prior, we have to compute or approximate the posterior distribution.

Solution
• MRF distributions on grids are not analytically tractable. The only known exception is the

Ising model in 1 dimension.
• Both sampling and inference are based on Markov chain sampling algorithms.

Peter Orbanz 205

MARKOV CHAIN MONTE CARLO

MOTIVATION

Suppose we rejection-sample a distribution like this:

region of interest

Once we have drawn a sample in the narrow region of interest, we would like to continue
drawing samples within the same region. That is only possible if each sample depends on the
location of the previous sample.

Proposals in rejection sampling are i.i.d. Hence, once we have found the region where p
concentrates, we forget about it for the next sample.

Peter Orbanz 207

MCMC: IDEA

Recall: Markov chain
• A sufficiently nice Markov chain (MC) has an invariant distribution Pinv.
• Once the MC has converged to Pinv, each sample Xi from the chain has marginal

distribution Pinv.

Markov chain Monte Carlo
We want to sample from a distribution with density p. Suppose we can define a MC with
invariant distribution Pinv ≡ p. If we sample X1,X2, . . . from the chain, then once it has
converged, we obtain samples

Xi ∼ p .

This sampling technique is called Markov chain Monte Carlo (MCMC).

Note: For a Markov chain, Xi+1 can depend on Xi, so at least in principle, it is possible for an
MCMC sampler to "remember" the previous step and remain in a high-probability location.

Peter Orbanz 208

CONTINUOUS MARKOV CHAIN

The Markov chains we discussed so far had a finite state space X . For MCMC, state space now
has to be the domain of p, so we often need to work with continuous state spaces.

Continuous Markov chain
A continuous Markov chain is defined by an initial distribution Pinit and conditional probability
t(y|x), the transition probability or transition kernel.

In the discrete case, t(y = i|x = j) is the entry pij of the transition matrix p.

Example: A Markov chain on R2

We can define a very simple Markov chain by sampling

Xi+1|Xi = xi ∼ g(. |xi, σ
2)

where g(x|µ, σ2) is a spherical Gaussian with fixed variance. In
other words, the transition distribution is

t(xi+1|xi) := g(xi+1|xi, σ
2) .

xi

A Gaussian (gray contours) is placed
around the current point xi to sample

Xi+1 .

Peter Orbanz 209

INVARIANT DISTRIBUTION

Recall: Finite case
• The invariant distribution Pinv is a distribution on the finite state space X of the MC

(i.e. a vector of length |X |).
• "Invariant" means that, if Xi is distributed according to Pinv, and we execute a step

Xi+1 ∼ t(. |xi) of the chain, then Xi+1 again has distribution Pinv.
• In terms of the transition matrix p:

p · Pinv = Pinv

Continuous case
• X is now uncountable (e.g. X = Rd).
• The transition matrix p is substituted by the conditional probability t.
• A distribution Pinv with density pinv is invariant if∫

X
t(y|x)pinv(x)dx = pinv(y)

This is simply the continuous analogue of the equation
∑

i pij(Pinv)i = (Pinv)j.

Peter Orbanz 210

MARKOV CHAIN SAMPLING

We run the Markov chain n for steps.
Each step moves from the current

location xi to a new xi+1 .

We "forget" the order and regard the
locations x1:n as a random set of

points.

If p (red contours) is both the
invariant and initial distribution, each

Xi is distributed as Xi ∼ p.

Problems we need to solve
1. We have to construct a MC with invariant distribution p.

2. We cannot actually start sampling with X1 ∼ p; if we knew how to sample from p, all of
this would be pointless.

3. Each point Xi is marginally distributed as Xi ∼ p, but the points are not i.i.d.

Peter Orbanz 211

CONSTRUCTING THE MARKOV CHAIN

Given is a continuous target distribution with density p.

Metropolis-Hastings (MH) kernel
1. We start by defining a conditional probability q(y|x) on X .

q has nothing to do with p. We could e.g. choose q(y|x) = g(y|x, σ2), as in the previous example.

2. We define a rejection kernel A as

A(xi+1|xi) := min
{

1,
q(xi|xi+1)p(xi+1)

q(xi+1|xi)p(xi)

}
The normalization of p cancels in the quotient, so knowing p̃ is again enough.

3. We define the transition probability of the chain as

t(xi+1|xi) := q(xi+1|xi)A(xi+1|xi)+δxi (xi+1)c(xi) where c(xi) :=

∫
q(y|xi)(1−A(y|xi))dy

Sampling from the MH chain
At each step i + 1, generate a proposal X∗ ∼ q(. |xi) and Ui ∼ Uniform[0, 1].

• If Ui ≤ A(x∗|xi), accept proposal: Set xi+1 := x∗.
• If Ui > A(x∗|xi), reject proposal: Set xi+1 := xi.

total probability that
a proposal is sampled

and then rejected

Peter Orbanz 212

STOCHASTIC HILL-CLIMBING

The Metropolis-Hastings rejection kernel was defined as:

A(xi+1|xi) = min
{

1,
q(xi|xi+1)p(xi+1)

q(xi+1|xi)p(xi)

}
.

Hence, we certainly accept if the second term is larger than 1, i.e. if

q(xi|xi+1)p(xi+1) > q(xi+1|xi)p(xi) .

That means:
• We always accept the proposal value xi+1 if it increases the probability under p.
• If it decreases the probability, we still accept with a probability which depends on the

difference to the current probability.

Hill-climbing interpretation
• The MH sampler somewhat resembles a gradient ascent algorithm on p, which tends to

move in the direction of increasing probability p.
• However:

• The actual steps are chosen at random.
• The sampler can move "downhill" with a certain probability.
• When it reaches a local maximum, it does not get stuck there.

Peter Orbanz 213

PROBLEM 1: INITIAL DISTRIBUTION

Recall: Fundamental theorem on Markov chains
Suppose we sample X1 ∼ Pinit and Xi+1 ∼ t(. |xi). This defines a distribution Pi of Xi, which
can change from step to step. If the MC is nice (recall: irreducible and aperiodic), then

Pi → Pinv for i→∞ .

Note: Making precise what aperiodic means in a continuous state space is a bit more technical than in the finite case, but the
theorem still holds. We will not worry about the details here.

Implication
• If we can show that Pinv ≡ p, we do not have to know how to sample from p.
• Instead, we can start with any Pinit, and will get arbitrarily close to p for sufficiently large i.

Peter Orbanz 214

BURN-IN AND MIXING TIME

The number m of steps required until Pm ≈ Pinv ≡ p is called the mixing time of the Markov
chain. (In probability theory, there is a range of definitions for what exactly Pm ≈ Pinv means.)

In MC samplers, the first m samples are also called the burn-in phase. The first m samples of
each run of the sampler are discarded:

X1, . . . ,Xm−1,Xm,Xm+1, . . .

Burn-in;
discard.

Samples from
(approximately) p;

keep.

Convergence diagnostics
In practice, we do not know how large m is. There are a number of methods for assessing
whether the sampler has mixed. Such heuristics are often referred to as convergence
diagnostics.

Peter Orbanz 215

PROBLEM 2: SEQUENTIAL DEPENDENCE

Even after burn-in, the samples from a MC are not i.i.d.

Strategy
• Estimate empirically how many steps L are needed for xi and xi+L to be approximately

independent. The number L is called the lag.
• After burn-in, keep only every Lth sample; discard samples in between.

Estimating the lag
The most commen method uses the autocorrelation function:

Auto(Xi,Xj) :=
E[(Xi − µi)(Xj − µj)]

σiσj
,

where µi is the mean and σi the standard deviation of Xi. We
compute Auto(Xi,Xi+L) empirically from the sample for different
values of L, and find the smallest L for which the autocorrelation is
close to zero.

Autocorrelation Plots

We can get autocorrelation plots using the autocorr.plot()
function.

> autocorr.plot(mh.draws)

0 5 15 25

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

Au
to
co
rre
la
tio
n

0 5 15 25

−1
.0

−0
.5

0.
0

0.
5

1.
0

Lag

Au
to
co
rre
la
tio
n

L

A
ut

o(
X

i,
X

i+
L
)

Peter Orbanz 216

CONVERGENCE DIAGNOSTICS

There are about half a dozen popular convergence crieteria; the one below is an example.

Gelman-Rubin criterion
• Start several chains at random. For each chain k, sample Xk

i
has a marginal distribution Pk

i .

• The distributions of Pk
i will differ between chains in early

stages.
• Once the chains have converged, all Pi = Pinv are identical.
• Criterion: Use a hypothesis test to compare Pk

i for different k
(e.g. compare P2

i against null hypothesis P1
i). Once the test

does not reject anymore, assume that the chains are past
burn-in.

Reference: A. Gelman and D. B. Rubin: "Inference from Iterative Simulation Using Multiple Sequences", Statistical Science, Vol. 7 (1992) 457-511.

Peter Orbanz 217

SELECTING A PROPOSAL DISTRIBUTION

Everyone’s favorite example: Two Gaussians

red = target distribution p
gray = proposal distribution q

• Var[q] too large:
Will overstep p; many rejections.

• Var[q] too small:
Many steps needed to achieve good
coverage of domain.

If p is unimodal and can be roughly
approximated by a Gaussian, Var[q] should be
chosen as smallest covariance component of p.

More generally
For complicated posteriors (recall: small regions of concentration, large low-probability regions
in between) choosing q is much more difficult. To choose q with good performance, we already
need to know something about the posterior.

There are many strategies, e.g. mixture proposals (with one component for large steps and one
for small steps).

Peter Orbanz 218

SUMMARY: MH SAMPLER

• MCMC samplers construct a MC with invariant distribution p.
• The MH kernel is one generic way to construct such a chain from p and a proposal

distribution q.
• Formally, q does not depend on p (but arbitrary choice of q usually means bad

performance).
• We have to discard an initial number m of samples as burn-in to obtain samples

(approximately) distributed according to p.
• After burn-in, we keep only every Lth sample (where L = lag) to make sure the xi are

(approximately) independent.

X1, . . . ,Xm−1,Xm,Xm+1, . . . ,Xm+L−1,Xm+L,Xm+L+1, . . .Xm+2L−1,Xm+2L, . . .

Burn-in;
discard.

Samples correlated
with Xj; discard.

Samples correlated
with Xj+L ; discard.

Keep. Keep. Keep.

Peter Orbanz 219

THE GIBBS SAMPLER

GIBBS SAMPLING

By far the most widely used MCMC algorithm is the Gibbs sampler.

Full conditionals
Suppose L(X) is a distribution on RD, so X = (X1, . . . ,XD). The conditional probability of the
entry Xd given all other entries,

L(Xd|X1, . . . ,Xd−1,Xd+1, . . . ,XD)

is called the full conditional distribution of Xd .

If X has density p, that means we are interested in a density

p(xd|x1, . . . , xd−1, xd+1, . . . , xD)

Gibbs sampling
• The Gibbs sampler is Markov chain Monte Carlo algorithm that generates each step

dimension by dimension by sampling from the full conditionals.
• Gibbs sampling is only applicable if we can compute the full conditionals for each

dimension d.
• If so, it provides us with a generic way to derive a proposal distribution.

Peter Orbanz 221

THE GIBBS SAMPLER

Proposal distribution
Suppose p is a density or mass function of a random vector with D entries. Given a random
vector Xi, we generate Xi+1 coordinate-by-coordinate as follows:

Xi+1,1 ∼ p(. |Xi,2, . . . ,Xi,D)

...
Xi+1,d ∼ p(. |Xi+1,1, . . . ,Xi+1,d−1,Xi,d+1, . . . ,Xi,D)

...
Xi+1,D ∼ p(. |Xi+1,1, . . . ,Xi+1,D−1)

Note well: Each new draw Xi+1,d is used immediately to update the next dimension d + 1.

The MCMC algorithm that generates vectord X1,X2, . . . as above is called a Gibbs sampler.

Relationship to Metropolis-Hastings
• For each dimension d ∈ {1, . . . ,D}, the Markov process above defines a process

X1,d,X2,d, . . ., which is again a Markov process. One can show that this is a MH sampler,
so a Gibbs sampler with D full conditionals is a family of coupled MH samplers.

• These MH samplers all have acceptance probability 1, so proposals in Gibbs sampling are
always accepted.

Peter Orbanz 222

EXAMPLE: MRF

In a MRF with D nodes, each dimension d corresponds to one vertex.

Full conditionals
In a grid with 4-neighborhoods, for instance, the Markov
property implies that

p(θd|θ1, . . . , θd−1, θd+1, . . . , θD) = p(θd|θleft, θright, θup, θdown)

ΘdΘleft Θright

Θdown

Θup

Specifically: Potts model with binary weights
Recall that, for sampling, knowing only p̃ (unnormalized) is sufficient:

p̃(θd|θ1, . . . , θd−1, θd+1, . . . , θD) =

exp
(
β(I{θd = θleft}+ I{θd = θright}+ I{θd = θup}+ I{θd = θdown}

)
This is clearly very efficiently computable.

Peter Orbanz 223

EXAMPLE: MRF

Sampling the Potts model
Each step of the sampler generates a sample

θi = (θi,1, . . . , θi,D) ,

where D is the number of vertices in the grid.

Gibbs sampler
Each step of the Gibbs sampler generates n updates according to

θi+1,d ∼ p(. |θi+1,1, . . . , θi+1,d−1, θi,d+1, . . . , θi,D)

∝ exp
(
β(I{θi+1,d = θleft}+ I{θi+1,d = θright}+ I{θi+1,d = θup}+ I{θi+1,d = θdown})

)
Recall the Ising model example
Samples from an Ising model on a 56× 56 grid graph.

Increasing β −→

Peter Orbanz 224

BURN-IN MATTERS

This example is due to Erik Sudderth (UC Irvine).

MRFs as "segmentation" priors

!"#$%&'&!"#$%(&)*+,&

-..&/0"1$023%4&

)-+&5)-+&6127&
+&%"$1"40&%"268931&"76"4&
:&;&<&40$0"4&
=3004&>30"%02$?4@&

).(...&/0"1$023%4&
• MRFs where introduced as tools for image smoothing and segmentation by D. and S.

Geman in 1984.
• They sampled from a Potts model with a Gibbs sampler, discarding 200 iterations as

burn-in.
• Such a sample (after 200 steps) is shown above, for a Potts model in which each variable

can take one out of 5 possible values.
• These patterns led computer vision researchers to conclude that MRFs are "natural" priors

for image segmentation, since samples from the MRF resemble a segmented image.

Peter Orbanz 225

EXAMPLE: BURN-IN MATTERS

E. Sudderth and M. I. Jordan ran a Gibbs sampler on the same model, and recorded the state of the chain once after 200 iterations
(as Geman & Geman had done), and again after 10000 iterations:

!"#$%&'&!"#$%(&)*+,&

-..&/0"1$023%4&

)-+&5)-+&6127&
+&%"$1"40&%"268931&"76"4&
:&;&<&40$0"4&
=3004&>30"%02$?4@&

).(...&/0"1$023%4&

200 iterations

!"#$%&'&!"#$%(&)*+,&

-..&/0"1$023%4&

)-+&5)-+&6127&
+&%"$1"40&%"268931&"76"4&
:&;&<&40$0"4&
=3004&>30"%02$?4@&

).(...&/0"1$023%4&

10000 iterations

Chain 1 Chain 5

• The "segmentation" patterns visible after 200 iterations are not sampled from the MRF
distribution p ≡ Pinv, but rather from P200 ̸= Pinv.

• The patterns do not show that MRFs are "natural" priors for segmentation problems, but
simply that the sampler’s Markov chain is still in burn-in.

• MRFs are smoothness priors, not segmentation priors.

Peter Orbanz 226

OPTIMIZATION

MOTIVATION

The way machine learning applies models to data can roughly be categorized into two ways:

Optimization:
• The solution is a specific value.
• We define mathematically what a “good” solution is and search for the best one.

Simulation:
• The solution is given by distribution (e.g. the distribution itself, an expectation, etc)
• We approximate the solution by samples drawn from the distribution.

We will discuss optimization methods next, and simulation methods later in the course.

Extremal Principles
Purpose Objective function

Maximum likehood estimation Fit a statistical model Likelihood

Empirical risk minimization Fit a classifier/predictor Error rate
(more generally: empirical risk)

Variational inference Approximate a posterior Distance between approximate
and true posterior

The list is far from exhaustive.

Peter Orbanz 228

TERMINOLOGY

Min and argmin

min
x

f (x) = smallest value of f (x) for any x

argmin
x

f (x) = value of x for which f (x) is minimal

Minimum with respect to subset of arguments

min
x

f (x, y) = smallest value of f (x, y) for any x if y is kept fixed

Optimization problem
For a given function f : Rd → R, a problem of the form

find x∗ := argmin
x

f (x)

is called a minimization problem. If argmin is replaced by argmax, it is a maximization
problem. Minimization and maximization problems are collectively referred to as
optimization problems.

Peter Orbanz 229

MINIMIZATION VS MAXIMIZATION

For any function f , we have

min f (x) = −max(−f (x)) and argmin f (x) = argmax(−f (x))

That means:
• If we know how to minimize, we also know how to maximize, and vice versa.
• We do not have to solve both problems separately; we can just generically discuss

minimization.

Peter Orbanz 230

TYPES OF MINIMA

-3 -2 -1 1 2

-5

5

-2 2 4

-10

-5

5

10

15

20

25

global, but not local

local

global and local

Local and global minima
A minimum of f at x is called:

• Global if f assumes no smaller value on its domain.
• Local if there is some open interval (a, b) containing x such that f (x) is a global minimum

of f restricted to that interval.

Peter Orbanz 231

SOLVING OPTIMIZATION PROBLEMS

Analytic criteria for local minima
Recall that x is a local minimum of f if

f ′(x) = 0 and f ′′(x) > 0 .

In Rd ,

∇f (x) = 0 and Hf (x) =
(∂f
∂xi∂xj

(x)
)

i, j=1,...,n
positive definite.

The d × d-matrix Hf (x) is called the Hessian matrix of f at x.

Typical situation
• Given is a function f : Rd → R.
• The dimension d is usually very large.

(In neural network training problems: Often in the millions.)
• We cannot plot or “look at” the function.
• We can only evaluate its value f (x) point by point.

Peter Orbanz 232

ONE-DIMENSIONAL ILLUSTRATION

x

f (x)

x∗x1 x2

• Our goal is to find x∗.
• We can evaluate the function at points

of our choice, say x1 and x2.

x1 x2

• However, we cannot “see” the function.
• All we know are values at a few points.

Task
Based on the values we know, we have to:

• Either make a decision what x∗ is.
• Or gather more information, by evaluating f at additional points. In that case, we have to

decide which point to evaluate next.

Peter Orbanz 233

NUMERICAL OPTIMIZATION

x1 x2

• If we can compute the derivatives f ′(x1) and f ′(x2), we have (the slope of) linear
approximations to f at both points that are locally exact.

• That is: We can substitute the derivatives for the two short blue lines in the figure.
• We can tell from the sign of the derivative in which direction the function decreases.
• We also know that f ′(x) = 0 if x is a minimum.

Peter Orbanz 234

MINIMIZATION STRATEGY

Basic idea
Start with some point x0. Compute the derivative f ′(x0) at x. Then:

• “Move downhill”: Choose some c > 0, and set x1 = x0 + c if f ′(x0) < 0 and
x1 = x0 − c if f ′(x0) > 0.

• Compute f ′(x1). If it is 0 (possibly a minimum), stop.
• Otherwise, move downhill from x1, etc.

Observations
• Since the sign of f ′ is determined by whether f increases or decreases, we can summarize

the case distinction above by setting

x1 = x0 − sign(f ′(x0)) · c
• If f changes rapidly, it may be a good strategy to make a large step (choose a large c), since

we presumably are still far from the minimum. If f changes slowly, c should be small.
• One way of doing so is to choose c as the magnitude of f ′, since | f ′| has exactly this

property. In that case:

x1 = x0 − sign(f ′(x0)) · | f ′(x0)| = x0 − f ′(x0)

The algorithm obtained by applying this step repeatedly is called gradient descent.

Peter Orbanz 235

GRADIENT DESCENT

Gradient descent searches for a minimum of a differentiable function f .

Algorithm
Start with some point x0 ∈ R and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether | f ′(xn)| < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn − f ′(xn)

x

f (x)

f (x)

f ′(x)

x0x1x2xopt

Peter Orbanz 236

Mention numerical evaluation.

Peter Orbanz 237

DERIVATIVES IN MULTIPLE DIMENSIONS

f (x)

• We now ask how to define a derivative in multiple dimensions.
• Consider a function f : Rd → R. What is the derivative of f at a point x?
• For simplicity, we assume d = 2 (so that we can plot the function).

Peter Orbanz 238

DERIVATIVES IN MULTIPLE DIMENSIONS

x1

x2

x

f (x)

• We fix a point x = (x1, x2) in R2, marked red above.
• We will try to turn this into a 1-dimensional problem, so that we can use the definition of a

derivative we already know.

Peter Orbanz 239

REDUCING TO ONE DIMENSION

x1

x2

x

x + v

• To make the problem 1-dimensional, fix some vector v ∈ R2, and draw a line through x in
direction of v.

• Then intersect f with a plane given by this line: In the coordinate system of f , choose the
plane that contains the line and is orthogonal to R2.

• The plane contains the point x.
• Note we can do that even if d > 2. We still obtain a plane.

Peter Orbanz 240

REDUCING TO ONE DIMENSION

• The intersection of f with the plane is a 1-dimensional function fH , and x corresponds to a
point xH in its domain.

• We can now compute the derivative f ′H of fH at xH . The idea is to use this as the derivative
of f at x.

Peter Orbanz 241

BACK TO MULTIPLE DIMENSIONS

x1

x2

x

• In the domain of f , we draw a vector from x in direction of H such that:

1. The vector is oriented to point in the direction in which fH increases.
2. Its length is the value of the derivative f ′H(x).

• That completely determines the vector (shown in red above).
• There is one problem still to be solved: fH depends on H, that is, on the direction of the

vector v. Which direction should we use?

Peter Orbanz 242

THE GRADIENT

x1

x2

x

x1

x2

x

x1

x2

x

• We now rotate the plane H around x. For each position of the plane, we get a new
derivative f ′H(x), and a new red vector.

• We choose the plane for which f ′H is largest:

H∗ := arg max
all rotations of H

f ′H(x)

Provided that fH is differentiable for all H, one can show that this is always unique (or
f ′H(x) is zero for all H).

• We then define the vector

∇f (x) := vector given by H∗ as above

The vector∇f (x) is called the gradient of f at x.

Peter Orbanz 243

PROPERTIES OF THE GRADIENT

The gradient∇f (x) of f : Rd → R at a point x ∈ Rd is a vector in the domain Rd in the
direction in which f most rapidly increases at x.

• Recall that a contour line (or contour set) of f is a set of points along which f remains
constant,

C[f , c] := {x ∈ Rd | f (x) = c} for some c ∈ R.
• One can show that if C[f , c] contains x, the gradient at x is orthogonal to the contour:

∇f (x) ⊥ C[f , c] if x ∈ C[f , c] .

• Intuition: The gradient points in the direction of maximal change, whereas C[f , c] is a
direction in which there is no change. Locally, these two are orthogonal.

Gradients are orthogonal to contour lines.

Peter Orbanz 244

GRADIENTS AND CONTOUR LINES

• For this parabolic function, all contour lines are concentric circles around the minimum.
• The picture above shows the gradients plotted at various points in the plane.

Peter Orbanz 245

BASIC GRADIENT DESCENT

f : Rd → R

Algorithm
Start with some point x0 ∈ Rd and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether ∥∇f (xn)∥ < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn −∇f (xn)

Peter Orbanz 246

GRADIENT DESCENT

f : Rd → R

Algorithm
Start with some point x0 ∈ Rd and fix a precision ε > 0.
Repeat for n = 1, 2, . . .:

1. Check whether ∥∇f (xn)∥ < ε. If so, report the solution x∗ := xn and terminate.

2. Otherwise, set
xn+1 := xn − α(n)∇f (xn)

Here, α(n) > 0 is a coefficient that may depend on n. It is called the step size in optimization,
or the learning rate in machine learning.

Peter Orbanz 247

GRADIENT DESCENT AND LOCAL MINIMA

-3 -2 -1 1 2

-5

5

-2 2 4

-10

-5

5

10

15

20

25

• Suppose for both functions above, gradient descent is started at the point marked red.
• It will “walk downhill” as far as possible, then terminate.
• For the function on the left, the minimum it finds is global. For the function on the right, it

is only a local minimum.
• Since the derivative at both minima is 0, gradient descent cannot detect whether they are

global or local.

For smooth functions, gradient descent finds local minima. If the function is complicated,
there may be no way to tell whether the solution is also a global minimum.

Peter Orbanz 248

Source: Li et al., arxiv 1712.09913Peter Orbanz 249

Mention saddle points.

Peter Orbanz 250

OUTLOOK

Summary so far
• The derivative/gradient provides local information about how a function changes around a

point x.
• Optimization algorithms: If we know the gradient at our current location x, we can use this

information to make a step in “downhill” direction, and move closer to a (local) minimum.

What we do not know yet
That assumes that we can compute the gradient. There are two possibilities:

• For some functions, we are able to derive∇f (x) as a function of x. Gradient descent can
evaluate the gradient by evaluating that function.

• Otherwise, we have to estimate∇f (x) by evaluating the function f at points close to x.
For now, we will assume that we can compute the gradient as a function.

Next: Newton’s method
• Gradient descent is a first-order method. It uses only the first derivative.
• A similar method that uses two derivatives is called Newton’s method (or the

Newton–Raphson algorithm).
• Roughly speaking, higher-order methods converge in fewer steps, at the price of more

computation per step.

Peter Orbanz 251

NEWTON’S METHOD: ROOTS

Algorithm
Newton’s method searches for a root of f , i.e. it solves the equation f (x) = 0.

1. Start with some point x ∈ R and fix a precision ε > 0.

2. Repeat for n = 1, 2, . . .
xn+1 := xn − f (xn)/f ′(xn)

3. Terminate when | f (xn)| < ε.

x

f (x)

f (x)

f ′(x)

x0x1xroot

Peter Orbanz 252

BASIC APPLICATIONS

Function evaluation
Most numerical evaluations of functions (

√
a, sin(a), exp(a), etc) are implemented using

Newton’s method. To evaluate g at a, we have to transform x = g(a) into an equivalent
equation of the form

f (x, a) = 0 .
We then fix a and solve for x using Newton’s method for roots.

Example: Square root
To eveluate g(a) =

√
a, we can solve

f (x, a) = x2 − a = 0 .

This is essentially how sqrt() is implemented in the standard C library.

Peter Orbanz 253

NEWTON’S METHOD: MINIMA

Algorithm
We can use Newton’s method for minimization by applying it to solve f ′(x) = 0.

1. Start with some point x ∈ R and fix a precision ε > 0.

2. Repeat for n = 1, 2, . . .
xn+1 := xn − f ′(xn)/f ′′(xn)

3. Terminate when | f ′(xn)| < ε.

x

f (x)

f (x)

f ′(x)

x0x1xopt

Peter Orbanz 254

MULTIPLE DIMENSIONS

Recall: Gradient descent

xn+1 := xn −∇f (xn)

Newton’s method for minima

xn+1 := xn − H−1
f (xn) · ∇f (xn)

That requires that the matrix Hf (x) is invertible.

The Hessian measures the curvature of f .

Effect of the Hessian
Multiplication by H−1

f in general changes the direction of∇f (xn).
The correction takes into account how∇f (x) changes away from
xn, as estimated using the Hessian at xn.

Figure: Arrow is ∇f , x + ∆xnt is Newton step.

9.5 Newton’s method 485

PSfrag replacements

x

x + ∆xnt

x + ∆xnsd

Figure 9.17 The dashed lines are level curves of a convex function. The
ellipsoid shown (with solid line) is {x + v | vT ∇2f(x)v ≤ 1}. The arrow
shows −∇f(x), the gradient descent direction. The Newton step ∆xnt is
the steepest descent direction in the norm ‖ · ‖∇2f(x). The figure also shows
∆xnsd, the normalized steepest descent direction for the same norm.

Steepest descent direction in Hessian norm

The Newton step is also the steepest descent direction at x, for the quadratic norm
defined by the Hessian ∇2f(x), i.e.,

‖u‖∇2f(x) = (uT ∇2f(x)u)1/2.

This gives another insight into why the Newton step should be a good search
direction, and a very good search direction when x is near x!.

Recall from our discussion above that steepest descent, with quadratic norm
‖ · ‖P , converges very rapidly when the Hessian, after the associated change of
coordinates, has small condition number. In particular, near x!, a very good choice
is P = ∇2f(x!). When x is near x!, we have ∇2f(x) ≈ ∇2f(x!), which explains
why the Newton step is a very good choice of search direction. This is illustrated
in figure 9.17.

Solution of linearized optimality condition

If we linearize the optimality condition ∇f(x!) = 0 near x we obtain

∇f(x + v) ≈ ∇f(x) + ∇2f(x)v = 0,

which is a linear equation in v, with solution v = ∆xnt. So the Newton step ∆xnt is
what must be added to x so that the linearized optimality condition holds. Again,
this suggests that when x is near x! (so the optimality conditions almost hold),
the update x + ∆xnt should be a very good approximation of x!.

When n = 1, i.e., f : R → R, this interpretation is particularly simple. The
solution x! of the minimization problem is characterized by f ′(x!) = 0, i.e., it is

[Figure: From Boyd & Vandenberghe, “Convex Optimization”]Peter Orbanz 255

NEWTON: PROPERTIES

Convergence
• The algorithm always converges if f ′′ > 0 (or Hf positive definite).
• The speed of convergence separates into two phases:

• In a (possibly small) region around the minimum, f can always be approximated by
a quadratic function.

• Once the algorithm reaches that region, the error decreases at quadratic rate.
Roughly speaking, the number of correct digits in the solution doubles in each step.

• Before it reaches that region, the convergence rate is linear.

High dimensions
• The required number of steps hardly depends on the dimension of Rd . Even in R10000,

you can usually expect the algorithm to reach high precision in half a dozen steps.
• Caveat I: The individual steps can become very expensive, since we have to invert Hf in

each step, which is of size d × d.
• Caveat II: High-dimensional functions tend to have many more local minima then

low-dimensional ones. Even if Newton still converges quickly, we have to ask even more
carefully what it is converging to.

Peter Orbanz 256

NEXT: CONSTRAINED OPTIMIZATION

So far
• If f is differentiable, we can search for local minima using gradient descent.
• If f is sufficiently nice (twice continuously differentiable), we know how to speed up the

search process using Newton’s method.

Constrained problems
• The numerical minimizers use the criterion∇f (x) = 0 for the minimum.
• In a constrained problem, the minimum is not identified by this criterion.

Next steps
We will figure out how the constrained minimum can be identified. We have to distinguish two
cases:

• Problems involving only equalities as constraints (easy).
• Problems also involving inequalities (a bit more complex).

Peter Orbanz 257

CONSTRAINED OPTIMIZATION

• An optimization problem for a given function f : Rd → R is a problem of the form

min
x

f (x)

which we read as "find x∗ = argminx f (x)".
• A constrained optimization problem adds additional requirements on x,

min
x

f (x)

subject to x ∈ G ,

where G ⊂ Rd is called the feasible set.
• The set G is often defined by equations, e.g.

min
x

f (x)

subject to g(x) = 0

The equation g is called a constraint. The constraint g(x) = 0 above is also called an
equality constraint, whereas one of the form g(x) ≥ 0 is an inequality constraint.

Peter Orbanz 258

CONVEX SETS

Definition
A set A ⊂ Rd is called convex if, for every two points x, y ∈ A, the straight line connecting x
and y is completely contained in A.

convex convex not convex

Quantitatively

A is convex if and only if λx + (1− λ)y ∈ A for all x, y ∈ A and λ ∈ [0, 1] .

Peter Orbanz 259

CONVEX FUNCTIONS

A function f is convex if every line segment
between function values lies above the graph of f .

• Equivalently:
If the area above (!) the curve is a convex set.

• Quantitatively: f is convex if

λf (x) + (1− λ)f (y) ≥ f (λx + (1− λ)y)
for all x and y in the domain of f and all λ ∈ [0, 1].

x

f (x)

• A twice differentiable function is convex if f ′′(x) ≥ 0 (or Hf (x) positive semidefinite) for
all x.

Implications for optimization
If f is convex, then:

• f ′(x) = 0 is a sufficient criterion for a minimum.
• Local minima are global.
• If f is strictly convex (f ′′ > 0 or Hf positive definite), there is only one minimum

(which is both gobal and local).

Peter Orbanz 260

OPTIMIZATION UNDER CONSTRAINTS

Objective

min f (x)

subject to g(x) = 0

Idea
• The feasible set is the set of points x which satisfy g(x) = 0,

G := {x | g(x) = 0} .
If g is reasonably smooth, G is a smooth surface in Rd .

• We restrict the function f to this surface and call the restricted function fg.
• The constrained optimization problem says that we are looking for the minimum of fg.

Peter Orbanz 261

LAGRANGE OPTIMIZATION

f (x) = x2
1 + x2

2

The blue arrows are the gradients ∇f (x) at various values of x.

f (x)

x2

x1

G

Constraint g.

Here, g is linear, so the graph of g is a (sloped) affine plane. The
intersection of the plane with the x1-x2-plane is the set G of all

points x with g(x) = 0.

Peter Orbanz 262

LAGRANGE OPTIMIZATION

f (x)

x2

x1

G

• We can make the function fg given by the constraint g(x) = 0 visible by placing a plane
vertically through G. The graph of fg is the intersection of the graph of f with the plane.

• Here, fg has parabolic shape.
• The gradient of f at the miniumum of fg is not 0.

Peter Orbanz 263

GRADIENTS AND CONTOURS

Fact
Gradients are orthogonal to contour lines.

Intuition
• The gradient points in the direction in

which f grows most rapidly.
• Contour lines are sets along which f does

not change.

Peter Orbanz 264

THE CRUCIAL BIT

∇g

(∇f (x0))g

(∇f (x0))⊥

∇f (x0)

{x|g(x) = 0}

x0

Peter Orbanz 265

AGAIN, IN DETAIL.

Idea
• Decompose∇f into a component (∇f)g in the set
{x | g(x) = 0} and a remainder (∇f)⊥.

• The two components are orthogonal.
• If fg is minimal within {x | g(x) = 0}, the component within

the set vanishes.
• The remainder need not vanish.

(∇f)g

(∇f)⊥

∇f

{g(x) = 0}

Consequence
• We need a criterion for (∇f)g = 0.

Solution
• If (∇f)g = 0, then∇f is orthogonal to the set g(x) = 0.
• Since gradients are orthogonal to contours, and the set is a contour of g,∇g is also

orthogonal to the set.
• Hence: At a minimum of fg, the two gradients point in the same direction:
∇f + λ∇g = 0 for some scalar λ ̸= 0.

Peter Orbanz 266

SOLUTION: CONSTRAINED OPTIMIZATION

Solution
The constrained optimization problem

min
x

f (x)

s.t. g(x) = 0

is solved by solving the equation system

∇f (x) + λ∇g(x) = 0
g(x) = 0

The vectors∇f and∇g are d-dimensional, so the system contains d + 1 equations for the d + 1
variables x1, . . . , xd, λ.

Peter Orbanz 267

INEQUALITY CONSTRAINTS

Objective
For a function f and a convex function g, solve

min f (x)

subject to g(x) ≤ 0

i.e. we replace g(x) = 0 as previously by g(x) ≤ 0. This problem is called an optimization
problem with inequality constraint.

Feasible set
We again write G for the set of all points which satisfy the constraint,

G := {x | g(x) ≤ 0} .
G is often called the feasible set (the same name is used for equality constraints).

Peter Orbanz 268

TWO CASES

Case distinction
1. The location x of the minimum can be in the interior of

G

2. x may be on the boundary of G.

Decomposition of G

G = in(G) ∪ ∂G = interior ∪ boundary
The interior is given by g(x) < 0, the boundary by g(x) = 0.

in(G)

∂G

∇f

x0

lighter shade of blue = larger value of f

x1
∇g(x1)

Criteria for minimum
1. In interior: fg = f and hence∇fg = ∇f . We have to solve a standard optimization

problem with criterion∇f = 0.

2. On boundary: Here,∇fg ̸= ∇f . Since g(x) = 0, the geometry of the problem is the
same as we have discussed for equality constraints, with criterion∇f = λ∇g.
However: In this case, the sign of λ matters.

Peter Orbanz 269

ON THE BOUNDARY

Observation
• An extremum on the boundary is a minimum only

if∇f points into G.
• Otherwise, it is a maximum instead.

Criterion for minimum on boundary
Since∇g points away from G (since g increases away
from G),∇f and∇g have to point in opposite directions:

∇f = λ∇g with λ < 0

Convention
To make the sign of λ explicit, we constrain λ to positive
values and instead write:

∇f =− λ∇g

s.t. λ > 0

∇f

G

∂G

x1∇g(x1)

∇f

Peter Orbanz 270

COMBINING THE CASES

Combined problem

∇f =− λ∇g

s.t. g(x) ≤ 0
λ = 0 if x ∈ in(G)

λ > 0 if x ∈ ∂G

Can we get rid of the "if x ∈ ·" distinction?

Yes: Note that g(x) < 0 holds if x is in the interior, and g(x) = 0 on the boundary.
Hence, we always have either λ = 0 or g(x) = 0 (and never both).

That means we can substitute

λ = 0 if x ∈ in(G)

λ > 0 if x ∈ ∂G

by
λ · g(x) = 0 and λ ≥ 0 .

Peter Orbanz 271

SOLUTION: INEQUALITY CONSTRAINTS

Combined solution
The optimization problem with inequality constraints

min f (x)

subject to g(x) ≤ 0

can be solved by solving

∇f (x) = −λ∇g(x)

s.t. λg(x) = 0
g(x) ≤ 0
λ ≥ 0

}
←− system of d + 1 equations for d + 1

variables x1, . . . , xd, λ

These conditions are known as the Karush-Kuhn-Tucker (or KKT) conditions.

Peter Orbanz 272

REMARKS

Haven’t we made the problem more difficult?
• To simplify the minimization of f for g(x) ≤ 0, we have made f more complicated and

added a variable and two constraints. Well done.
• However: In the original problem, we do not know how to minimize f , since the usual

criterion∇f = 0 does not work.
• By adding λ and additional constraints, we have reduced the problem to solving a system

of equations.

Summary: Conditions

Condition Ensures that... Purpose

∇f (x) = −λ∇g(x) If λ = 0: ∇f is 0 Opt. criterion inside G
If λ > 0: ∇f is anti-parallel to∇g Opt. criterion on boundary

λg(x) = 0 λ = 0 in interior of G Distinguish cases in(G) and ∂G
λ ≥ 0 ∇f cannot flip to orientation of∇g Optimum on ∂G is minimum

Peter Orbanz 273

WHY SHOULD g BE CONVEX?

More precisely
If g is a convex function, then G = {x | g(x) ≤ 0} is a
convex set. Why do we require convexity of G?

Problem
If G is not convex, the KKT conditions do not guarantee
that x is a minimum. (The conditions still hold, i.e. if G is
not convex, they are necessary conditions, but not
sufficient.)

Example (Figure)
• f is a linear function (lighter color = larger value)
• ∇f is identical everywhere
• If G is not convex, there can be several points (here:

x1, x2, x3) which satisfy the KKT conditions. Only
x1 minimizes f on G.

• If G is convex, such problems cannot occur.

G

∂G

∇f

x0

x1
∇g(x1)

x2

x3
∇g(x3)

G

∂G

∇f

x0

x1
∇g(x1)

Peter Orbanz 274

INTERIOR POINT METHODS

Numerical methods for constrained problems
Once we have transformed our problem using Lagrange multipliers, we still have to solve a
problem of the form

∇f (x) = −λ∇g(x)

s.t. λg(x) = 0 and g(x) ≤ 0 and λ ≥ 0

numerically.

Peter Orbanz 275

BARRIER FUNCTIONS

Idea
A constraint in the problem

min f (x) s.t. g(x) < 0

can be expressed as an indicator function:

min f (x) + const. · I[0,∞)(g(x))

The constant must be chosen large enough to enforce the
constraint.

x

f (x)

I[0,∞)(x)
βt(x)

Problem: The indicator function is piece-wise constant and not differentiable at 0. Newton or
gradient descent are not applicable.

Barrier function
A barrier function approximates I[0,∞) by a smooth function, e.g.

βt(x) := −
1
t
log(−x) .

Peter Orbanz 276

NEWTON FOR CONSTRAINED PROBLEMS

Interior point methods
We can (approximately) solve

min f (x) s.t. gi(x) < 0 for i = 1, . . . ,m

by solving

min f (x) +
m∑

i=1

βi,t(x) .

with one barrier function βi,t for each constraint gi.
We do not have to adjust a multiplicative constant since βt(x)→∞ as x↗ 0.

Constrained problems: General solution strategy
1. Convert constraints into solvable problem using Lagrange multipliers.

2. Convert constraints of transformed problem into barrier functions.

3. Apply numerical optimization (usually Newton’s method).

Peter Orbanz 277

RELEVANCE OF CONVEXITY

A common textbook claim is that convexity is important for optimization because convex functions have only
one local and global minimum. That is correct, but not really the whole story.

Not convex, but unique minimum and
well-suited for numerical optimization.

Recall that a numerical optimization algorithm
can only query a function at points.

Convexity allows us to draw global conclusions from local properties.

Convexity as a generalization of linearity
• Constant functions: If we know f (x) at a single point x, we know f .
• Linear functions: If we know f (x) and∇f (x) at a single point, we know f .
• Convex functions: If we know f (x) and∇f (x) at a single point, we know “on which side

of x” the minimum occurs (that is: in which half-space).
There are various other global properties of convex functions that are determined by their behavior on the
neighborhood of a single point, some of which are much deeper and more surprising than the one above.

Peter Orbanz 278

STOCHASTIC GRADIENTS

If ε is a random variable with E[ε] = 0, then

∇̂f (x) := ∇f (x) + ε

is called a stochastic gradient of f at x.

Stochastic gradient descent

Substituting into gradient descent with step size α : N→ R+:

x̂n+1 = x̂n − α(n)∇̂f (x̂n)

Peter Orbanz 279

CAN SGD CONVERGE?

Compared to gradient descent
• Fix x0. Start a gradient descent sequence x1, x2, . . . and a SGD sequence x̂1, x̂2, Then

xn+1 = x0 −
n∑

i=1

α(i)∇f (xi) and x̂n+1 = x0 −
n∑

i=1

α(i)∇̂f (x̂i)

• Each stochastic gradient is of the form ∇̂f (x̂i) = ∇f (x̂i) + εi. Define δi as

∇̂f (x̂i) = ∇f (xi) + δi

Note that δi ̸= εi in general.
• We now have

x̂n+1 = xn+1 −
n∑

i=1

α(i)δi

Convergence analysis
• We often ask convergence questions relative to gradient descent: If gradient descent

converges for a given problem, would SGD also converge?
• The answer depends on the sequence α(1), α(2), . . . and δ1, δ2, How dependent the

random variables δn are is crucial.
• Even if ε1, ε2, . . . are i.i.d., the same is typically not true for δ1, δ2,

Peter Orbanz 280

CONVERGENCE CONDITIONS

Robbins-Monro conditions

∞∑
n=1

α(n) =∞
∞∑

n=1

α(n)2 <∞

also relevant for for gradient descent variance condition

• The first condition ensures points arbitrarily far from x0 are reachable. This is typically
also required for ordinary gradient descent in Rd .

• The second condition ensures finite variance.
• You will often encounter these conditions in books and articles. They are only meaningful

if we also make assumptions on the dependence between ε1, ε2,

The variance condition
• For illustration, suppose δ1, δ2, . . . are i.i.d. with variance σ2.
• Recall independent variables X, Y satisfy Var[X + Y] = Var[X] + Var[Y].
• We hence have:

Var[α(n)δn] = α(n)2σ2 and Var
[∞∑

n=1

α(n)δn

]
=
(∑

n

α(n)2
)
σ2

The variance condition ensures the total variance is finite.
[H. Robbins and S. Monro, “A stochastic approximation method”, Ann. Math. Statist., 1951]Peter Orbanz 281

SGD IN MACHINE LEARNING

• For an additive objective f , the cost of computing a gradient scales with sample size:

f (X1, . . . ,Xn, θ) =
1
n

n∑
i=1

f (Xi, θ) hence ∇θ f (X1, . . . ,Xn, θ) =
1
n

n∑
i=1

∇θ f (Xi, θ)

• A mini batch is a random subset X̃1, . . . , X̃k of a large data set X1, . . . ,Xn (so k < n).
• A gradient is computed only for the cost on this subset.

Note Xi is now the ith data point, not the ith gradient step. The role of x̂n on previous slides is now assumed by θ̂n .

Stochastic gradient view
• Let ∇̂θ f (X̃1, . . . , X̃k) be gradient computed on the mini batch.
• It deviates from the actual gradient by an error term ε:

∇̂θ f (X̃1, . . . , X̃k, θ) = ∇θ f (X1, . . . ,Xn, θ) + ε

Since the mini batch is selected at random, ε is a random variable, and
∇̂θ f (X̃1, . . . , X̃k, θ) is hence a stochastic gradient.

Peter Orbanz 282

