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Here are two types of learning problems you may have encountered before:

classification regression

¢ These are both supervised learning problems.

¢ In both cases we are fitting a function to data—statistically speaking we are performing
regression. The function takes finitely many values (classification) or is continuous-valued
(regression).

¢ The term supervised indicates that we have examples of (possibly noisy) solutions,
namely input and output values.
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THREE LEARNING PROBLEMS

¢ Predicting new outcomes: generalising.
¢ Supervised learning. Observe input/output pairs (“teaching”):

(x1,31), (¥2,32), (x3,¥3)5 (X4, ¥4), - - -

Predict the correct y* for new input x*.

¢ Systematising (noisy) observations: discovering structure.
¢ Unsupervised learning. Observe (sensory) input alone:
X1y X25 X3, X4 - -

Describe pattern of data [p(x)], identify and extract underlying structural variables
[xi = yil.

¢ Choosing actions wisely.

+ Reinforcement learning. Rewards or payoffs (and possibly also inputs) depend on
actions:
X| 4y —>r,Xyidy —>1,X3:43 —>r3...

Find a policy for action choice that maximises payoff.
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SUPERVISED VS UNSUPERVISED

Consider a data source generating points in R%. Each point belongs to one of three groups. Here is a sample:

We are asked to assign data points to groups. There is a supervised and an unsupervised versions of this
problem.
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Classification
Given: The data above, and the group
assignment of each point.

Task: Assign new points generated by the
same source to their groups.

Supervised problem.
Jargon: Groups are called “classes”.

Solution is typically a function.

Clustering

Given: The data above only.

Task: Assign each point in the data to a
group.
Unsupervised problem.

Jargon: Groups are called “clusters”.

Solution is typically a distribution.



PENDULUM

(WORK OF MARC DEISENROTH AND CARL EDWARD RASMUSSEN)

Task

Balance the pendulumn upright by moving the
sled left and right.

¢ The computer can control only the motion
of the sled.

¢ Available data: Current state of system
(measured 25 times/second).

Formalization

State = 4 variables (sled location, sled velocity, angle, angular velocity)
Actions = sled movements

The system can be described by a function

f: SxA - S
(state, action) +— state
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PENDULUM
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In Part 1

¢ Models and learning approaches
Review of Bayesian learning, maximum likelihood estimation, Gaussian distributions

¢ Latent variable models
Latent variable models, free energies, the EM algorithm

¢ Markov and hidden Markov models
A special class of latent variable models for sequence data.

¢ Sampling algorithms and MCMC

Fitting and evaluating models by randomized simulation can be an alternative to optimization.

¢ Optimization
Arguably the most widely used way to fit a model to data is by optimization.

In Part I1

¢ (Approximate) inference in graphical models.
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REPRESENTING A DATA SOURCE

Our approach to learning starts with a model of data production:
P(data|parameters) P(x|6) or P(y|x, 0)

Machine learning jargon also calls this a generative model.
In more detail
e We observe data D = (xy, ..., x,) from a data source, in a sample space X.
¢ Our mathematical description of the source is a probability distribution P on X.

o A (statistical) model is a set M of probability distributions. “I assume model M” means
“I assume P is contained in M”.

We typically index the elements of M by the elements of a parameter space 7. The
model then takes the form

M=A{P(+10)|60 €T}

Example: M = {Gaussian distributions with variance 1 and mean 6 | 0 € R}

Terminology varies, and the term “model” may refer to other mathematical objects.
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BASIC RULES OF PROBABILITY

Probabilities are non-negative P(x) > 0 Vx.

Probabilities normalise: 3 . 5 P(x) = 1 for distributions if x is a discrete variable and
Jx p(x)dx = 1 for probability densities over continuous variables

The joint probability of x and y is: P(x,y).
o The marginal probability of x is: P(x) = > P(x,y), assuming y is discrete.

 The conditional probability of x given y is: P(x|y) = P(x,y)/P(y)

e Bayes’ Formula:  Since P(x,y) = P(x)P(y|x) = P(y)P(x|y), we have

D) — P X

P =
) P(x) evidence

Warning: We will not be obsessively careful in our use of p and P for probability density and probability
distribution. Should be obvious from context.
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Recall that two random variables X| with (marginal) distribution P; and X, with distribution P,
are independent if their joint distribution P factorizes,

P(x1 s xz) =P (x1 )Pz(xz) or equivalently P(x1 |JC2) =P (xl) .

Informally:

Two random variables are independent if knowing the value of one does not provide any
information about the outcome of the other.

Random variables are called iid (independent and identically distributed) if they are
independent and have identical marginal distributions: P(xy,...,x:,) = [/ P(x:)
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EXPONENTIAL FAMILIES

A model M = {p(10)|60 € T} is an exponential family if

T
p(x0) = f(x)g(0)e®@ T forallx e Xand6 € T .
The components of the model are:

e Afunction T : X — R™, for some dimension m € N. This function is the sufficient
statistic of the model.

e A function ¢ : T — R™. TIts values ¢(6) are called natural parameters.
e Functionsf : X — R>pand g: 7 — Rsy.
Note g is completely determ;ned by T, f and ¢.
Relevance
¢ These are arguably the most common types of distributions in machine learning.
¢ They often arise as building blocks of more complicated models.

¢ The class of exponential families includes most elementary probability distributions. As
we will see, it is also very convenient to work with.
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EXAMPLES OF EXPONENTIAL FAMILIES

Model Sample space Sufficient statistic
Gaussian R4 T(x) = (xx',x)

Gamma R4 T(x) = (In(x), x)
Poisson No Tx) =x

Multinomial ~ {1,...,K} Tx) =x

Wishart Positive definite matrices (requires more details)
Mallows Rankings (permutations) (requires more details)
Beta [0,1] T(x) = (In(x), In(1 — x))
Dirichlet Probability distributions on d events ~ T(x) = (Inxy,...,lnx,)
Bernoulli {0,1} Tx) =x

A non-example: Student’s 7-distribution, and other heavy-tailed distributions.

Informally

* A given sample space X often has a “natural” statistic T. (A statistic is a function of the

data.)

o The exponential family defined by T is often the “natural” distribution for simple sources
generating data in X.
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LEARNING PARAMETERS

‘We distinguish two approaches:

» Point estimation of a parameter 6 assumes there is a true but unknown value 6. An
estimate 6 is a function of observed data that approximates 6.

« Bayesian inference represents lack of knowledge as randomness; the parameter is a
random variable ©. This means we have to specify the distribution of ©, called the prior
distribution. We ask not for a true value of the parameter, but for its distribution p(6|D)
given the observed data, called the posterior distribution.

(We assume that you are familiar with Bayes’ equation and basics of Bayesian inference.)
Specific approaches we will discuss:

¢ Maximum likelihood estimation is the most common form of point estimation.

¢ Bayesian inference may compute a posterior distribution from data (e.g. conjugate
posteriors), approximate complicated posteriors by simpler distributions (e.g. variational

inference), or use sampling algorithms to generate random draws from the posterior,
which are then processed further.

¢ The MAP estimate (maximum a posteriori estimate) is the parameter value most probable
under the posterior,

OMAP — arg max P(6|D) = arg max P(0)P(D|6) .

Although it is defined in terms of a posterior, it is a point estimate.
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BASIC BAYESIAN LEARNING

Modeling assumption

o Model M = {p(«0)|60 € T}. Each element p( o |6) is the distribution of a single
random element X of X.

¢ As prior, we choose a distribution 7 on 7.
¢ We assume data is generated as follows: Generate
O~
X1, Xn|© ~ia p(e]O).
and explain data D = {xi,. .., x,} as the values assumed by X, ..., Xy.
e Xi,...,X, are conditionally iid (iid = independently identically distributed).
The term Bayesian model often refers to the pair (M, ).

Posterior
The independence assumption implies p(D|0) = []/_, p(xi|0). Bayes’ rule then takes the form

rop) = el
0P) = = e Hp<,|e

Bayesian inference without the conditional i.i.d. assumption is also possible, but typically more complicated.

Peter Orbanz



EXAMPLE: UNKNOWN GAUSSIAN MEAN

Model

o Observations are generated by a Gaussian, with unknown mean 6 and fixed, known
standard deviation o.

o That means our model is M = {p(¢|0,0)|0 € R}, where p is the Gaussian density on
the real line.

04

Prior

e We choose a Gaussian prior 7( e |, £) with known
mean g and standard deviation &. 02

o Inthe figure, 4 = 2 and £ = 5. Hence, we assume o1
@ = 2 is the most probable value of 6, and that

0 € [—3,7] with a probability ~ 0.68. t : 0 %

Posterior
Application of Bayes’ formula shows the posterior is again a Gaussian,
0.2 52

o+ &2 :‘1:1 Xi
o2 + ng?

2.
R and &, :=

T(Ox1:05 11, §) = T(O|pn, §n)  where 1=
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Model

04

most probable data source
under the prior

data from this source

04

the posterior below is based on

02 03 o Oniap
t s 10 15 t 2 4 6 8 10 5 10 15
prior observation model posterior
Posterior under increasing sample size
Posterior
l 10 10 15 10 15
n=1 n=2 n=10
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Parameters
Intuitively, we can think of 6 as the common pattern underlying the data:

P(X|0) = Probability(data|pattern)

T

Inference idea
data = underlying pattern + independent randomness

Broadly speaking, the goal of inference is to extract the underlying pattern from the data.
Bayesian statistics models the pattern as a random quantity.
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BAYESIAN LEARNING AND MODEL SELECTION

Choosing a model M from a set M, M, ... of candidate models is called model selection.
Bayesian inference can be extended to model selection.

¢ Problem specification:
Models: M; = {P(x|0;, M;)|0; € Ti}.
Prior probability of models: P(M;).
Prior probabilities of model parameters: P(6;|M;)

¢ Data probability (likelihood) .
P(D|0;, Mi) = [ [ P(xi10:, Mi) = L(6))
J=1
Note we are assuming the data is conditionally i.i.d. given the model and parameter.
e Parameter learning (posterior):
_ P(D]0;, Mi)P(6i| M)

P(6:|D, M;) = DM ; P(D\M,-)z/de,- P(DI0;, M;)P(0:| M)

P(D|M,;) is called the marginal likelihood or evidence for M;. It is proportional to the
posterior probability model M; being the one that generated the data.

¢ Model selection: P(D|M;)P(M;
Pmifp) = H2ERE
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Coin toss: One parameter ¢ — the probability of obtaining heads

So our space of models is the set of distributions over g € [0, 1].

Learner A believes (Bayesian) model M 4: all values of ¢ are equally plausible;

Learner B believes (Bayesian) model Mg: “fair” coin (¢ = 0.5) more plausible than “biased”.

P@)
P

o1 0z o3 84 05 06 07 o8 03 1 o1 0z 03 o4 05 08 07 o8 09
q q

Ara; =a; =1.0 B:ag =a; =4.0
Both prior beliefs can be described by the Beta distribution:
q(alfl)(l _ q)(azfl)
B(ar, @)

plglar, az) = = Beta(g|ay, az)
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Now we observe a toss. Two possible outcomes:

p(Hlg) = ¢ p(Tlg)=1-¢q
Suppose our single coin toss comes out heads

The probability of the observed data (likelihood) is:
p(Hlg) = ¢

Using Bayes’ formula, we multiply the prior, p(g) by the likelihood and renormalise to get the
posterior probability:

plgl) = ’% x ¢ Beta(glas, o)

o« qq@ V(1 —g)*27) =Beta(gla; + 1, )
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Prior

Posterior

P

Beta(q|1, 1)

Beta(q|2, 1)

Pl

q

Beta(q|4,4)

P
_—

Beta(q|5, 4)

© Gatsby Unit

22



What about multiple tosses? Suppose we observe D ={HHTHTT}:
PUHHTHTT}g) = q4(1 - 9)q(1 —q)(1 —9) = ¢’ (1 —9)°

This is still straightforward:

(D) = ’% s (1 - g)° Beta(glon, o)

o« Beta(glag + 3,2 + 3)

P@

P@
—
/
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Updating the prior to form the posterior was particularly easy in these examples. This is
because we used a conjugate prior for an exponential family likelihood.
Recall that exponential family distributions take the form:

P((0) = g(0)f ()e* T

with g(0) the normalising constant. Given n conditionally iid observations,

n BOT((ZiT)

P({xi}10) = []P@il6) = s(6)"e ( )Hf(xi)
i i

A conjugate prior for an exponentially family is of the form

P(6) = F(r,v)g(0) e '™,
with normaliser F(, v). The posterior is then

POl PNOPO) o gyt (TFET)

with the normaliser given by F(7 + >, T(x;), v +n).
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CONJUGATE PRIORS

The posterior given an exponential family likelihood and conjugate prior is:

PO} = F(r + X, T(w), v + n)g(0) " exp [¢(0)T (7 + 5, T(w) )|
Here,

T €T specifies the expected value of the prior.

v € Ry is the concentration or scale of the prior
(roughly: larger scale — smaller variance).

As new data come in, each one increments the sufficient statistics vector and the scale to define
the posterior.

Interpretation

o The posterior effectively interpolates between the prior assumption 7 and the
observational evidence D, T(x;).

¢ The concentration v specifies how much weight we assign to the prior belief 7. (Large v
— strong prior assumption.)

* Some authors interpret T as T = »_ T(x/) for “fictitious observations” or
“pseudo-observations” x|, . . ., x,,. (If v is an integer, which it need not be.)
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CONJUGACY IN THE COIN FLIP

Distributions are not always written in their natural exponential form.

The Bernoulli distribution (a single coin flip) with parameter ¢ and observation x € {0, 1}, can
be written:

P(xlg) = (1 =)'
— Flogg+(1—x)log(1—9)

— olos(1—g)+xlog(q/(1—-q)) — (1— q)elog(q/(l—q))x

So the natural parameter is the log odds log(¢g/(1 — ¢)), and the sufficient stats (for multiple
tosses) is the number of heads. The conjugate prior is

P(g) = F(r.v) (1 - q)* &80/ (=07
= F(r,v) (1 — g)¥eT108a=T10e(1=0) — F(r 1) (1 — )"~ T¢"
which has the form of the Beta distribution = F(7,v) = 1/B(t + 1,v — 7 + 1).
In general, then, the posterior will be P(q|{x;}) = Beta(a, an), with
o =1+7+3 x5 Ocz:l+(u+n)—(7+zixi>

If we observe a head, we add 1 to the sufficient statistic Zx,-, and also 1 to the count n. This
increments «;. If we observe a tail we add 1 to n, but not to > x;, incrementing a,.
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‘We have seen how to update posteriors within each model. To study the choice of model,
consider two more extreme models: “fair” and “bent”. A priori, we may think that “fair” is
more probable, eg:

p(fair) = 0.8, p(bent) = 0.2
For the bent coin, we assume all parameter values are equally likely, whilst the fair coin has a

fixed probability:
1 1
g =
[ ©
o =
505 0.5
=% o
00 0.5 1 00 0.5 1

We make 10 tosses, and get: D = (THTHTTTTTT).
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BAYESIAN COINS — COMPARING MODELS

‘Which model should we prefer a posteriori (i.e. after seeing the data)?

The evidence for the fair model is:
P(Dlfair) = (1/2)'° ~ 0.001

and for the bent model is:

P(D|bent) = /dq P(D|q, bent)p(g|bent) = /dq (1 —¢)* =B(3,9) = 0.002

Thus, the posterior for the models, by Bayes’ formula:
P(fair|D) o 0.0008, P(bent|D) o 0.0004,

ie, a two-thirds probability that the coin is fair.

How do we make predictions? Could choose the fair model (model selection).
Or could weight the predictions from each model by their probability (model averaging).
Probability of H at next toss is:

X

2
P(H|D) = P(H|D, fair)P(fair| D) + P(H|D, bent)P(bent| D) = 3

1
12 3

N =
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MAXIMUM LIKELIHOOD ESTIMATION

Problem specification
e DataD = {xy,...,x,} is generated iid from model M = {p(x|0) |6 € T}.

We assume iid rather than conditionally iid since the parameter is not assumed to be random.
¢ Objective: Find the distribution in M that best explains the data.
That means we have to identify a "best" parameter value 6.

Maximum Likelihood approach
The maximum likelihood estimator (MLE) is defined as

O, == ey Xn|0) .
ML argglea;sp(m xn|0)

‘We hence assume the data is best explained by that distribution in M under which it is most
likely to occur (has the highest probability or density value).

If differentiability holds, éML is the solution of the maximum likelihood equation

Vop(Dl6) = Vo (Hp(xile)) =0
=
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LOGARITHM TRICK

Instead of the likelihood p(D|6), we often work with the log-likelihood log p(D|6).

Recall two properties of the logarithm function:
« It turns products into sums:  log([],fi) = >_; log(fi)

« Since it is monotonically increasing on R, it does not change the location of maxima
and minima:

max log(g(y)) # max g(y) The value changes.
y y

arg max log(g(y)) = argmax g(y) The location does not change.
y y

MLE with the log-likelihood: Since

n n n
By = arg max HP(Xi|9) = arg max log(ilj[lp(xi|9)> = arg meaxz log p(xi]0) ,

i=1 =l

the MLE éML is the solution of

> Valogp(xilf) = 0

i=1
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BACKGROUND: LAW OF LARGE NUMBERS

For iid random variables Xi, X5, . . . and any function f with E[| f(X;)|] < oo,

1 n
=3 f(x) =5 E[f(X1)]  with probability I .
n

i=1

In short: We know how to estimate expectations.

Consequences for parameter estimation
Idea: Reduce parameter estimation to the problem of estimating an expectation.

» Suppose 6y is the parameter value that has generated the data.
¢ Find some function g such that
Epy, [¢(X,0)] =0 ifandonlyif 8 = 6,

¢ By the law of large numbers, we can then estimate 6 as the solution of

1 n
- Zg(X,-,@) =0
n

i=1
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o It can be shown (under some conditions on the model) that the function
g(x7 9) = Vp lng(x7 0)
satsifies the property above. That is,
Epy, [Vologp(X,0)] =0 ifandonlyif 0 = 6

e The function 6 — Vg log p(x, 0) is called the score function, or the Fisher score.

¢ Substituting the law of large numbers estimate for the expectation gives
1 n
. ZVg logp(Xi,0) =0.
i=1

The solution of the equation is exactly the maximum likelihood estimator.
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TOOLS: GAUSSIAN DISTRIBUTIONS



GAUSSIAN DISTRIBUTION

Gaussian density in one dimension 0

! (x = p)?
plx;p,0) = o exp(f 352 )

02|

e 1 =expected value of x, o2 = variance, o = standard deviation *'

¢ The quotient X;“ measures deviation of x from its expected value ° = —=% %
units of o (i.e. o defines the length scale)

Recall: Standard deviation around the mean

o Recall that the interval [x — o, p + o] (“one standard deviation™) always contains the
same amount of probability mass (ca. 68.27%), regardless of the choice of y and o.

e Similarly, the intervall [ — 20, u + 20] contains ~ 95.45% of the mass, and
[u — 30, 1+ 30] contains ~ 99.73%.
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Recall: Covariance
The covariance of two random variables X1, X, is

Cov[X), Xo] = E[(X1 — E[X1])(X2 — E[X2])] .
If X; = X5, the covariance is the variance: Cov[X, X] = Var[X].
Covariance matrix
If X = (Xi,...,Xp) is a random vector with values in RP, the matrix of all covariances
Cov[X;,X;] --- Cov[X;,Xp]
Cov[X] := (Cov[X;,Xj])ij = :
Cov[Xp,X;] --- Cov[Xp,Xp)

is called the covariance matrix of X.

Notation

It is customary to denote the covariance matrix Cov[X] by .
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GAUSSIAN IN MULTIPLE DIMENSIONS

Gaussian density in D dimensions
The quadratric function

(x—p? 1 2\—1
T2 T *E(X*H)(U) (x—n)
is replaced by a quadratic form:
1
x;p,Y) = ————exp(—L{(x—p), T ' (x—
P ) 1=~ exp (=3 (k= ). 27 (6 = )

for a positive definite matrix .

Covariance matrix of a Gaussian
If a random vector X € R has Gaussian distribution with density p(x; i, &), its covariance
matrix is Cov[X] = 3. In other words, a Gaussian is parameterized by its covariance.

Assuming a multivariate Gaussian model means we assume that all stochastic
dependence between dimensions is captured by the covariance.
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GAUSSIAN DENSITY: EXAMPLE

p(x;p, %)  with

= 0 B 0

density contour lines 1000 sample points
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CONTOUR LINES

Intersect density with a horizontal plane, draw intersection Each elliptical line is such a contour,
as a curve, and project it down onto the plane. for planes at different heights.

Contours and standard deviation
o Each ellipse consists of all points x € R? that satisfy the equation
<x, 271X> =c for some fixed ¢ > 0 .

Changing ¢ changes the size of the ellipse.

o The ellipses play the same role as intervals around the mean for 1D Gaussians: The ellipse
with <x, E*1x> = 1 contains ~ 68.27% of the probability mass, etc.

e That is: The area within the ellipse given by <x, E*1x> = k corresponds to k standard
deviations.
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TooOLS:
SPECTRA AND GEOMETRY OF GAUSSIANS



EIGENVALUES

The properties of covariance matrices are summarized by their spectral properties (their eigenvalues and
eigenvectors). That makes spectral properties the key to understanding Gaussian distributions.

Recall the definition

We consider a square matrix A € RP*P.

A vector £ € RP is an eigenvector of A if there is a scalar A such that
AL =X .

A is called an eigenvalue of A for the eigenvector &.

In words: The direction of £ does not change under application of A. Only its length changes,
by a factor A.

The set of eigenvalues of a matrix is called its spectrum.

Properties
o In general, eigenvalues are complex numbers A € C.

¢ The class of matrices with the nicest eigen-structure are symmetric matrices, for which all
eigenvalues are real and the eigenvectors are mutually orthogonal.
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EIGENSTRUCTURE OF SYMMETRIC MATRICES

If a matrix is symmetric:
o There are rank(A) distinct eigendirections.
¢ The eigenvectors are pair-wise orthogonal.

o Ifrank(A) = D, the eigenvectors form an orthogonal basis of RP. We can normalise each
eigenvector (which again produces an eigenvector) and obtain an orthonormal basis of RP.

Definiteness
type if ...

positive definite all eigenvalues > 0
positive semi-definite  all eigenvalues > 0
negative semi-definite  all eigenvalues < 0

negative definite all eigenvalues < 0

indefinite none of the above
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Recall that a basis {v1, ..., vp} of RP is called an orthonormal basis (ONB) if

won={y 12

That is: The v; are pairwise orthogonal and each of length 1.

Orthogonal matrices

A matrix is orthogonal precisely if its rows form an ONB. Any two ONBs can be transformed
into each other by an orthogonal matrix.

Transforming between ONBs

IfV ={vi,...,vp}and W = {wy,...,wp} are ONBs, there is an orthogonal matrix O such
that
Ap) = OApy) 0!

for any matrix A. By A}, we denote the representation of A in V.
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Setting
¢ Suppose A symmetric, £, . . ., &p are eigenvectors and form an ONB.
e Al,...,Ap are the corresponding eigenvalues.

How does A act on a vector v € RP?
1. Represent v in basis &1, ...,&p:

V= va‘gj where v} € R

2. Multiply by A: Eigenvector definition (recall: A§; = A&;) yields

D D D
A= ATG) = Yo = Dog
j=1 j=1 j=1
A symmetric matrix acts by scaling along the directions of its eigenvectors.
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Suppose we repeatedly apply a symmetric matrix A to a vector v € RP: We compute
Av, A(Av) =A%, A(A(AY))) = Ay,

How does v change?
Example 1: v is an eigenvector with eigenvalue 2

A2y
Av

The direction of v does not change, but its length doubles with each application of A.

Example 2: v is an eigenvector with eigenvalue — %

v

Av
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If v is an arbitrary vector, we can represent it as a linear

L : . A3
combination v = Zj vj‘.‘ﬁj of eigenvectors of A, and obtain Y

D
At =3 Vi
j=1
A%y
The weight )\]’.' grows most rapidly for eigenvalue with largest

absolute value.
Av

The direction of A”v converges to the direction of the

eigenvector with largest eigenvalue as n grows large. = G ;) v = (‘%)

eigenvectors shown in blue
length proportional to eigenvalue
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QUADRATIC FORMS

In applications, symmetric matrices often occur in quadratic forms.

Definition
The quadratic form defined by a symmetric matrix A is the function
q,: RP =R
x > (x, Ax)
Intuition

A quadratic form is the D-dimensional analogue of a quadratic function ax?, with a vector

substituted for the scalar x and the matrix A substituted for the scalar a € R.

S

Eg
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QUADRATIC FORMS

e Left: The function value g, is graphed on the vertical axis.

« Right: Contours. Each line in R? corresponds to a constant function value of ¢ -
Dark color = small values.

¢ The red lines are eigenvector directions of A. Their lengths represent the (absolute) values
of the eigenvalues.

« In this case, both eigenvalues are positive. If all eigenvalues are positive, the contours are
ellipses. So:

positive/negative definite matrices <> elliptic quadratic forms
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In this plot, the eigenvectors are axis-parallel, and one eigenvalue is negative:

The matrix here is A = (2 0 )

Intuition

o If we change the sign of one of the eigenvalue, the quadratic function along the
corresponding eigen-axis flips.

¢ There is a point which is a minimum of the function along one axis direction, and a
maximum along the other. Such a point is called a saddle point.
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Recall: Covariance
The covariance of two random variables X1, X, is

Cov[X1,X2] = E[(X; —E[X1])(X2 — E[X2])] -
If X; = X5, the covariance is the variance: Cov[X, X] = Var[X].
Covariance matrix
If X = (Xi,...,Xp) is a random vector with values in RP, the matrix of all covariances
Cov[X;,X;] --- Cov[X;,Xp]
Cov[X] := (Cov[X;,Xj])ij = :
Cov[Xp,X;] --- Cov[Xp,Xp)

is called the covariance matrix of X.

Notation

It is customary to denote the covariance matrix Cov[X] by X.
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GEOMETRY OF GAUSSIANS

Covariance matrix of a Gaussian
If a random vector X € R has Gaussian distribution with density p(x; i, &), its covariance
matrix is Cov[X] = 3. In other words, a Gaussian is parameterized by its covariance.

Observation
Since Cov[X;, Xj| = Cov[X;, X;], the covariance matrix is symmetric.

What is the eigenstructure of >?

¢ We know: X symmetric = there is an eigenvector ONB

o Call the eigenvectors in this ONB £, . . ., &p and their eigenvalues A\j, ..., Ap
¢ We can rotate the coordinate system to £, . . ., £p. In the new coordinate system, > has
the form
A0 - 0
0 X - 0
Z[g]v-ufn] = . . ) . :diag()\l,.‘.,)\p)

0 0 - o
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EXAMPLE

Quadratic form

. 2 1
(x,3x)  with E:(l 2)

The eigenvectors are (1, 1) and (—1, 1) with eigenvalues
3and 1.

Gaussian density
p(x; p, X3) with p = (0, 0).

density density contour

Peter Orbanz
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The ; as random variables

Write ey, . .., ep for the ONB of axis vectors. We can represent each &; as
D
&= aje
j=1

Then O = () is the orthogonal transformation matrix between the two bases.
We can represent random vector X € RP sampled from the Gaussian in the eigen-ONB as

D
Xig, 6] = (X1, -, XD) with X[ =" ayX;
=1

Since the X; are random variables (and the «; are fixed), each X{ is a scalar random variable.
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INTERPRETATION

Meaning of the random variables &;
For any Gaussian p(x; p, 32), we can
1. shift the origin of the coordinate system into p
2. rotate the coordinate system to the eigen-ONB of 2.
In this new coordinate system, the Gaussian has covariance matrix

Zie,....ep) = diag(Ar, ..., Ap)

where \; are the eigenvalues of 2.

Gaussian in the new coordinates

A Gaussian vector X[¢, .. ¢,] represented in the new
coordinates consists of D independent 1D Gaussian
variables X/. Each X/ has mean 0 and variance \;.

A multidimensional Gaussian consists of independent, orthogonal scalar normal variables
in some coordinate system.

Peter Orbanz
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MLE FOR GAUSSIANS

Consider data D = (X, ...,X,) in RY, and the Gaussian model
M= {g(e|p, D) | p € RY, T € R4 positive definite }
where g denotes the Gaussian density on RY.

Ansatz
ML estimation treats the two parameters separately. I will write € to denote either & = p (for fixed %), or
6 = X (for fixed p), depending on which parameter we estimate.

To find the maximum likelihood estimator, we have to solve

= Voo Tetu) = VeZlg(W) S 06— =7 = o)

i=1 i=1

Maximum likelihood estimators
The solutions are
n

1
b = Zx, and Sy = . Z(X, — ) (xi — p)

i=1 i=1

T

Note /1 does not depend on 3. We can estimate /i first, then plug in /i for p in SML.
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REFRESHER — MATRIX DERIVATIVES OF SCALAR FORMS

We will use the following facts:

XTAy = yTATX =Tr [XTAy} (scalars equal their own transpose and trace)

T[] =T [AT] Tr [ABC] = Tr [CAB] = Tr [BCA]

8 . 8 . P . )
T [aTB] = — STU"Bl, = — AT By = wnBun = By
04y ] 04y zn:[ b= ZZ 0A; o '
o T
= i [A B] —B
o_r1 1 8 . A o
o [A BAC] =i [Fl (A)"BF, (A)C] with Fy and F, both identity maps
) oF 8 OF
=55 [F,TBFZC] ETA] + o [F,TBFZC] B—Az
1 2
o] OF o] OF
=55 [F BFZC] BA] +on T [CFITBFZ] —a:
P OFF O _ 111 11 OF
— 2w [FBF T 2
8F1r[ -] o4 T om [m ‘C]aA
= BF,C + B'F,C" = BAC + B'ACT
0 - S2 A [l = gl
oAy |A| aA \A\ dA |A\

@ T
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a0 _ o [N Te
—1 2ny X, — by Xp —
on " op |2 og [2rX| + - E (Xn — ) (Xn — )
_1 9 Tyl
=32 a[(xn—ﬂ)z (Xn—;t)]
1 1o} _ _ _
= > a [XIE %, + [I,TZ lp, — Z;J,TE lxn]

n

2

n
1
-3 [22—1,L - 22_1x,,]
n

=NS -3 X,

:ILVXH:X"

AR ] 2
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N 1
- [E log[27%| + Xn:(xn — ) (% — u)]
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The relationship between variables can also be modelled as a conditional distribution.

e data D = {(X1,Y1)...,(Xn,¥n)}
e each X; (Y;) is a vector of Dy (Dy) features,

¢ y; is conditionally independent of all else, given X;.

= 0 1
%

A simple form of supervised (predictive) learning: model Yy as a linear function of X, with
Gaussian noise.

1 1 _
Py W) = s oxp {3y~ Wy - Wi }
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MULTIVARIATE LINEAR REGRESSION — ML ESTIMATE

ML estimates are obtained by maximising the (conditional) likelihood, as before:

0= Zlogp(YiIXi,W, %)
= ——log|27r2 | — = Z(V’ Wxi) TZ H(yi = Wxi)

850;5) B?N[ log [275y| + 5 Z(y, )E)-l(y,-—Wx,-)]

= 3 o T W) TS (s W)
= % 2 aiw VTS5 ys+ XTWTs T W — 2x Wy |
1
s )y
i
_1 Z [zzy—'Wx,-xiT - 22;]VixiT]
=0 = W—Zyt (Zxx) |
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Let y; be scalar (so that W is a row vector) and write W for the column vector of weights.
A conjugate prior for W is

P(W|A) = N (o,A-l)

Then the log posterior on W is

log P(W|D, A, 0y) = logP(D|W A cry) + log P(W|A, o)) log P(D|A, o))

= TAw Z(y, w x,)2 2 + const

—_= T(A+g_ZZx, x))w+w' Z(y,X, 2 + const

s

1 _ _ _
=-3 TEW 'w+ WTEW s, Xi:(yixi)ay 2 4 const

yom
_ -2
= log N (u30,00x); %, 5
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MAP AND ML FOR LINEAR REGRESSION

As the posterior is Gaussian, the MAP and posterior mean weights are the same:

-
XX X; 1
WMAP _ <A+Z,Uzz ,> Zyl i —(A 2+Zx’ ) Z}’ixi
i
N— ——

y
»

Compare this to the (transposed) ML weight vector for scalar outputs:
~ —1
wML — WT — (inx;r) Zyixi
i i

o The prior acts to “inflate” the apparent covariance of inputs.
e As A is positive (semi)definite, shrinks the weights towards the prior mean (here 0).
o If A = ad this is known as the ridge regression estimator.

o The MAP/shrinkage/ridge weight estimate often has lower squared error (despite bias)
and makes more accurate predictions on test inputs than the ML estimate.

¢ An example of prior-based regularisation of estimates.
Remarks
o Models the conditional P(y|X).

e If we also model P(X), then learning is indistinguishable from unsupervised. In particular
if P(X) is Gaussian, and P(y|X) is linear-Gaussian, then X, y are jointly Gaussian.
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It is very important that you understand all the material in the following cribsheet:
http:
//www.gatsby.ucl.ac.uk/teaching/courses/mll/cribsheet.pdf

¢ The following notes by (the late) Sam Roweis are quite useful:

¢ Matrix identities and matrix derivatives:
http://www.cs.nyu.edu/~roweis/notes/matrixid.pdf
o Gaussian identities:

http://www.cs.nyu.edu/~roweis/notes/gaussid.pdf

e Here is a useful statistics / pattern recognition glossary:
http://alumni.media.mit.edu/~tpminka/statlearn/glossary/

¢ Tom Minka’s in-depth notes on matrix algebra:

http://research.microsoft.com/en-us/um/people/minka/papers/
matrix/
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Explain correlations in X by assuming dependence on latent variables z

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

z ~ P[]
X |z~ Pb:]
(e.g. edges) p(X, Z; 0y, 92) = p(X | Z; 6x)P(z; 61)

(X 05, 0:) = / dz p(x | 2;0,)p(z;0:)

(retinal image, i.e. pixels)
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¢ Describe structured distributions.

« Correlations in high-dimensional X may be captured by fewer parameters.

¢ Capture an underlying generative process.

» Z may describe causes of X.
« help to separate signal from noise.

¢ Combine exponential family distributions into richer, more flexible forms.

+ P(2), P(x|z) and even P(X,Z) may be in the exponential family
 P(x) rarely is. (Exception: Linear Gaussian models).
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Gaussian correlation can be composed from latent components and uncorrelated noise.

(0 ) e ewen xen(af]:fs 1))
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If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {X{,Xa,...,Xy}; X; € RP
Latents: Z = {2,2,...,2y};2; € R
K

Linear generative model: x; = E Aar 7 + €4
k=1

* 7 are independent AV (0, 1) Gaussian factors
e ¢, are independent AV (0, ¢) Gaussian noise

e K<D

Model for observations X is a correlated Gaussian:
z) = 0,1
PRA=NOD e w, [F(X)] = Bz [Exjz [f(X)]

p(X|2) = N (Az,I) Vx [x] = Bz [V [x|2]] + V2 [E [x]2]]
p(X) = / P@)p(x(2)dz = N (Ez [A2) Bz [A22TAT] 1) = (0,AAT + 1)

where A is a D X K matrix.
69
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Two models:
p(2)=N(0,1)
p(x) =N (0,%) p(x|z) = N (Az, 1)
= p(x) = N (0, AAT + 1)

¢ Descriptive density model: correlations Interpretable causal model: correlations

are captured by off-diagonal elements of captured by common influence of latent
variable.
e 3 has w free parameters. o AAT 4 I has DK + 1 free parameters.
¢ Only constrained to be positive definite. e For K < D covariance structure is

« Simple ML estimate. constrained (“blurry pancake”)

¢ ML estimation is more complex.
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The marginal distribution on X gives us the PPCA likelihood:

log p(X|A, ) = _%’ log ‘ZW(AAT + W)‘ - %Tr [(AAT g0~ ZxxT]

——
NS

To find the ML values of (A, 1) we could optimise numerically (gradient ascent / Newton’s
method), or we could use a different iterative algorithm called EM which we’ll introduce soon.

In fact, however, ML for PPCA is more straightforward in principle, as we will see by first

considering the limit ¢ — 0.

[Note: We may also add a constant mean g to the output, so as to model data that are not
distributed around 0. In this case, the ML estimate i = ﬁ >, Xu and we can define

§= 43, (x—f)(x — f&)T in the likelihood above.]
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As ¢ — 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K-dimensional space of most variance.
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This leads us to an (old) algorithm called Principal Components Analysis (PCA).

Assume data D = {X;} have zero mean (if not, subtract it).

* Find direction of greatest variance — A(q).

A(j) = arg max X v)?
(1) = arg max, 2 (%, V)

* Find direction orthogonal to A(j) with greatest variance —
Ao

* Find direction orthogonal to {X(1), A(2), .-+, A—1)}
X with greatest variance — X ().

¢ Terminate when remaining variance drops below a
threshold.
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EIGENDECOMPOSITION OF A COVARIANCE MATRIX

The eigendecomposition of a covariance matrix makes finding the PCs easy.

Recall that U is an eigenvector, with scalar eigenvalue w, of a matrix S if

Su =wu

u can have any norm, but we will define it to be unity (i.e., ulu = 1).

For a covariance matrix S = <xxT> (which is D x D, symmetric, positive semi-definite):

Peter Orbanz

¢ In general there are D eigenvector-eigenvalue pairs (u(,») S W(7) ), except if two or more
eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate —
any linear combination is also an eigenvector).

* The D eigenvectors are orthogonal (or orthogonalisable, if w(;) = w(;)). Thus, they form
an orthonormal basis. >, U(,-)U(,-)T =1
e Any vector V can be written as

v= (D ugueT)v =3 Ve = 3 vipug

1 1
¢ The original matrix S can be written:
§=D_wpupue' =UwU'
i

where U = [U(}), U2y, . . ., U(p)] collects the eigenvectors and
W = diag [(w(1), w5 wy)]-
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PCA AND EIGENVECTORS

* The variance in direction U;) is
T 2 Tyy ! T T
<(X u@) > = <“<f> XX “<i>> = U@ SUp) = U winle) = @)
o The variance in an arbitrary direction V is
Ty)2 T 2 T
(o2) = ((x (ZV(M»)) )= SUOCLIONLTOMD)

ij

_ T _ 2

=D vHwe (UG UG = D V@i
y i

Ty — 2 Ty)2\ —
o Ifv'v =1, then Z,‘V(,-) = 1 and s0 arg maxjy| (xTv)?) = U (max)
The direction of greatest variance is the eigenvector the largest eigenvalue.

¢ In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,
ordered by decreasing eigenvalue.

e The eigenspectrum shows how the variance is
distributed across dimensions; can identify tran-
sitions that might separate signal from noise, or
the number of PCs that capture a pre-determined
fraction of variance.

eigenvalue (variance)

fractional variance remaining

i B
eigenvalue number

minnminlin e
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The K principle components define the K-dimensional subspace of greatest variance.

¢ Each data point X, is associated with a projection X,, into the principle subspace.

K
%o =3 (A
k=1

¢ This can be used for lossy compression, denoising, recognition, ...
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¢ Find K directions of greatest variance in data.

¢ Find K-dimensional orthogonal projection that preserves greatest
variance.

¢ Find K-dimensional vectors z; and matrix A so that X; = Az; is as
close as possible (in squared distance) to X;.

e ...(many others)
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ML LEARNING FOR PPCA

N N
L= -5 log [27C| — ETr [C"S] where C = AAT + oI

o _N (—i log ] — 2T [c*lsD —N (—C"A + c*'sc*'A)
oA 2 OA oA
So at the stationary points we have SC~'A = A. This implies either:

¢ A = 0, which turns out to be a minimum.

e C=85= AAT =S — oI Now rank(AAT) < K = rank(S — oI) < K
= Shas D — K eigenvalues = v and A aligns with space of remaining eigenvectors.
or, taking the SVD: A = ULvT:

S(ULV'VLUT + 1)~ 'uLvT = urv’ xvL™!
= SULPUT + 9D~ 'U=U U(L? + 1) = (ULPUT + 91U
= (VLU + ) ~'U = UL + 1)
= SU(L> +yD)~ ' =U X (12 + 1)
= SU = U (L* +9I)
N———
diagonal

= columns of U are eigenvectors of S with eigenvalues given by ll.2 + 1.
Thus, A = ULV spans a space defined by K eigenvectors of S; and the lengths of the
column vectors of L are given by the eigenvalues —1) (V selects an arbitrary basis in the
latent space).
Remains to show (we won’t, but it’s intuitively reasonable) that the global ML solution is
recer Orbaattained when A aligns with the K leading eigenvectors. 80



PPCA LATENTS

Peter Orbanz

In PCA the “noise” is orthogonal to the subspace, and we can project X, — X, trivially.
In PPCA, the noise is more sensible (equal in all directions). But what is the projection?
Find the expected value Z, = E [2,|X,] and then take X, = AZ,.

Tactic: write p(2,, X,|0), consider X, to be fixed. What is this as a function of z,?

P(2Zn, Xn) = p(Zn)p(Xn|2Zn)
K 1 1 1
=Q@2r)"2 exp{fizlz,,} 20|72 exp{—- (% — Az) U (x, — Az,)}
1
=cx exp{—i[zl—zn + (X, — Az)TO (%, — AZ,)]}
1
=c x exp{—i[z;l;(l + ATU Az, — 22] AT %, ]}
1
=c” X exp{—i[zlzflzn — 221271;¢ + uTzflu]}
SoX =+ AT A" =1 —BAand p = SATEU ', = BX,. Where
B=SATO L
Thus, X, = A + ATOTA)TATE X, = X, — U(AAT 4+ ¥)~'x,

This is not the same projection. PPCA takes into account noise in the principal subspace.
As 1) — 0, the PPCA estimate — the PCA value.
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A (finite) mixture distribution has a single discrete latent variable:

si Discrete[]
Xi | si ~ Py [05]

Mixtures arise naturally when observations from different sources have been collated.
They can also be used to approximate arbitrary distributions.
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The mixture model is

si s Discrete|r]
Xi | si ~ Py [0s]

Under the discrete distribution
k
P(si = m) = mp; 71',,,20,271’,,,:1
m=1
Thus, the probability (density) at a single data point X; is

k
P(Xi) = Z P(Xi | Si = m)P(si = m)

m=1
k
= Z Wum(Xi; em)
m=1

The mixture distribution (density) is a convex combination (or weighted average) of the
component distributions (densities).
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The component densities may be viewed as elements of a “basis” which can be combined to
approximate arbitrary distributions.

Here are examples where non-Gaussian densities are modelled (aproximated) as a mixture of
Gaussians. The red curves show the (weighted) Gaussians, and the blue curve the resulting

density.
Uniform Triangle Heavy tails
1 2 ‘ 1
0.5 1 0.5

0 0 0
-05 0 051 15-05 0 05 1 15 -2 0 2

Given enough mixture components we can model (almost) any density (as accurately as
desired), but still only need to work with the well-known Gaussian form.
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In clustering applications, the latent variable s; represents the (unknown) identity of the cluster
to which the ith observation belongs.

Thus, the latent distribution gives the prior probability of a data point coming from each cluster.
P(si=m|m) =mm
Data from the mth cluster are distributed according to the mth component:
P(X; | si = m) = Pum(X;)

Once we observe a data point, the posterior probability distribution for the cluster it belongs to

1S
Py (X,‘)ﬂ'm

> P (Xi)70m
This is often called the responsibility of the mth cluster for the ith data point.

P(si =m | X,') =
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Each component of a MoG is a Gaussian, with mean p,, and covariance matrix 3,,. Thus, the
probability density evaluated at a set of  iid observations, D = {X; ...X,} (i.e. the likelihood)
is

p(D | {pn}, {Sn}, ) = HZme(x, | o, S

i=1m=1
1 1 Ty—1
= o (i) B (Xi— )
szm\/pwsz ’

The log of the likelihood is

logp(D | {pm}, {Em}, 7) = Zlogzﬂ—m o 06— ) TS (X )

i=1 m=1 \% |27r2 |

Note that the logarithm fails to simplify the component density terms. A mixture distribution
does not lie in the exponential family. Direct optimisation is not easy.
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The log likelihood is:
n k
L= Z log Z TomPm (Xi; Om)
i=1 m=1

Its partial derivative wrt 6,, is
n

oL T OPun(Xi; Om)
90 ) an=1 Wum(Xj; 0,,,) 06

or, using OP/90 = P x dlog P/H0,

_ Z 71'um (Xi; 6m) 0log Py (Xi; Om)
lmem(x,,Om) 00
%,_/

dlog P (Xi; Om)

= ; Yim 90,

And its partial derivative wrt 7, is

_ Z Pm(xu m) _ . Tim
87rm 17r,,,Pm(x,,6?m) = Tm
90
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For a MoG, with 0, = {pm, X } we get

oL o,
P ;’imzm (Xi — tm)

aL
os!

_ % ; rin (S = (% = pon) (%1 = i)

These equations can be used (along with Lagrangian derivatives wrt 7, that enforce
normalisation) for gradient based learning; e.g., taking small steps in the direction of the
gradient (or using conjugate gradients).

Peter Orbanz © Gatsby Unit 91



THE K-MEANS ALGORITHM

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA).
Take mn = 1/kand X, = 021, with 02 — 0. Then the responsibilities become binary
Fim — 8(m, arg min [|x; — will?)

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:
e assign each point to its closest mean (set Fim = 6(m, arg min [1xi — | ))

Z; FimXi )
Z,‘ Yim

o update the means to the average of their assigned points (set Hm =

This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for p,,. The algorithm has no learning rate, but the assumptions are quite
limiting.
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A PREVIEW OF THE EM ALGORITHM

‘We wrote the k-means algorithm in terms of binary responsibilities. Suppose, instead, we used
the fractional responsibilities from the full (non-limiting) MoG, but still neglected the
dependence of the responsibilities on the parameters. We could then solve for both g, and X,,.

The EM algorithm for MoGs iterates these two steps:
¢ Evaluate the responsibilities for each point given the current parameters.

¢ Optimise the parameters assuming the responsibilities stay fixed:

>, rimXi > im (Xi — ) (Xi — )7
= —— and X, =
> Tim D Tim

Although this appears ad hoc, we will see (later) that it is a special case of a general algorithm,
and is actually guaranteed to increase the likelihood at each iteration.

Hm =
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There are several problems with these algorithms:
¢ slow convergence for the gradient based method
¢ gradient based method may develop invalid covariance matrices
¢ Jocal minima; the end configuration may depend on the starting state
¢ how do you adjust k? Using the likelihood alone is no good.

¢ singularities; components with a single data point will have their covariance going to zero
and the likelihood will tend to infinity.

We will attempt to address many of these as the course goes on.
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MEASURING INFORMATION

Information content of a random variable
We consider a random variable X with distribution P.

e P expresses what we know before we observe X.
¢ How much information do we gain by observing X?
That is: By information content of X, we mean the difference in information between knowing
P and knowing both P and X = x.
To reiterate
For the definition of information, it is useful to think of...
o ...the distribution P as what we expect to happen.

e ...the sample outcome X = x as what actually happens.
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INFORMATION

Heuristic motivation
Suppose we sample X = x from a distribution P.
o If P(x) is large: Small surprise; we have not gained
much additional information.

e If P(x) is small: We have gained more information.

Conclusions

e The information in X = x increases with ﬁ.

¢ Intuitively, the information gain in two unrelated
1

observations should be additive, so 26 itself is not a

useful measure of information.

Definition
The information in observing X = x under P is

Jp(x) :=log % = —logP(x) .

Peter Orbanz
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SHANNON’S ENTROPY

We first consider discrete random variables, i.e. X is finite or countably infinite.

Definition
Let X be a discrete random variable with distribution P. The expected information in a draw
from P,
HIX] := Ep[/p(X)] = — > P(x)log P(x)
XEX

is called the Shannon entropy of X, or the entropy for short.
We use the notation H[X] and H(P) interchangeably.

Basic Properties

1. The entropy is non-negative:
H[X] >0

2. H(P) = 0 means there is no uncertainty in P:
H(P) =0 & P(xp) = 1 forsome xg € X .

3. If X is finite with d elements, the distribution with the largest entropy is the uniform
distribution Uy, with
H(U;) = logd

4. H(P) is concave as a function of P.

Peter Orbanz
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ALTERNATIVE DERIVATION

Suppose we define some measure H[X] of information in X. Instead of a definition, we
postulate a number of properties (axioms) that a meaningful measure should satisfy.
Axioms

¢ We should be able to "remove the joint information" in X and Y from Y by conditioning:

(Axiom I) HIX, Y] = HI[X] + H[Y|X]
That implies in particular that the information of independent variables is additive:
X1y = HX,Y]=HX]+H[]Y]
« If we make a small change to P, then H (P) should not "jump". That is:

(Axiom II) H(P) should be continuous as a function of P.

¢ If we increase d, the uncertainty in U, increases; hence, the information gained by
sampling should be higher for d + 1 than for d:

(Axiom III) H(Uy) < H(Ugy1)
Theorem
If a real-valued function H on X satisfies Axioms I-III, then
H(P) =c-H(P) forall P,

for some constant ¢ € R.. (The constant is the same for all P.)

Over the years, about a dozen different axioms for information measures have been proposed. Loosely speaking, any
meaningful combination of two or three of these axioms leads to the same result (i.e. determines the entropy up to scaling).
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EXAMPLE: CODING

Suppose we would like to compress a text document (lossless compression).

Huffman Coding
Here is a simple but efficient coding scheme:
1. Given a text, determine the frequency with which each word occurs.
2. Assign short code words to words that occur often, long code words to words that are rare.

This idea (with a specific algorithm for finding determining the code words) is called Huffman
coding. If all we are allowed to do is to replace text words by code words, this compression
method is optimal.

Information-theoretic problems
Suppose we know the distribution P of words in texts. Then we can ask:
1. What is the expected compression rate for a random document?

2. Does our encoder achieve the optimal expected rate for P?
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EXAMPLE: CODING

The Source Coding Theorem (Shannon)
Suppose we are given a distribution P on words or symbols and sample a string (a sequence of
categorical variables) Xy, . .., X, iid from P. Then for every € > 0, there is a lossless encoder
for which |
H(P) <E [7 - length(encoding (X7, . . . ,X,,))] <H(P)+e¢
n
for sufficiently large n.

Remarks

¢ In other words: We can encode the sequence X1, . . ., X,, without loss of information using
n H(P) bits on average.

e The entropy H(P) is a lower bound for lossless compression: If an encoder achieves a
better (=smaller) expectation than above, the probability that it will result in information
loss approaches 1 for n — oo.
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How WELL CAN WE COMPRESS ENGLISH TEXT?

Character-by-character compression

We can compress text by splitting the text into
characters and assigning a code to each character.

An empirical estimate of the distribution of
characters is shown on the right. The entropy is
4.11 bit/character.

This compression is not very effective: There are
27 characters and 24 < 27 < 25, hence we can
trivially encode with 5 bits/character.

Word-by-word compression

Peter Orbanz

The ranked frequency of words in English is
well-approximated by a Zipf distribution with
parameter between 1.5 and 2 (lower plot).

The distribution is highly concentrated on a few
common words. That means it has relatively low
entropy.

Splitting into words instead of characters hence
achieves much better compression rates.

Commonly used lossless compression algorithms
(e.g. Lempel-Ziv) split into substrings which are
not necessarily words.
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KULLBACK-LEIBLER DIVERGENCE

Heuristic motivation
Suppose we wish to compare two distributions P and Q on X.

* The entropy H[Q] = E¢[J/o(X)] measures how much information gain (in terms of Q) we
can expect from a random sample from Q.

¢ Now ask instead: How much information gain in terms of Q can we expect from a random
sample drawn from P? We compute: Ep[Jo(X)].

¢ A measure of difference between P and Q should vanish if Q = P. Since P = Q means
Ep[Jo(X)] = H(P), which is usually not 0, we have to normalize by subtracting H(P).

Definition
The Kullback-Leibler divergence or the relative entropy of P and Q is
P X
KLPIO] = Erlio(x)] ~H(p) = Y- Plw)los 3
xex )

Properties
o Positive definiteness

KLP[|Q]>0 and KL[P|Q]=0&P=0.
o KL[P||Q] is convex in both P and Q.
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ASYMMETRY OF THE KULLBACK-LEIBLER DIVERGENCE

» The KL divergence is nor symmetric: KL[p||g] # KL[g||p] in general.
¢ It does not satisfy a triangle inequality.
e In particular, it is not a metric on probability distributions.

That holds in both the discrete and continuous case.

Asymmetry

e If p puts mass in a region where g almost vanishes, then
p/q is very large in that region.

Since both are normalized, there is some other regions

where p/q is small.
Because of the logarithm, these two do not cancel out.

o For instance, the low-variance (red) Gaussian on the
right has small mass in regions where the
higher-variance Gaussian puts mass.

Remark

Although the KL divergence is not a metric, it exhibits much more geometric structure than an
arbitrary two-argument function—in particular, it satisfies a property similar to Pythagoras’
theorem that we will not discuss here.
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MUTUAL INFORMATION

Heuristic Motivation

¢ Another question we can ask about a pair X, Y of random variables is: How much
information do they share?

¢ In other words: How much does observing X tell us about Y?

e If X and Y contain no shared information, they are independent, and their joint distribution
is P(x,y) = P(x)P(y).
¢ Idea: Compare the actual joint distribution to the independent case using KL divergence.

Definition
The mutual information of X and Y is

= X = X, O, (x y)
11X, Y] := KL[P(x,y)|P(x)P(y)] = ;P( )log 5vblS

Mutual information characterizes independence

IX,Y]=0 &  XlY

er Orbanz
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THE CONTINUOUS CASE

If the sample space X is uncountable (e.g. X = R), instead of P and Q we consider densities p
and ¢, we have to substitute integrals for sums.

Differential entropy

The definition of entropy we use for continuous distributions is

MY = = [ p(o)lomp(s)ds

« Since p is a density, we can have log p(x) > 0, and H[X] can be negative.

¢ This form of entropy is also called differential entropy to distinguish it from the
(Shannon) entropy.

Since p is a density, we can have log p(x) > 0, and H[X] can be negative. To distinguish it from
the entropy, H[X] is called the differential entropy.

KL divergence and mutual information
KL and I are defined analagously to the discrete case:

mwd:/p@bg”

( dx

)
)
p(x,y)
P

Unlike the entropy, these have the same properties as we have listed in the discrete case.

I[X,Y] ::/ p(x,y) log
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INFORMATION THEORY AND STATISTICS

Here are some points that we do not have time to discuss in detail:

Peter Orbanz

Exponential families are maximum entropy models: If T is a statistic with values in R,
and t € R, the distribution that maximizes the entropy under the constraint E[T(X)] =t
is an exponential family distibution with sufficient statistic T.

Maximum likelihood minimizes the KL divergence between empirical distribution and
model.

Variance, covariance and the x2-statistic can be regarded as first-order approximations to
entropy, mutual information and KL divergence.

Various methods can be derived by substituting information-theoretic for traditional
statistical quantities.

Example: A dimension-reduction technique called independent component analysis can
be motivated as (roughly speaking) a PCA-like method which measures independence in
terms of mutual information rather than covariance.
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EXPECTATION MAXIMISATION



 Exponential family models: p(x|0) = f (x)eeTT(x) /Z(0)
00) =07 Z T(Xs) — NlogZ(0) (+ constants)

¢ Concave function.
¢ Maximum may be closed-form.
¢ If not, numerical optimisation is still generally straightforward.

¢®(0:,2) T (%) T2
f:(2)

Z:(¢(0x,2)) ACH)

p(x|z,6x) p(z|62)

eqs(ex,z)TTx(x) I T:(2)

£(0x,0: Zk’g / 21 X) Z aen2) @ Zey

« Latent variable models: p(x|0y, 0;) = /dz S (%)

¢ Usually no closed form optimum.
¢ Often multiple local maxima.
¢ Direct numerical optimisation may be possible but infrequently easy.
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Data: X ={x...xn}

Latent process:

% Disc[n]

Component distributions:
Xi | (si =m) ~ Pul0n] = N (ttm, Zm)

Marginal distribution:

k
P(X) =Y TP (X; )

m=1

Log-likelihood:

L — )T (x—
E({l"'m} {Em} ﬂ-) - ZlOgZ /|27TE 2<Xl ) o (i)
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For many models, maximisation might be straightforward if Z were not latent, and we
could just maximise the joint-data likelihood:

£(0x,0;) = Z & (6x, z,,)TTx(x,,)+BI Z TZ(Z,,)—Z log Zx(¢(6x,2,))—N log Z;(6:)

Conversely, if we knew 6, we might easily compute (the posterior over) the values of z.

Idea: update 6 and (the distribution on) z in alternation, to reach a self-consistent answer.
Will this yield the right answer?

Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.

© Gatsby Unit 112



THE EXPECTATION MAXIMISATION (EM) ALGORITHM

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a
(local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

¢ Decomposes difficult problems into series of tractable steps.
¢ An alternative to gradient-based iterative methods.
¢ No learning rate.

¢ In ML, the E step is called inference, and the M step learning. In stats, these are often
imputation and inference or estimation.

¢ Not essential for simple models (like MoGs/FA), though often more efficient than
alternatives. Crucial for learning in complex settings.

¢ Provides a framework for principled approximations.
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One view: EM iteratively refines a lower bound on the log-likelihood.

log(x)
—
log(ax; + (1 - a)x) o
alog(x) + (1 —a)log(xy) - - - -~ - - - -+
|
/ |
/ |
L} ! 1
I I
I I
X axi+(Il—a)x  x
In general:
Fora; > 0,> o = 1 (and {x; > 0}): For probability measure o and concave f
log (3 o) = D aloa(x) £ (Ba 1)) > Ea ()
i i

Equality (if and) only if f(x) is almost surely constant or linear on (convex) support of c.
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Observed data X = {X;}; Latent variables Z = {z;}; Parameters 0 = {0y, 0.}.

Log-likelihood:
2(6) = log P(X]0) = log / dZ P(Z, X|0)

By Jensen, any distribution, ¢(Z), over the latent variables generates a lower bound:

£(0) = log / dz q(Z)% > / dZ q(Z) logf% ¥ Fq,0).
o /dZ q(2)log P(2,X16) = /dZ q(2)1log P(Z,X|0) — /dZ q(2)logq(2)
a(2) ’

— [dz a(2) 10 (2, X16) + Ha
where Hg is the entropy of ¢(Z).

So:
F(g,0) = (log P(Z, X|0)), =) + Hg
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The free-energy lower bound on £(6) is a function of # and a distribution ¢:
.F(q,@) = <10gP(Za X|9)>q(z) + qu

The EM steps can be re-written:
» E step: optimize F (g, 0) wrt distribution over hidden variables holding parameters fixed:

q(k> (2) := argmax ]-'(q(Z), 9("’1)).
9(2)

e M step: maximize F (g, §) wrt parameters holding hidden distribution fixed:
k k
0" = arg max FaW(2),0) = argmax (log P(Z, X10)) 0 z)

The second equality comes from the fact that Hg(®) (Z) does not depend directly on 6.
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The free energy can be re-written
_ P(Z,X10)
Fla0)= [a@)og "0
P(Z|X,0)P(X]0)
a(2)
_ / 9(2) log P(X0) dZ + / 4(2)log
=£(0) - KL[g(2)[|P(Z]|X,0)]

The second term is the Kullback-Leibler divergence.

dz

= / q(Z)log dz

P(Z|X,0)

2 7

This means that, for fixed 8, F is bounded above by ¢, and achieves that bound when
KL[g(2)[|P(Z|X,0)] = 0.

But KL([g¢||p] is zero if and only if ¢ = p (see appendix.)
So, the E step sets

g®(2) = P(2|x, 00 1) [inference / imputation]
and, after an E step, the free energy equals the likelihood.
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To visualise, we consider a one parameter / one latent mixture:
s ~ Bernoulli[]
xs=0~N[-1,1]  x|s=1~N]1,1].

Single data point x; = .3.
q(s) is a distribution on a single binary latent, and so is represented by r; € [0, 1].
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COORDINATE ASCENT IN F (DEMO)
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EM NEVER DECREASES THE LIKELIHOOD

The E and M steps together never decrease the log likelihood:

2(%k=1 = F(q®, g%=1 < F(qW, e < £(6W)y,
( ) E step ( )M§ep ( )Jen_sen ™)

¢ The E step brings the free energy to the likelihood.
o The M-step maximises the free energy wrt 6.

e F < ¢ by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that ) = 9(—1) iff F increases, then the overall EM iteration
will step to a new value of @ iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see
appendices).

Peter Orbanz
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¢ An iterative algorithm that finds (local) maxima of the likelihood of a latent variable
model.

0(0) = log P(X0) = log / dZ P(X|Z,0)P(Z]0)

¢ Increases a variational lower bound on the likelihood by coordinate ascent.
F(q,0) = (log P(Z, X10)) 2y + Hg = £(0) — KL[g(2)[|P(Z]X)] < £(0)

o E step:
¢®(2) := argmax F(q(2),0% V) = p(2|x,00*D)
q9(2)

e M step:
0% := arg max .F(q(k)(Z), ) = argmax (log P(Z, X|0))q(k)(z)
0 0

* After E-step F(g,0) = £(0) = maximum of free-energy is maximum of likelihood.
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PARTIAL M STEPS AND PARTIAL E STEPS

Partial M steps: The proof holds even if we just increase F wrt € rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step

1o} 19}
% <10gP(X7Z|9)>q(k>(2)[:1)(2\2{,9“—1))] = T log P(X10)

o (k— 1) g (k— 1)
[cf. mixture gradients from last lecture.] So E-step (inference) can be used to construct other
gradient-based optimisation schemes (e.g. “Expectation Conjugate Gradient”, Salakhutdinov et
al. ICML 2003).

Partial E steps: We can also just increase F wrt to some of the gs.

For example, sparse or online versions of the EM algorithm would compute the posterior for a
subset of the data points or as the data arrives, respectively. One might also update the posterior
over a subset of the hidden variables, while holding others fixed...
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« Evaluate responsibilities
P, m(xi)ﬂ'm
zm' Pm’ (xi)ﬂ-m'
¢ Update parameters
E FimXi
Z: Fim
32 rim (Xi — ) (Xi — )"
D tim

Fim =

Ym —

LT
) T — —ZI’V m

Peter Orbanz
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In a univariate Gaussian mixture model, the density of a data point x is:

k k
p(l) = " pls = mlOp(als = m 0) o 37 ™ exp { — 5 (v n)’},
m=1 " m

m=1

where 6 is the collection of parameters: means i, variances o2, and mixing proportions
mm = p(s = m|0).

The hidden variable s; indicates which component generated observation x;.

The E-step computes the posterior for s; given the current parameters:
q(si) = p(silxi, 0) o p(xilsi, 0)p(si|6)

rim & q(si = m) o Tm exp{ — (% — p,m)z} (responsibilities) < {(S5;=m) .
Om

2
202

with the normalization such that Em rim = 1.
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In the M-step we optimize the sum (since s is discrete):
= (108 p(x,510)) 4y = S a(s) 1oglp(s10) p(xls. 0)]
1
= Zrim [log mm — log om — @(xi — pm)z].

im

Optimum is found by setting the partial derivatives of E to zero:

xz Mm) Zi YimXi
—FE = =0 = = =
a#m Z:rtm Hm Zi Yo )

9 U, (= pm)? > it — pm)?
0 ‘[__ ooy g o g - il )?
om . Yim om + 0'?,, Om Z,’ o b

OE
67r,,, Zrzm %"‘)\—0 = Tm = = ;rima

where A is a Lagrange multiplier ensuring that the mixing proportions sum to unity.
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EM FOR EXPONENTIAL FAMILIES

EM is often applied to models whose joint over €& = (Z, X) has exponential-family form:

p(€10) = £(€) exp{0TT(£)}/Z(0)

(with Z(0) = [ f(€) exp{0TT(£)}d€) but whose marginal p(x) ¢ ExpFam.
The free energy dependence on 6 is given by:

F(q,0) = /q(z) log p(z,x|0)dz + Hg
= /q(Z) [GTT(Z7 X) — log Z(6)]dz + const wrt 6

= 9T<T(Z,X)>q(z) — log Z(0) + const wrt 8

So, in the E step all we need to compute are the expected sufficient statistics under g.
We also have:

9 18 T
55108 20) = i 220) = i [ 1@ expl9TT(€))

_ / 2o/ (€) exp{0TT(&)} - T(&) = (T(€)) (1)

oOF

Thus, the M step solves: —
00

=(T(z, X)) 2y — Tz X)), g10) =0
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EM FOR EXPONENTIAL FAMILY MIXTURES

To derive EM formally for models with discrete latents (including mixtures) it is useful to
introduce an indicator vector S in place of the discrete s.

si=m & 8 =10,0,..., 1 ,...0]
mth position

Collecting the M component distributions’ natural params into a matrix © = [0,,]:

log P(X,S) = Z [(log m)'s; +8]O'T(x;) — 8] log Z(@)] + const
i
where log Z(©) collects the log-normalisers for all components into an M-element vector.
Then, the expected sufficient statistics (E-step) are:

Z (si) q (responsibilities 7iy,)
T(x;) <s,T> (responsibility-weighted sufficient stats)
q

And maximisation of the expected log-joint (M-step) gives:

kD) Z Si
(Tl ™) = (Zr(x,xsl]m )/(qu,] )
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What if we have a prior?

p(€10) = f(&) exp{0TT(€)}/2(0) p(0) = F(v, ) exp{077}/2(0)"

Augment the free energy by adding the log prior:
Fuar(a.0) = [ a(2)logp(2,X.0)dZ + Hy < log P(X16)+ o5 P(6)

- / g(2)[67 (S T(E) +7) — (N + ) 10g Z(6)]dZ + const wrt 0

= 9T(<T(§)>q(z) + 7) — (N 4 v)log Z() + const wrt 0

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy
maxima are log-joint maxima (i.e. MAP values).

Can we find posteriors? Only approximately — we’ll return to this later as “Variational Bayes”.
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L{g(x)||p(x)] > 0, WITH EQUALITY IFE Vx : p(x) = g(x)

First consider discrete distributions; the Kullback-Liebler divergence is:
KL[gllp] = Z gi log =

To minimize wrt distribution ¢ we need a Lagrange multiplier to enforce normalisation:
def
EiKMmM+AUfzh, Xhmg—+klfgyﬂ

Find conditions for stationarity

OE
0qi

0

Check sign of curvature (Hessian):

O*E 1 O*E
== >0, -0
0qidq;  qi 0qi0q;

= loggi—logpi+1—-—XA=0= ¢ =piexp(A—1)
= qi = Di-

S0 unique stationary point g; = p; is indeed a minimum. Easily verified that at that minimum,

KL[g]lp] = KL[p|[p] = 0.
A similar proof holds for continuous densities, using functional derivatives.

Peter Orbanz
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Let a fixed point of EM occur with parameter 6*. Then:

=0

9]
%aOgP(Z,X | 9)>P(Z|X,9*) 0

Now, £(0) = log P(X|0) = (log P(X|0)) p( 2| x,0+)
< P(Z,X|9)>
=(log ———=
P(Z|X,0) / piz)x,0%)
= (log P(Z,X10)) pz| 1,9+ — (108 P(Z|X,0)) p(z) x o)

so.
’ d d d
d_0£(9) = E(lOgP(ZwXW))p(zw,g*) - d_9(10gP(Z|X59)>p(z\x,9*)

The second term is 0 at 0* if the derivative exists (minimum of KL[-||-]), and thus:
d £(0 _d log P(Z,X|0 =0
T )e* = 5108 P(Z. X10)p(z|x,0v) b

So, EM converges to a stationary point of £(6).
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Let 6* now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt € again we find

® 4o) =

€02 ——(log P(Z, X|9)>P(Z\X 6*) —

&’
202 d02 (logP(Z|X 9)>P(Z|X 0*)

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

6* is a maximum of /.

[...as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].
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LATENT VARIABLE MODELS FOR TIME
SERIES



Thus far, our data have been (marginally) iid. Now consider a sequence of observations:
X1, X2, X3, ..., X;

that are not independent.

Examples:
¢ Sequence of images
¢ Stock prices
¢ Recorded speech or music, English sentences
¢ Kinematic variables in a robot
¢ Sensor readings from an industrial process
e Amino acids, DNA, etc. ..

Goal: To build a joint probabilistic model of the data p(Xi, . .., X;).
e Predict p(X;|X1, ..., X—1)
« Detect abnormal/changed behaviour (if p(X;, Xrt1, - - - X1, - - ., X,—1 ) small)

¢ Recover underlying/latent/hidden causes linking entire sequence
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MARKOV MODELS

In general:
P(Xp, ..., %) = P(X1)P(X2|X1)P(X3]X1,X2) - - - P(X¢| X1, X2 . .. X,—1)
First-order Markov model:

= P(Xa|X1) - - - P(Xe|X/—1)

@_,@_,@_,..._,@

The term Markov refers to a conditional independence relationship. In this case, the Markov
property is that, given the present observation (X;), the future (X,+1, . . .) is independent of the
past (Xq, ..., X;—1).

Second-order Markov model:

P(Xy, ... Xe) = P(X1)P(X2|X1) - - P(Xr—1]X;—3, X, —2)P(X¢|X;—2, X 1)

° ° X3 > o o o >

- N _
X4 is independent X4 may depend on X, and X3
of X| given Xy, X3
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CAUSAL STRUCTURE AND LATENT VARIABLES

YT
olNolNO ©

Temporal dependence captured by latents, with observations conditionally independent.
Speech recognition:

¢ Z - underlying phonemes or words
e X - acoustic waveform
Vision:
e Z - object identities, poses, illumination
e X - image pixel values
Industrial Monitoring:
e Z - current state of molten steel in caster

e X - temperature and pressure sensor readings
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Joint probability factorizes:

T
P(zi.7,X1.7) = P@1)P(Xi[21) [ [ P(z:]2i— 1) P(Xi2:)
=2
where 2; and X; are both real-valued vectors, and Oy.7 = Oy, ..., Or.

Two frequently-used tractable models:
¢ Linear-Gaussian state-space models
¢ Hidden Markov models
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LINEAR-GAUSSIAN STATE-SPACE MODELS (SSMS)

YTy
© O O ®

In a linear Gaussian SSM all conditional distributions are linear and Gaussian:
Output equation: X;= Cz; +V;
State dynamics equation: 2= Az, +W;
where V; and W; are uncorrelated zero-mean multivariate Gaussian noise vectors.

Also assume z; is multivariate Gaussian. The joint distribution over all variables X;.7, ;.7 is
(one big) multivariate Gaussian.

These models are also known as stochastic linear dynamical systems, Kalman filter models.
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LINEAR DYNAMICAL SYSTEMS

YTy
® O O ®

Interpretation 2:

¢ Markov chain with linear dynamics z; = Az, ...

e ...perturbed by Gaussian innovations noise — may describe stochasticity, unknown
control, or model mismatch.

¢ Observations are a linear projection of the dynamical state, with additive iid Gaussian
noise.

e Note:

» Dynamical process (Z;) may be higher dimensional than the observations

(X,).
» Observations do not form a Markov chain — longer-scale dependence
reflects/reveals latent dynamics.
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HIDDEN MARKOV MODELS

YTy
® O O ®

Discrete hidden states s; € {1 ..., K }; outputs X; can be discrete or continuous.
Joint probability factorizes:

T
P(s.r, X1.r) = P(s))P(Xi]s1) [ | P(silsi—1)P(Xels)
=2

Generative process:

¢ A first-order Markov chain generates the hidden state sequence (path):
initial state probs: w; = P(s; = j) transition matrix: ®;; = P(s;11 = j|s; = i)

* A set of emission (output) distributions A;(-) (one per state) converts state path to a
sequence of observations X;.
Aj(X) = P(X; = X|s; =) (for continuous X;)
Ajx = P(X; = k|s; =) (for discrete X;)
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HIDDEN MARKOV MODELS

Two interpretations:

e a Markov chain with stochastic measurements:

® ©®

¢ or a mixture model with states coupled across time:

.

\
! 1
1 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
\ ,

® © ®

Even though hidden state sequence is first-order Markov, the output process may not be Markov
of any order (for example: 1111121111311121111131...).

Discrete state, discrete output models can approximate any continuous dynamics and
observation mapping even if nonlinear; however this is usually not practical.

HMMs are related to stochastic finite state machines/automata.
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HMMS AND SSMS

(Linear Gaussian) State space models are the continuous state analogue of hidden Markov
models.

'S G 3 o e au
® ® © ® O 6 O ®

e A continuous vector state is a very powerful representation.
For an HMM to communicate N bits of information about the past, it needs 2N states! But
a real-valued state vector can store an arbitrary number of bits in principle.

TTYTYTTTY
ONNONNG ©

¢ Linear-Gaussian output/dynamics are very weak.
The types of dynamics linear SSMs can capture is very limited. HMMs can in principle
represent arbitrary stochastic dynamics and output mappings.
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CHAIN MODELS: ML LEARNING WITH EM

YT YUY
© O © © O 6 O ©

2y ~ N(po, Qo) sy~
zi|z,—; ~ N(Az,_, Q) Selsi—1 ~ Py,
X;|Zi ~ N(Can) X¢|s: ~ A,

The structure of learning and inference for both models is dictated by the factored structure.

T T
P(Xy,....X1,21,...,2r) = P(z)) [ [ P(z:]zi—1) [ [ P(xe20)
=2 =1

Learning (M-step):

argmax (log P(X1, ..., X7, 21, -+ 27))y(zy 2y =
T T
argmax | (log P(21)),(z,) + > (log P@i[2i-1)) (0,2, ) + > (log P(Xi]21))y 2,

1=2 =1

So the expectations needed (in E-step) are derived from singleton and pairwise marginals.

Peter Orbanz 143



Three general inference problems:

Filtering: P(zi|X1,...,X;)
Smoothing: P(z/|Xq,...,XT) (also P(z/,2,—1|X1, ..., Xr) for learning)
Prediction: P(Zi|X1, .., X—Ar)

Naively, these marginal posteriors seem to require very large integrals (or sums)

P(zi|X1, ..., Xs) =/«-~/dzl...dz,_1 Pz, ..., 2ZiX1, ... X0)

but again the factored structure of the distributions will help us. The algorithms rely on a form
of temporal updating or message passing.
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Consider an HMM, where we want to find P(s; = k|X; ... X;) =
Z P(S]=k],...,S[:k|X]...X[)O(

kyyeoski—1
Z T Ak (X1) Py iy Aky (X2) - P kAR (Xr)
kiseoski—y

Naive algorithm:
e starta “bug” at each of the k; = 1...K states at = 1 holding value 7, A, (X;)

¢ move each bug forward in time: make copies of each bug to each subsequent state and
multiply the value of each copy by transition prob. X output emission prob.

e repeat
e sum up values on all K’~! bugs that reach state s; = k (one bug per state path)
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Consider an HMM, where we want to find P(s; = k|X; ... X;)
Z P(S]=k],...,S[:k|X]...X[)O(

kyyeooski—
Z T Ak (X1) Py iy Aky (X2) oo P kAR (Xr)
kyseoski—q

Naive algorithm:
e starta “bug” at each of the k; = 1...K states at = 1 holding value 7y, A, (X;)

¢ move each bug forward in time: make copies of each bug to each subsequent state and
multiply the value of each copy by transition prob. X output emission prob.

e repeat
e sum up values on all K’~! bugs that reach state s; = k (one bug per state path)
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Consider an HMM, where we want to find P(s; = k|X; ... X;)
Z P(S]=k],...,S[:k|X]...X[)O(

kyyeooski—
Z T Ak (X1) Py iy Aky (X2) oo P kAR (Xr)
kyseoski—q

Naive algorithm:
e starta “bug” at each of the k; = 1...K states at = 1 holding value 7y, A, (X;)

¢ move each bug forward in time: make copies of each bug to each subsequent state and
multiply the value of each copy by transition prob. X output emission prob.

e repeat
e sum up values on all K’~! bugs that reach state s; = k (one bug per state path)
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Consider an HMM, where we want to find P(s; = k|X; ... X;)
Z P(S]=k],...,S[:k|X]...X[)O(

kyyeooski—
Z T Ak (X1) Py iy Aky (X2) oo P kAR (Xr)
kyseoski—q

Naive algorithm:
e starta “bug” at each of the k; = 1...K states at = 1 holding value 7y, A, (X;)

¢ move each bug forward in time: make copies of each bug to each subsequent state and
multiply the value of each copy by transition prob. X output emission prob.

e repeat
e sum up values on all K’~! bugs that reach state s; = k (one bug per state path)
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Consider an HMM, where we want to find P(s; = k|X; ... X;)
Z P(S]=k],...,S[:k|X]...X[)O(

kyyeooski—
Z T Ak (X1) Py iy Aky (X2) oo P kAR (Xr)
kyseoski—q

Naive algorithm:
e starta “bug” at each of the k; = 1...K states at = 1 holding value 7y, A, (X;)

¢ move each bug forward in time: make copies of each bug to each subsequent state and
multiply the value of each copy by transition prob. X output emission prob.

repeat until all bugs have reached time ¢
e sum up values on all K’~! bugs that reach state s; = k (one bug per state path)
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Consider an HMM, where we want to find P(s; = k|X; ... X;)
Z P(S]=k],...,S[:k|X]...X[)O(

kyyeooski—
Z T Ak (X1) Py iy Aky (X2) oo P kAR (Xr)
kyseoski—q

Naive algorithm:
e starta “bug” at each of the k; = 1...K states at = 1 holding value 7y, A, (X;)

¢ move each bug forward in time: make copies of each bug to each subsequent state and
multiply the value of each copy by transition prob. X output emission prob.

e repeat
e sum up values on all K’~! bugs that reach state s; = k (one bug per state path)
Clever recursion:
peter O, ® At every step, replace bugs at each node with a single bug carrying sum of values



- PROBABILITY UPDATINGS “BAYESIAN FILTERING
TYYTTY
5 0 © O

P(zi|X1.4) = /P(zr,z,_llxz,xl;,_l) dz,_;

:/P(Xz,zt»zt—ﬂxl:r—l)

dz;
P(X¢|X1:—1) '

x /P(xt|zt7zt—17xl:t—l)P(zt|zt—laxl:t—l)P(zt—1|x1:t—l) dz,

= /P(Xz|zt)P(zt|zt—1)P(zt—1|X1:t—l) dz;
Markov property

This is a forward recursion based on Bayes rule.
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THE HMM: FORWARD PASS

The forward recursion for the HMM is a form of dynamic programming. Define:

ar(i) = P(X1, ..., Xe, 5t = i]0)

Then much like the Bayesian filtering updates, we have:

K
o (i) = midi(X1) a1 () = D ()i | Ai(Xes1)
j=1
We’ve defined (i) to be a joint rather than a posterior. It’s easy to obtain the posterior by
normalisation: 0
oy (i
P(si = ilXp, ..., X,0) = —————
> cu(k)

This form enables us to compute the likelihood for § = {A, ®, 7} efficiently in O(TK?) time:

K
PX...X7|0) = Y P(Xi,....,Xr,s1,...,57,0) = > ar(k)
k=1

S1seeesST

avoiding the exponential number of paths in the naive sum (number of paths = K7).
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THE LGSSM: KALMAN FILTERING

2 () () e - z; ~ N (o, Qo)
€> \I/ \I/ ? z|z,_ ~ N(Az,_1,0)
@ @ @ @ X/|z; ~ N (Cz;,R)

For the SSM, the sums become integrals. Let i(l) = po and \7? = Qp; then
P(zi[x)) = N'(2] + K1 (%) — C2)), V0 — K, CVY)

1 1
Z Vi

K, = WcT(eWcT + p)~!

In general, we define 2] = E[z|X{,...,X-] and V] = V[Z;Xi, ..., Xr]. Then,

at—1 PN
Plaixi) = [ 2Pz P i) = NAZZL VAT 4 0)
——
g

+ Ki(x, — czi7h), VT — kv

————

P(z/|X1) = N(@EZ ™!

2’ Vl <sz> <xxT>
' ! ——
K =vIcT(cr—'cT + p)~!

Kalman gain
Peter Orbanz



Conditioning within a multivariate Gaussian

Let (A, B) be a partition of the set {1, ..., d} and let X = (X4, X3) be a Gaussian random
vector in R? = R4 x RE, with

_ [ A _ ([ Zxn Zas
EX] = (NB) and Cov[X] = (Efus EB) .
Then the conditional distribution of X4 |(Xp = x) is again Gaussian, with mean

E[XA|Xs = xp] = pa + EABEB_I(XB — i)

and covariance
Cov[Xa|Xp = x] = Zp — Sapy ' 2y -
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Matrix inversion lemma (Woodbury identity)
For k < n, invertible matrices A € R"*" and C € R¥*¥, and any B € R"*¥ and D € R¥*":

nXlzﬂ Fkxk
(A—BcD)™! = A7' —Aa7'B(c™' +DAT'B)"'DAT!

n><kQA kan

provided A and C are invertible.
Note: A and C refers to generic matrices, not to A and C defined on the Kalman filter slide.
Intepretation

o Inessence: (A — BCD)~! =f(A~!,C~!,B, D)

e Since Cis k X k, the n X n-matrix BCD has rank < k.

¢ Substracting BCD modifies A on a k-dimensional subspace.

« Typical use case: We already know A~!, and k is small. We can then invert
the n X n matrix (A — BCD) by inverting only a k X k matrix.
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P(2Z;, X417 |X1:¢)
P(Xeq1:7[X1:1)

_ P(Xi1:7120) P(24|X1:1)

P(X; 1.7 [X1:0)

P(zi|x1.7) =

The marginal combines a backward message with the forward message found by filtering.
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THE HMM: FORWARD—BACKWARD ALGORITHM

State estimation: compute marginal posterior distribution over state at time :

(i) = Plss = i%0p) = P(si = i, Xe:) PXeprerlse = ) a/(i)@(i)‘
P(Xi.r) 225 (B )
where there is a simple backward recursion for
K
Bi(i) = P(Xyrrlse = i) = D P(seyn = s Xop1, Xegaer|s = i)
j=1

K K
= Plsipr = jlse = DPXept[seg1 = NP Xeyarlsipr =J) = D BiAj(Xep1)Big1 ()

j=1 j=1
oy (i) gives total inflow of probabilities to node (7, ); 3:(i) gives total outflow of probabiilties.
(D)) ()
~ ~
(2) {2)
Qa6
& @
S5 56

Bugs again: the bugs run forward from time O to ¢ and backward from time 7 to .

Peter Orbanz



VITERBI DECODING

Peter Orbanz

The numbers (i) computed by forward-backward give the marginal posterior
distribution over states at each time.

By choosing the state i;° with the largest ~; (i) at each time, we can make a “best” state
path. This is the path with the maximum expected number of correct states.

But it is not the single path with the highest probability of generating the data.
In fact it may be a path of probability zero!

To find the single best path, we use the Viterbi decoding algorithm which is just Bellman’s
dynamic programming algorithm applied to this problem. This is an inference algorithm
which computes the most probable state sequences: arg maxP(s.7|X.r, 0)

S1:T

The recursions look the same as forward-backward, except with max instead of .

Bugs once more: same trick except at each step kill all bugs but the one with the highest
value at the node.

There is also a modified EM training based on the Viterbi decoder (assignment).



We use a slightly different decomposition:

P(zi|X1.7) = /P(z,, Zip1|X1.7) d2ig

/ P21, X0:7) P21 [X0:7) 2

= P(z|z X1..)P(Z,21|X1.7) dz
Markoy property / (Z¢|2i41, X1.0) P(Ze11X1:7) 201

This gives the additional backward recursion:
5= VAT )
2/=2,+ )2/, — AZ)

V=V + 0V = Vi )aT
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ML LEARNING FOR SSMS USING BATCH EM

DO
® ©® @

Parameters: 0 = {po, Qo, A, Q,C,R
Free energy:

F(q,0) = /d21:7 q(21.7)(log P(x1.7,21.710) — log q(21.7))

E-step: Maximise F w.r.t. ¢ with 0 fixed: q*(z) = p(z|x,0)
This can be achieved with a two-state extension of the Kalman smoother.

M-step: Maximize F w.r.t. § with g fixed.
This boils down to solving a few weighted least squares problems, since all the variables in:

p(z,X(0) = p(z1)p(x1|21) Hp(z;\zt Dp(Xi|z:)
1=2

form a multivariate Gaussian.
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p(xlz) o exp [~ (x — C2)TR ' (x — cz)] =

Crew = arg mgx <Z lnp(xtlzt)>

q

=arg mgx <—% zt:(xt — Czt)TR_l(x, — CZ,)> + const
q
= argmax {—% Z TR %, — 2T R™'C(z) + (z;rCTR_ICz,>}
= argmax {Tr [C ;(z,)x;rR_l] - %Tr [CTR_1C<Z z,z;r>] }
usmg—Tc[,[;El =B, wehave —R_IZX —R_1C<Zz,z;r>
t

= Chow = (Xt: x,(z,>T> <z,: <Z’Z’T>> _

Note the connection to linear regression.
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P@iilz) o exp { Lz —A2)T0 @1 —Az) ) =

Anew = arg max <Z Inp(z,41 |Zt)>

q

1
= argmax <—§ Xt:(zH_l —A2)T Q0 Nzoyy — Az,)> + const

q

= arg max {—% >zl 07z - 2<z;r_HQ_1Az,> + <z;"ATQ_1Az,>}
t
= arg max {Tr [A > <z,z,T+1>Q_1] - %Tr [ATQ_IA > <z,z,T>] }
t t
using —TE,[I@ =BT, we have =0 1 Z <Zt+1z > o IAZ <z, >
= Apew = <Z <z,_Hz,T>> (Z <z,z,T>> .
t t

This is still analagous to linear regression, with an extra expectation.
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Time series data must often be processed in real-time, and we may want to update parameters
online as observations arrive. We can do so by updating a local version of the likelihood based
on the Kalman filter estimates.

Consider the log likelihood contributed by each data point (¢;):

T T
= Zlnp(x,|x1, X)) = Ze,
=1 =1

Then,
D 1 1 At At
tr= == 2w — I3 = (% — cz2 Yo', —cz™h

where D is dimension of X, and:

A

_ ~{t—=1 AT
X=CV,” ' C'"+R

Vit =aAvTiaT 10
We differentiate ¢; to obtain gradient rules for A, C, Q, R. The size of the gradient step (learning
rate) reflects our expectation about nonstationarity.
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LEARNING HMMS USING EM

Parameters: 0 = {7, ®, A}
Free energy:
F(g,0) =Y q(s1.7)(log P(x1.7,1.7]0) — log q(s1.7))
S1:T
E-step: Maximise F w.r.t. ¢ with 0 fixed: q*(s1.7) = P(s1.7|X1.7,0)

We will only need the marginal probabilities g(s;, s;+1), which can also be obtained from the
forward-backward algorithm.

M-step: Maximize F w.r.t. § with g fixed.

We can re-estimate the parameters by computing the expected number of times the HMM was
in state i, emitted symbol k and transitioned to state j.

This is the Baum-Welch algorithm and it predates the (more general) EM algorithm.
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We can derive the following updates by taking derivatives of F w.r.t. 6.

¢ The initial state distribution is the expected number of times in state i at r = 1:
7 = (i)
¢ The expected number of transitions from state i to j which begin at time ¢ is:

& (i = )) = P(st = iy 541 = jIX1.1) = cu(i) PyAj(Xe41) Br1 () /P (x1.7)

so the estimated transition probabilities are:
T—1 T—1
o= "&li—j) /> )
=1 =1

¢ The output distributions are the expected number of times we observe a particular symbol
in a particular state:

T
A= > w) /D)
=1

t:X,=k

(or the state-probability-weighted mean and variance for a Gaussian output model).
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¢ Numerical scaling: the conventional message definition is in terms of a large joint:

a;(i) = P(X1.,8: = i) — 0as r grows, and so can easily underflow.

Rescale:
K
@) =A%) Y @1 ()®si pe =y auli) & (i) = au(i)/ pr
j i=1
Exercise: show that:

T
Pt = P(xt|x1:t—170) Hpt = P(XI:T|0)
=1

What does this make &; (i)?

¢ Multiple observed sequences: average numerators and denominators in the ratios of
updates.
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Forward-backward including scaling tricks.
[o is the element-by-element (Hadamard/Schur) product: ‘.*’ in matlab.]

forr=1:T, i=1:K pi(i) = Ai(X;)

a) =mop; pr=>K () a1 =ai/p
fort=2:T o = (<I>T*a,_1)0pz PtZZf:]at(i) ar=ou/ps
Br=1
fort=T-1:1 Br = @ * (Br10pr+1)/ pry1
log P(Xi.7) = 32, log(pr)
fort=1:T Y = @ 0 f3
fort=1:T —1 & = ®o(oy * (B 0Pt+1)T)/Pt+1
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Baum-Welch parameter updates:

For each sequence [ = 1 : L, run forward—backward to get 'y(l) and & ™ then

T = 211711)()
0 _ "
D 2 S ()
L (1)_
IL:I T 1(1)()

(1) .
s ,Ll MY =)
ik 100

Z; 7 ()
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Problem
Given speech in form of a sound signal, determine the words that have been spoken.
Method

o Words are broken down into small sound units (called phonemes). The states in the HMM
represent phonemes.

¢ The incoming sound signal is transformed into a sequence of vectors (feature extraction).
Each vector x, is indexed by a time step n.

¢ The sequence x.y of feature vectors is the observed data in the HMM.
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PHONEME MODELS

Phoneme

A phoneme is defined as the smallest unit of sound in a language that distinguishes between
distinct meanings. English uses about 50 phonemes.

Example
Zero  ZIHR OW Six SIHKS
One W AHN Seven SEHV AXN
Two TUW Eight EYT
Three  THRIY Nine NAY N
Four FOWR Oh ow
Five FAYV

Subphonemes

Phonemes can be further broken down into subphonemes. The standard in speech processing is
to represent a phoneme by three subphonemes ("triphons").

Peter Orbanz
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PREPROCESSING SPEECH
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Feature extraction
¢ A speech signal is measured as amplitude over time.

¢ The signal is typically transformed into various types of features, including (windowed)
Fourier- or cosine-transforms and so-called "cepstral features".

¢ Each of these transforms is a scalar function of time. All function values for the different
transforms at time ¢ are collected in a vector, which is the feature vector (at time 7).

166
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Words ——> THIS BOOK IS GOOD
Phonemes ——» this buhk iz
Subphonemes — 5 L. bcl brel uh uh uh

||
Features ———> DDDDDDDDDDDDDDDD
’—1

Speech signal —_ 5 /\W\/\/\/\’J‘/V\M

HMM speech recognition

¢ Training: The HMM parameters (emission parameters and transition probabilities) are
estimated from data, often using both supervised and unsupervised techniques.

¢ Recognition: Given a language signal (= observation sequence x;.y, estimate the
corresponding sequence of subphonemes (= states z;.y). This is a decoding problem.
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SPEAKER ADAPTATION

Factory model
Training requires a lot of data; software is typically shipped with a model trained on a large

corpus (i.e. the HMM parameters are set to "factory settings").
The adaptation problem

¢ The factory model represents an average speaker. Recognition rates can be improved
drastically by adapting to the specific speaker using the software.

¢ Before using the software, the user is presented with a few sentences and asked to read
them out, which provides labelled training data.

Speaker adaptation

¢ Transition probabilities are properties of the language. Differences between speakers
(pronounciation) are reflected by the emission parameters 6y.

« Emission probabilities in speech are typically multi-dimensional Gaussians, so we have to
adapt means and covariance matrices.

¢ The arguably most widely used method is maximum likelihood linear regression
(MLLR), which uses a regression technique to make small changes to the covariance
matrices.
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MORE ON MARKOV CHAINS



GRAPHICAL REPRESENTATION

A simple binary chain
We consider a Markov chain X1, X, . . . with state space X'. Suppose X = {0, 1}.

Py

SeaolllliosL™

P10

e We regard 0 and 1 as possible "states" of X, represented as vertices in a graph.

e Each pair X;,—; = s, X, = t in the sequence is regarded as a "transition" from s to ¢ and
represented as an edge in the graph.

¢ Each edge s — tis weighted by the probability
Py = P(Xn = Z|Xn—1 = S) .

Caution: The graph is not a graphical model. (For computer scientists: It is a probabilistic finite automaton.)

Stationarity

The graph representation is only possible if p,_,, is independent of n. Otherwise we would have
to draw a different graph for each n.

If p,_,, does not depend on 7, the Markov chain is called stationary.
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GRAPHICAL REPRESENTATION

First example: Independent coin flips

Suppose X is a biased coin with P(X, = 1) = p independently of X, . In other words, the
sequence (X,) is iid Bernoulli with parameter p.

p

Seoullisonl

l—p

Breaking independence
Here is a simple modification to the chain above; only p,_,, and p, _,, have changed:

p

eaoulliliisonl

0

This is still a valid Markov chain, but the elements of the sequence are no longer independent.
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GRAPHICAL REPRESENTATION

Transition matrix
The probabilities p,_,, are called the transition probabilities of the Markov chain. If |X'| = d,
the d X d-matrix

Pisi oo Pus

P = (piaj)j,igd =
1=d  +*r Pasa

is called the transition matrix of the chain. This is precisely the adjacency matrix of the graph
representing the chain. Each column is a probability distribution on d events.

Initial distribution
The distribution of the first state, i.e. the vector

Pipiy = (P(X() = 1), e 7P(XO = d)) s

is called the initial distribution of the Markov chain.

The distribution of a stationary Markov chain with finite state space is completely
determined by the pair (p, Pinit)-
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STATE PROBABILITIES

Distribution after the first step
o If we know the initial state, then
P(X1 = 51| X0 = 50) = Py, -

¢ Now consider the marginal distribution P; of X;. This is the distribution X if we do not
know the initial state (e.g. before we start the chain):

Pi(s1) =P(X; = s1) = > P(X1 = s1|Xo = 50)Puic(50) = Y Py, Puic(50) -
SpEX SpEX

e Since pis ad X d-matrix and P;,, a vector of length d, we can write that as
Pl :P'Piml~

e The same argument shows that P; is given by P, = p - P; = p - p - Pini €t cetera.

The marginal distribution of chain’s state after n steps is

Py = p"Pinic
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LIMITS AND EQUILIBRIA

Limiting distribution
Instead of considering P, for a specific, large n, we take the limit
Ps := lim P, = lim p"Pu ,
n—oo n—o0o

provided that the limit exists.

Observation
If the limit Poo exists, then

P'Poo =p- lim Pann: lim pnPinit:Poo s
n— 00 n— 00

which motivates the next definition.

Let p be the transition matrix of a Markov chain. A distribution P on X which is invariant
under p in the sense that
p-P=P

is called an equilibrium distribution or invariant distribution of the chain.
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DOES A CHAIN HAVE AN EQUILIBRIUM?

¢ A stationary Markov chain is: aperiodic if
PXyn=s|Xy—1=5)=p,,, >0 foralls € X .
That is: The transition matrix has non-zero diagonal.

¢ Itis irreducible if there is a path (with non-zero probability) from each state to every
other state in the transition graph.

Theorem

If a first-order, stationary Markov chain with finite state space is aperiodic and
irreducible, then:

e The limit distribution P~ exists.
o The limit distribution is also the equlibrium distribution.
¢ The equilibrium distribution is unique.

¢ The equilibrium does not depend on the initial distribution.
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MEANING OF THE CONDITIONS

Why an equilibrium distribution may not be unique

« For this chain, both P = (0,1,0) and P' = (0,0, 1) are
valid equilibria.

¢ Which one emerges depends on the initial state and (if
we start in state 1) on the first transition.

Remedy: Irreducibility. An irreducible chain could move between states 2 and 3.

Why the limit may not exist

Recall that a sequence in R does not have a limit if it "oscillates". For example, lim, 1" = 1, but lim, (—1)" does not exist.

¢ The chain on the right has no limit distribution.

o If we start e.g. in state 0, then O can only be reached in
even steps, 1 only in odd steps. 0.“
o The distribution P,, oscillates between

Peven = (1,0) and Poa = (0,1) .

Remedy: Require the chain to be aperiodic. That would add two edges to the graph:

The theorem shows that these simple fixes to the two most obvious problems suffice to ensure existence of a unique equilibrium.
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COMPUTING THE EQUILIBRIUM

Power method
If the the transition matrix p makes the chain irreducible and aperiodic, we know that

equilibrium distribution = limit distribution .
This means we can approximate the equilibrium P, by Py:
o Initialize with any distribution Pjy; (e.g. uniform).
e RepeatP, | =p- Py

e Terminate once ||P,,+| — Py|| < 7 for some small 7.

Eigenstructure

o The definition P = p - P of the equilibrium means that P = P is an eigenvector of p
with eigenvalue 1.

o If p is irreducible and aperiodic, it can be shown that 1 is the largest eigenvalue.

¢ How quickly the power method converges depends on the ratio between the largest and
second-largest eigenvalue (the spectral gap).

Peter Orbanz



APPLICATION: WEB SEARCH

The link structure of the web is represented by the web graph, defined by the adjacency matrix

1 page i links to page j

A = (Ajj)i,j<tpages  Where Ay = {0 otherwise

Vertices represent pages, edges represent links. The graph is directed.

Simple random walk
Let G be a directed graph with d vertices. Generate a sequence Xy, X1, . . . of vertices:
¢ Select a vertex X in G uniformly at random.
e Forn=1,2,...,select X, uniformly at random from the children of X,,_; in the graph.

That defines a Markov chain whose state space is the vertex set of the graph, with

1 PPN .
1 1 Y rreyrr] if i links to j
Pin“_ (3,...,3) and p; ; = {#Edgiboouloll

otherwise

This Markov chain is called simple random walk on G.

The PageRank Algorithm

(Approximately) compute P for simple random walk on the web graph.
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INTERPRETATION OF PAGERANK

Problem: Ranking queries
The first step in internet search is query matching:
¢ The user enters a search query (a string of words).
¢ The search engine determines all web pages in its database which match the query.

o This is a large set (typically tens or hundreds of millions). The results are only useful if
the “best” links can be filtered out by the engine.

Available data
e Using a web crawler, we can (approximately) determine the link structure of the internet.
e We can determine which pages there are, and which pages they link to.

e We cannot determine how often a link is followed, or how often a page is visited.

PageRank solution
o PageRank uses P (v) as the score of web page v. It ranks by decreasing score.
o This uses (i) popularity as a proxy for quality/usefulness, and (ii) the amount of incoming
links as a proxy for popularity.
¢ P; would measure how often a page is linked. P, weights this by how often the linking
page is linked, etc.

o The PageRank paper interpreted P (v) as the probability that “random web surfer”
would end up on page v after randomly following a large number of links. Note the start
page does not matter for n — co.
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PAGERANK

¢ Simple random walk on the web graph has transition matrix 7" with

otherwise

. - )
T .— J Fedgesoutor: i ilinks toj
L/ 0

This is typically not irreducible (think of web pages which do not link anywhere).

* PageRank therefore uses the regularized transition matrix p; := (1 — )Tj; + 3, for
some small « € (0, 1). Clearly, this makes p both irreducible and aperiodic.

e The equilibrium can be approximated by the power method. Since the web changes, it can

be re-run every few days with the previous equilibrium as initial distribution.

Example

0 100 200 300 400 500

Adjacence matrix of the web graph of 500 web
pages. The root (index 0) is www.harvard.edu.

Peter Orbanz
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Equilibrium distribution computed by PageRank.

Ilustration: See K. Murphy, "Machine Learning", MIT Press 2012.
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SAMPLING ALGORITHMS

A sampling algorithm takes a distribution P as input and outputs random values
Xi, ..., X, whose marginal distribution is P. Ideally, these draws are independent.

‘We will see that there are distributions that are hard to work with analytically, but relatively easy
to sample. If so, we can use the sampler output for example to:

¢ Compute expectations: If X1, . .., X, are independent,

Enl (0] &+ >~ 7(X)

i=1
by the law of large numbers (for a given function f).

¢ Approximate the distribution by using the samples as input for density estimation.

Inference in Bayesian models

Suppose we work with a Bayesian model whose posterior On = L(©|X}.,) cannot be
computed analytically.

o We will see that it can still be possible to sample from Q,l.
¢ Doing so, we obtain samples O, O, . . . distributed according to Q,,.
o This reduces posterior estimation to a density estimation problem

(i.e. estimate Qn from ©1,0,,...).
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PREDICTIVE DISTRIBUTIONS

Posterior expectations
If we are only interested in some statistic of the posterior of the form Eén [f(©)] (e.g. the
posterior mean), we can again approximate by

AUCIE Zf
l*l
Example: Predictive distribution

The posterior predictive distribution is our best guess of what the next data point x, 4 looks
like, given the posterior under previous observations. In terms of densities:

p(xn+l|xl:n) = /p(xnﬁ»lle)Qn(dH‘Xl:n :xl:n) .
T
This is one of the key quantities of interest in Bayesian statistics.

Computation from samples
The predictive is a posterior expectation, and can be approximated as a sample average:

Pt 1x1m) = By [p(xat1]0)] = ZP Xn41]©i)
l*l
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Consider a probability density p on the interval [a, b].

p(x)

Yi

a Xi b

Suppose we can define a uniform distribution Uy on the blue area A under the curve.

If we generate (X1, Y1), (X2,Y2),... ~ia Us  then  Xi,Xo,... ~iq p.
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REJECTION SAMPLING ON THE INTERVAL

Problem: We do not know how to define a uniform distribution on an arbritrarily shaped area.

Solution: We enclose p in a box B, sample uniformly from the box, and discard all draws
not in the blue area.

Algorithm: Rejection sampling
o Generate (Xj, ¥;) uniformly on B, by independently sampling
X; ~ Uniform|a, b] and Y; ~ Uniform[0, c] .

o If Y; < p(X;), keep the sample.
¢ Otherwise: Discard ("reject") it.

Result: The remaining (non-rejected) samples are uniformly distributed on A.
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Peter Orbanz

a

o This strategy still works if we scale vertically by some constant k£ > 0.
e We simply draw Y; ~ Uniform|0, kc| instead of ¥; ~ Uniform|[0, c|.

For sampling, it suffices to know a distribution only up to normalization. That is, only the

—> X

b

a

shape of p needs to be known.

186



DISTRIBUTIONS KNOWN UP TO SCALING

Sampling methods usually assume that we can evaluate the target distribution p up to a constant.
That is:

px) = px)

N —

and we can compute j(x) for any given x, but we do not know Z.

We have to pause for a moment and convince ourselves that there are useful examples where
this assumption holds.

Example 1: Simple posterior

For an arbitrary posterior computed with Bayes’ theorem, we could write

H(6|x1:n) = 7

with 7= /T [Trtio)a@)as

i=1

Provided that we can compute the numerator, we can sample without computing the
normalization integral Z.
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DISTRIBUTIONS KNOWN UP TO SCALING

Example 2: Bayesian Mixture Model
Recall that the posterior of the BMM is (up to normalization):
K

gnlcrug, Ok lxin) o f[ (Z CkP(xi|9k)> (ﬁ ‘I(Gk))unichlu(Cl K)
k=1

i=1 k=1
We already know that we can discard the normalization constant, but can we evaluate the
non-normalized posterior g, ?
¢ The problem with computing g, (as a function of unknowns) is that the term
i (Zszl .. ) blows up into K" individual terms.
o If we evaluate §, for specific values of ¢, x and 0, S-K_ ¢;p(xi]6%) collapses to a single
number for each x;, and we just have to multiply those n numbers.

So: Computing g, as a formula in terms of unknowns is difficult; evaluating it for specific
values of the arguments is easy.
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Example 3: Markov random field

In a MRE, the normalization function is the real problem.

For example, recall the Ising model:
1
pO) =~ —ex( Y BUO =06})
2@ P\
J) is an edge
The normalization function is
2= > ew( > sHei=061)
01.,€{0,1}" (i) is an edge

and hence a sum over 2" terms. The general Potts model is even more difficult.

On the other hand, evaluating

o) =exp( >0 AIO =06})

(i,j) is an edge

for a given configuration 0., is straightforward.
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Problem: If we are not on the interval, sampling uniformly from an enclosing box is not
possible (since there is no uniform distribution on all of R or R?).

Solution: Instead of a box, we use another distribution r, called a proposal density, to enclose p.

p(x)

To generate B under r, we apply similar logic as before backwards:
e Sample X; ~ r.
e Sample Y;|X; ~ Uniform[0, r(X;)].
We always choose r as a simple distribution that we know how to sample and evaluate.
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p(x)

¢ Choose a distribution r from which we know how to sample.

e Scale p such that p(x) < r(x) everywhere.

Algorithm: Rejection sampling Fori=1,2,...:
e Sample X; ~ r.
o Sample Y;|X; ~ Uniform(0, r(X;)].
o IfY; < p(X;), keep X;.
o Else, discard X; and start again at (1).

The retained samples are distributed according to p.

191
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Independence
If we draw proposal samples i.i.d. from r, the accepted samples are i.i.d.

Rejection samplers produce i.i.d. sequences of samples. If X;, X5, . .. are generated by
rejection sampling, ,%l > i<mf(Xi) is an unbiased estimate of I, [ f(X)].

Efficiency
The fraction of accepted samples is the ratio % of the areas under the curves p and r.
p(x)
- x

If r is not a reasonably close approximation of p, most proposals are rejected.
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AN IMPORTANT BIT OF IMPRECISE INTUITION

¢ Sampling is typically used for distributions of multiple, dependent random variables.

¢ Reason: One-dimensional distributions can usually be handled without sampling.
Multiple independent variables factorize into one-dimensional distributions.

¢ High-dimensional distributions with dependence often concentrate on many small areas
strewn out over the sample space, with regions of effectively zero probability in between.

4
2|
‘ ‘ 1
20

n
W0 60 80 100

Textbook illustrations of target distributions

This is a (purely qualitative) attempt to visualize in one
tend to look like this.

dimension what a high-dimensional distribution might look like.
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¢ Try to picture the illustration above overlayed with a “simple” proposal distribution.

¢ Recall that the efficiency is the ratio of the blue and gray areas.

o We can easily end up in situations where we accept only one in 10° (or 100, or 10%,...)
proposal samples.

¢ Even in moderate dimensions, we have to expect this to be not the exception but the rule.
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IMPORTANCE SAMPLING

There is a simple way to improve on rejection sampling if we are specifically interested in
approximating an expectation E,[ f(X)].

Simple case: We can evaluate p
Let p be the target and g a proposal density. Rewrite the expecation under p as

0 = [ 1= [ 7092 gtopas = 5, [LEED |

Algorithm

Algorithm: Importance sampling
e Draw X, Xy, . .. i.i.d. from proposal ¢g. Do not discard any samples.

¢ Approximate the expectation of f as

Elf(X)] ~ L% f()250

1>(X1)

o The coefficients X,y are called importance weights.

¢ There are no re]ectlons (but there are samples with small weights).
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IMPORTANCE SAMPLING: GENERAL CASE

+ Now assume we can only evaluate p up to scaling:

1 1
P=P and 9= -9
Zp Zq
where Z, (and possibly Z,;) are unknown constants.

 Observe that we can estimate the fraction Z, /Z, using samples X,

-y Xm ~iid ¢
a() 4 -

z, _ [pax _ [P )qm / 072 = {p(X)] S

z 7 “laeo s
¢ The estimator of the expectation of f is then:

FX)EE

m m Z m Xi

ELA(X0] ~ L0 F00)28 = Ly r 2068 = s

m ﬁ(X)
> 7%

Algorithm: Importance sampling (» known up to scaling)

Draw X1, X, . . . i.i.d. from proposal ¢, and approximate the expectation as
5(X)
Fx) B
P i (O
Ep[f(x)] ~ i=1 - 13(X/)
j=14(%;)
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RANDOM FIELDS

¢ We define a neighborhood graph, which is a weighted,
undirected graph:

vertex set

ﬁ set of edge weights
N = (Va, Wn)

e The edge weights are scalars w;; € R. An edge weight
wij = 0 means "no edge between v; and v;".

« Since NV is undirected, wij = wji.
e With each vertex v;, we associate a random variable ©;.

e With each vertex v; in the graph, we associate a random
variable ©;. The joint distribution of these variables is
called a random field.

Neighborhoods

¢ The neighborhood of vertex v; is the set
0 (i) = {j|wy # 0} .

o The set {©},j € 0 (i)} of random variables associated N
with the neighborhood is the Markov blanket of ©;. purple =8 (7)
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MARKOV RANDOM FIELDS

The Markov property
¢ A random field has the Markov property if
P(6i]6), j # i) = P(6il6), j € O (i) .

That is: Each ©; is conditionally independent of the remaining field given its Markov
blanket.

¢ A random field with the Markov property is a Markov random field (MRF).
Energy functions
¢ Any (strictly positive) probability or density p can be written in the form
1 :
p(x) = 7 exp(—H(x)) where H:X - Ry and Z:= /eiH(*)p(x)dx

and Z is a normalization constant.
e The function H is called an energy function or potential, or sometimes a cost function.

¢ In particular, we can write a MRF density for RVs O1., as

1
p(O1,...,00) = Eexp(—H(ela---ﬁn))
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Let V be a neighborhood graph with weights w;j, and 8 > 0. The Markov random field

PO, ., 00) = Z(ﬂ)exr)(ﬁzwljﬂw )

is called a Potts model.

¢ Note the energy is additive over pairs.

¢ Positive weights encourage smoothness:

wij >0 0; = 0 increases probability
wij <0 6; = 0; decreases probability
wij =0  no interaction between 6; and 6;
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THE ISING MODEL

o If ; € {—1,+1} and w; € {0, 1}, we obtain
1

p(91,...,9n)=mexp< 3 m{e,-:e,})

(i,j) is an edge

e If N is a d-dim. grid, this model is called the Ising model.

o This is the simplest non-trivial Potts model, but many of its
mathematical properties remain unsolved.

Example
Samples from an Ising model on a 56 X 56 grid graph.

Increasing 5 —

Color coding: Black = — 1, white = +1.

er Orbanz Ilustration: Winkler, “Image analysis, random fields, and MCMC methods™




MREFS AS SMOOTHNESS PRIORS

‘We consider a spatial problem with observations X;. Each i is a location on a grid.

Spatial model

Suppose we model each X; by a distribution £(X|©;), i.e. each location i has its own parameter
variable ©;. This model is Bayesian (the parameter is a random variable). We use an MRF as
prior distribution.

observed

unobserved

We can think of £(X|©;) as an emission probability, similar to an HMM.

Spatial smoothing

e We can define the joint distribution (O, . .., ©,) as a MRF on the grid graph.

e For positive weights, the MRF will encourage the model to explain neighbors X; and X; by
the same parameter value. — Spatial smoothing.
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Definition
A model of the form

K
m(x) =Y Cup(x|6y)
k=1
is called a Bayesian mixture model if p(x|0) is an exponential family model and
e Op,...,0k ~iq g, where g is a prior we have chosen for ©.

e (Ci,...,Ck) is sampled from a K-dimensional Dirichlet distribution.

Posterior distribution

The posterior of a BMM under observations xi, . . . , X, is (up to normalization):
n K K
M(er, Oreilxran) o TT(D2 ewr(il60) (TT a(00) ) o)
i=1 k=1 k=1
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EXAMPLE: SEGMENTATION OF NOISY IMAGES

Mixture model
¢ A BMM can be used for image segmentation.

e The BMM prior on the component parameters is a natural
conjugate prior g(6).

¢ In the spatial setting, we index the parameter of each X;
separately as 6;. For K mixture components, 6;., contains
only K different values.

¢ The joint BMM prior on 6., is

n
QBMM(elzn) = H 4(91
i=1

Smoothing term
We multiply the BMM prior gsmm () with an MRF prior

gure(01:0) = Z(B) eXp(ﬁ 27;011{0 = 0; })

This encourages spatial smoothnes of the segmentation.
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MREFs pose two main computational problems.

Problem 1: Sampling

Generate samples from the joint distribution of (O, ..., 0,).

Problem 2: Inference

If the MRF is used as a prior, we have to compute or approximate the posterior distribution.

Solution

¢ MREF distributions on grids are not analytically tractable. The only known exception is the
Ising model in 1 dimension.

¢ Both sampling and inference are based on Markov chain sampling algorithms.
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Suppose we rejection-sample a distribution like this:

A region of interest

Once we have drawn a sample in the narrow region of interest, we would like to continue
drawing samples within the same region. That is only possible if each sample depends on the
location of the previous sample.

Proposals in rejection sampling are i.i.d. Hence, once we have found the region where p
concentrates, we forget about it for the next sample.
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MCMC: IDEA

Recall: Markov chain
¢ A sufficiently nice Markov chain (MC) has an invariant distribution Pj,y.

¢ Once the MC has converged to P;,, each sample X; from the chain has marginal
distribution Pi,y.

Markov chain Monte Carlo

We want to sample from a distribution with density p. Suppose we can define a MC with
invariant distribution P;,, = p. If we sample X;, X, . . . from the chain, then once it has
converged, we obtain samples

Xi~p.

This sampling technique is called Markov chain Monte Carlo (MCMC).

Note: For a Markov chain, X;4; can depend on X;, so at least in principle, it is possible for an
MCMC sampler to "remember" the previous step and remain in a high-probability location.
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CONTINUOUS MARKOV CHAIN

The Markov chains we discussed so far had a finite state space X'. For MCMC, state space now
has to be the domain of p, so we often need to work with continuous state spaces.

Continuous Markov chain
A continuous Markov chain is defined by an initial distribution P;,;; and conditional probability
t(y|x), the transition probability or transition kernel.

In the discrete case, #(y = i|x = j) is the entry p;; of the transition matrix p.

Example: A Markov chain on R?
We can define a very simple Markov chain by sampling

2 A
XiptlXi=xi  ~  g(.|x,0%) S
where g(x|u, o2) is a spherical Gaussian with fixed variance. In
other words, the transition distribution is
. 2 A Gaussian (gray contours) is placed
(i |x) = g(xig1lxi, 07) .
around the current point x; to sample

X1

Peter Orbanz 209



INVARIANT DISTRIBUTION

Recall: Finite case

¢ The invariant distribution P;,, is a distribution on the finite state space X of the MC
(i.e. a vector of length | X]).

¢ "Invariant” means that, if X; is distributed according to P;,,, and we execute a step
Xit1 ~ t(.|x;) of the chain, then X;; | again has distribution Pi,.

e In terms of the transition matrix p:

P Piny = Piny

Continuous case
¢ X is now uncountable (e.g. X = RY).
¢ The transition matrix p is substituted by the conditional probability ?.

¢ A distribution P;j,, with density pj,, is invariant if

/ H 1) (V) = i ()
X

This is simply the continuous analogue of the equation >, pij(Pinv)i = (Pinv);-
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.
.
.
We run the Markov chain n for steps. ‘We "forget" the order and regard the If p (red contours) is both the
Each step moves from the current locations xj ., as a random set of invariant and initial distribution, each
location x; to a new x; 1. points. X; is distributed as X; ~ p.

Problems we need to solve
1. We have to construct a MC with invariant distribution p.

2. We cannot actually start sampling with X| ~ p; if we knew how to sample from p, all of
this would be pointless.

3. Each point X; is marginally distributed as X; ~ p, but the points are not i.i.d.
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CONSTRUCTING THE MARKOV CHAIN

Given is a continuous target distribution with density p.

Metropolis-Hastings (MH) kernel
1. We start by defining a conditional probability ¢(y|x) on X.

¢ has nothing to do with p. We could e.g. choose ¢(y|x) = g(y|x, 02), as in the previous example.

2. We define a rejection kernel A as

(il )p(xi1)
q(xH—] |X,‘ )P(Xi) total probability that

a proposal is sampled
and then rejected

A(xig|xi) == min{l,

The normalization of p cancels in the quotient, so knowing p is again enough.

3. We define the transition probability of the chain as

t(xig11%i) = q(Xig1 %) A(xip1|x) +0x; (Xig1)e(xi)  where  c(x;) :== /q()’|xi)(1—A(y|Xi))dy

Sampling from the MH chain

At each step i + 1, generate a proposal X* ~ ¢( . |x;) and U; ~ Uniform[0, 1].
o If U; < A(x*|x;), accept proposal: Set x; 4 := x*.
o If U; > A(x*|x;), reject proposal: Set x4 := x;.
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STOCHASTIC HILL-CLIMBING

The Metropolis-Hastings rejection kernel was defined as:
Al |v) = min{1, q(xilxi1)p(Xig1) } .
q(xiq1]xi)p(xi)
Hence, we certainly accept if the second term is larger than 1, i.e. if
q(xilxig 1)p (i 1) > g(xipr [xi)p(xi) -
That means:
e We always accept the proposal value x;; if it increases the probability under p.
o If it decreases the probability, we still accept with a probability which depends on the
difference to the current probability.
Hill-climbing interpretation

e The MH sampler somewhat resembles a gradient ascent algorithm on p, which tends to
move in the direction of increasing probability p.

¢ However:

¢ The actual steps are chosen at random.
¢ The sampler can move "downhill" with a certain probability.
e When it reaches a local maximum, it does not get stuck there.
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PROBLEM 1: INITIAL DISTRIBUTION

Recall: Fundamental theorem on Markov chains

Suppose we sample X; ~ Py and X;11 ~ #( . |x;). This defines a distribution P; of X;, which
can change from step to step. If the MC is nice (recall: irreducible and aperiodic), then

P; — Py for i— 00 .

Note: Making precise what aperiodic means in a continuous state space is a bit more technical than in the finite case, but the
theorem still holds. We will not worry about the details here.

Implication

¢ If we can show that P;,, = p, we do not have to know how to sample from p.

¢ Instead, we can start with any Pin, and will get arbitrarily close to p for sufficiently large i.
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BURN-IN AND MIXING TIME

The number m of steps required until Py, ~ P,y = p is called the mixing time of the Markov
chain. (In probability theory, there is a range of definitions for what exactly P,, =~ P;,, means.)

In MC samplers, the first m samples are also called the burn-in phase. The first m samples of
each run of the sampler are discarded:

X17'~~7Xm—17Xrﬂ7Xm+l7'~~

Bvurn—in: Samples from
discard. (approximately) p;
keep.

Convergence diagnostics

In practice, we do not know how large m is. There are a number of methods for assessing
whether the sampler has mixed. Such heuristics are often referred to as convergence
diagnostics.
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PROBLEM 2: SEQUENTIAL DEPENDENCE

Even after burn-in, the samples from a MC are not i.i.d.

Strategy

¢ Estimate empirically how many steps L are needed for x; and x; 4, to be approximately
independent. The number L is called the lag.

¢ After burn-in, keep only every Lth sample; discard samples in between.

1.0

Estimating the lag

The most commen method uses the autocorrelation function:

Auto(x;, X)) 1= T i) = )]

o‘ioj

0.0

Auto(X;, Xjq1)

where ; is the mean and o; the standard deviation of X;. We
compute Auto(X;, X;4r) empirically from the sample for different
values of L, and find the smallest L for which the autocorrelation is
close to zero.

-1.0

LIS S
05 15 25
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CONVERGENCE DIAGNOSTICS

There are about half a dozen popular convergence crieteria; the one below is an example.

Gelman-Rubin criterion
o Start several chains at random. For each chain &, sample X{.‘
has a marginal distribution P{.‘.
e The distributions of Pf.‘ will differ between chains in early
stages.
¢ Once the chains have converged, all P; = P;,, are identical.

¢ Criterion: Use a hypothesis test to compare Pff for different k

(e.g. compare Pi2 against null hypothesis P}). Once the test
does not reject anymore, assume that the chains are past
burn-in.

Reference: A. Gelman and D. B. Rubin: "Infe from Iterative Si: Using Multiple

Peter Orbanz
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SELECTING A PROPOSAL DISTRIBUTION

Everyone’s favorite example: Two Gaussians

e Var[g] too large:
Will overstep p; many rejections.

e Var[g] too small:
Many steps needed to achieve good
coverage of domain.

If p is unimodal and can be roughly
approximated by a Gaussian, Var[g] should be

red = target distribution p chosen as smallest covariance component of p.

gray = proposal distribution ¢

More generally

For complicated posteriors (recall: small regions of concentration, large low-probability regions
in between) choosing ¢ is much more difficult. To choose g with good performance, we already
need to know something about the posterior.

There are many strategies, e.g. mixture proposals (with one component for large steps and one
for small steps).
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¢ MCMC samplers construct a MC with invariant distribution p.

¢ The MH kernel is one generic way to construct such a chain from p and a proposal
distribution g.

Formally, g does not depend on p (but arbitrary choice of ¢ usually means bad
performance).

¢ We have to discard an initial number m of samples as burn-in to obtain samples
(approximately) distributed according to p.

¢ After burn-in, we keep only every Lth sample (where L = lag) to make sure the x; are
(approximately) independent.

Keep. Keep. Keep.
Xisoo s Xn— 15, X, X1 -+ o Xonp =15 XLy Xinp 1415 - - Ximp21—15 Xiors - - -
Burn-in; Samples correlated Samples correlated
discard. with X;: discard. with XjtLs discard.
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GIBBS SAMPLING

By far the most widely used MCMC algorithm is the Gibbs sampler.

Full conditionals

Suppose £(X) is a distribution on R®, so X = (X1, ..., Xp). The conditional probability of the
entry X; given all other entries,

L(XqlX1, - Xg—1,Xay1,- -, Xp)
is called the full conditional distribution of X,.

If X has density p, that means we are interested in a density

p(Xalxt, -+ Xd—1,%a41,- -+ XD)

Gibbs sampling

¢ The Gibbs sampler is Markov chain Monte Carlo algorithm that generates each step
dimension by dimension by sampling from the full conditionals.

¢ Gibbs sampling is only applicable if we can compute the full conditionals for each
dimension d.

o If so, it provides us with a generic way to derive a proposal distribution.
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THE GIBBS SAMPLER

Proposal distribution

Suppose p is a density or mass function of a random vector with D entries. Given a random
vector X;, we generate X; | coordinate-by-coordinate as follows:

Xiv1,0 ~p(-|Xi2,- .., Xip)
Xivr,a ~p(- Xk, Xig1,a—1, Xia41, - - Xip)

Xiv1,p ~p( | Xig1,15 - Xit1,0-1)

Note well: Each new draw X; | 4 is used immediately to update the next dimension d + 1.
The MCMC algorithm that generates vectord X, X5, . . . as above is called a Gibbs sampler.

Relationship to Metropolis-Hastings

e For each dimension d € {1, ..., D}, the Markov process above defines a process
X1,4,X2,4, - . ., which is again a Markov process. One can show that this is a MH sampler,
so a Gibbs sampler with D full conditionals is a family of coupled MH samplers.

e These MH samplers all have acceptance probability 1, so proposals in Gibbs sampling are
always accepted.
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EXAMPLE: MRF

In a MRF with D nodes, each dimension d corresponds to one vertex.

Full conditionals
In a grid with 4-neighborhoods, for instance, the Markov
property implies that Olert

P(0al01,...,00—1,0441,...,0p) = p(0a|Oren, Orignt, Oup, Oaown)

Specifically: Potts model with binary weights

Recall that, for sampling, knowing only p (unnormalized) is sufficient:
p(0al0r, -, 0a—1,0411,-..,0p) =
exp (B(H{ed = O} + {04 = Orign } + I{04 = 04} + 1{04 = 0110wn})

This is clearly very efficiently computable.
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EXAMPLE: MRF

Sampling the Potts model

Each step of the sampler generates a sample
0= (0i1,---,0ip) ,
where D is the number of vertices in the grid.

Gibbs sampler

Each step of the Gibbs sampler generates n updates according to
Oiy1,a ~p(-10ix1,1,- - 0ir1,a-1,0id41,---,0ip)
o< exp(ﬁ(ﬂ{9i+1,d = O} + H{0i+1,0 = Ouign} + I{0i1,0d = Oup} + {0ir1,0 = edown}))

Recall the Ising model example
Samples from an Ising model on a 56 X 56 grid graph.

Increasing 5 —
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BURN-IN MATTERS

This example is due to Erik Sudderth (UC Irvine).

MREFs as ''segmentation'' priors

 MRFs where introduced as tools for image smoothing and segmentation by D. and S.
Geman in 1984.

e They sampled from a Potts model with a Gibbs sampler, discarding 200 iterations as
burn-in.

¢ Such a sample (after 200 steps) is shown above, for a Potts model in which each variable
can take one out of 5 possible values.

o These patterns led computer vision researchers to conclude that MRFs are "natural” priors
for image segmentation, since samples from the MRF resemble a segmented image.
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EXAMPLE: BURN-IN MATTERS

E. Sudderth and M. 1. Jordan ran a Gibbs sampler on the same model, and recorded the state of the chain once after 200 iterations
(as Geman & Geman had done), and again after 10000 iterations:

200 iterations

10000 iterations

Chain 1 Chain 5

e The "segmentation" patterns visible after 200 iterations are not sampled from the MRF
distribution p = Py, but rather from Pypg # Piny-

¢ The patterns do not show that MRFs are "natural” priors for segmentation problems, but
simply that the sampler’s Markov chain is still in burn-in.

¢ MREFs are smoothness priors, not segmentation priors.
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MOTIVATION

The way machine learning applies models to data can roughly be categorized into two ways:

Optimization:

¢ The solution is a specific value.

¢ We define mathematically what a “good” solution is and search for the best one.

Simulation:

¢ The solution is given by distribution (e.g. the distribution itself, an expectation, etc)

e We approximate the solution by samples drawn from the distribution.

We will discuss optimization methods next, and simulation methods later in the course.

Extremal Principles

Objective function

Purpose
Maximum likehood estimation  Fit a statistical model
Empirical risk minimization Fit a classifier/predictor
Variational inference Approximate a posterior

The list is far from exhaustive.

Peter Orbanz

Likelihood

Error rate
(more generally: empirical risk)

Distance between approximate
and true posterior
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TERMINOLOGY

Min and argmin

minf(x) = smallest value of f(x) for any x
X

argminf(x) = value of x for which f(x) is minimal
X

Minimum with respect to subset of arguments

minf(x,y) = smallest value of f(x, y) for any x if y is kept fixed
X

Optimization problem
For a given function f : R — R, a problem of the form
find x* := argminf(x)
X
is called a minimization problem. If arg min is replaced by arg max, it is a maximization

problem. Minimization and maximization problems are collectively referred to as
optimization problems.
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For any function f, we have

minf(x) = — max(—f(x)) and argmin f(x) = arg max(—f(x))

That means:
o If we know how to minimize, we also know how to maximize, and vice versa.

¢ We do not have to solve both problems separately; we can just generically discuss
minimization.
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global, but not local sk global and local
. / R , ,
-3 -2 -1 1 2

L N\Y

Local and global minima
A minimum of f at x is called:

¢ Global if f assumes no smaller value on its domain.

e Local if there is some open interval (a, b) containing x such that f(x) is a global minimum
of f restricted to that interval.
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SOLVING OPTIMIZATION PROBLEMS

Analytic criteria for local minima
Recall that x is a local minimum of f if

f'x)=0 and f'(x)>0.
InRY,

Vf(x) =0 and Hp(x) = (axalgx (x)) i positive definite.
i0Xj i,j=1,...,n

The d x d-matrix Hy(x) is called the Hessian matrix of f at x.

Typical situation
e Given is a function f : RY — R.

¢ The dimension d is usually very large.
(In neural network training problems: Often in the millions.)

¢ We cannot plot or “look at” the function.

e We can only evaluate its value f(x) point by point.
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e Our goal is to find x*.

* We can evaluate the function at points
of our choice, say x| and x;.

Rat x x2

e However, we cannot “see” the function.

o All we know are values at a few points.

1 x2

Task

Based on the values we know, we have to:
¢ Either make a decision what x* is.
¢ Or gather more information, by evaluating f at additional points. In that case, we have to
decide which point to evaluate next.
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X1

« If we can compute the derivatives f/ (x;) and f” (x2), we have (the slope of) linear
approximations to f at both points that are locally exact.

e That is: We can substitute the derivatives for the two short blue lines in the figure.
¢ We can tell from the sign of the derivative in which direction the function decreases.

e We also know that f’(x) = 0 if x is a minimum.
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MINIMIZATION STRATEGY

Basic idea
Start with some point xo. Compute the derivative f’(xq) at x. Then:

e “Move downhill”: Choose some ¢ > 0, and set x; = xo + ¢ if f'(xg) < 0 and
X =Xxp—¢C iff/(xo) > 0.

e Compute f/(x1). If it is O (possibly a minimum), stop.

e Otherwise, move downhill from x, etc.

Observations

o Since the sign of f/ is determined by whether f increases or decreases, we can summarize
the case distinction above by setting

x1 = xo — sign(f'(x0)) - ¢

o If f changes rapidly, it may be a good strategy to make a large step (choose a large c), since
we presumably are still far from the minimum. If f changes slowly, ¢ should be small.

 One way of doing so is to choose c as the magnitude of f/, since | f’| has exactly this
property. In that case:

xp = xo — sign(f’(x0)) - |f' (x0)| = x0 — f" (x0)
The algorithm obtained by applying this step repeatedly is called gradient descent.
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Gradient descent searches for a minimum of a differentiable function f.
Algorithm
Start with some point xy € R and fix a precision € > 0.
Repeat forn = 1,2, .. .:
1. Check whether | f/(x,)| < . If so, report the solution x* := x, and terminate.

2. Otherwise, set

X1 = Xn — [ (%n)

)

f(x)

Xopt
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Mention numerical evaluation.
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DERIVATIVES IN MULTIPLE DIMENSIONS

)

¢ We now ask how to define a derivative in multiple dimensions.
o Consider a function f : RY — R. What is the derivative of f at a point x?

¢ For simplicity, we assume d = 2 (so that we can plot the function).
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DERIVATIVES IN MULTIPLE DIMENSIONS

X2 f(x)

X1

o We fix a point x = (x,x,) in R?, marked red above.

e We will try to turn this into a 1-dimensional problem, so that we can use the definition of a
derivative we already know.
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REDUCING TO ONE DIMENSION

X2

/'x
Hx +v

X1

¢ To make the problem 1-dimensional, fix some vector v € R, and draw a line through x in
direction of v.

¢ Then intersect f with a plane given by this line: In the coordinate system of f, choose the
plane that contains the line and is orthogonal to R?.

¢ The plane contains the point x.

¢ Note we can do that even if d > 2. We still obtain a plane.
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¢ The intersection of f with the plane is a 1-dimensional function fz, and x corresponds to a
point x in its domain.

¢ We can now compute the derivative f1f1 of fi at xy. The idea is to use this as the derivative
of f at x.
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X1

¢ In the domain of f, we draw a vector from x in direction of H such that:
1. The vector is oriented to point in the direction in which fg increases.
2. Its length is the value of the derivative f}; (x).

¢ That completely determines the vector (shown in red above).

o There is one problem still to be solved: fy depends on H, that is, on the direction of the
vector v. Which direction should we use?

Peter Orbanz 242



X2

Peter Orbanz

X2 X2

X X x|

¢ We now rotate the plane H around x. For each position of the plane, we get a new
derivative f};(x), and a new red vector.

» We choose the plane for which f}; is largest:

H* :=arg max  f(x)

all rotations of H'

Provided that fy is differentiable for all H, one can show that this is always unique (or
f#(x) is zero for all H).

¢ We then define the vector
Vf(x) := vector given by H* as above
The vector Vf(x) is called the gradient of /" at x.
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PROPERTIES OF THE GRADIENT

The gradient Vf(x) of f : R — R ata point x € R? is a vector in the domain R in the
direction in which f most rapidly increases at x.

¢ Recall that a contour line (or contour set) of f is a set of points along which f remains

constant,
Clf, e == {xr eRY|f(x) = ¢} for some ¢ € R.

 One can show that if C[f, c| contains x, the gradient at x is orthogonal to the contour:
Vf(x) L C[f,¢] ifx € C[f,c].

e Intuition: The gradient points in the direction of maximal change, whereas C[f, c] is a
direction in which there is no change. Locally, these two are orthogonal.

Gradients are orthogonal to contour lines.
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¢ For this parabolic function, all contour lines are concentric circles around the minimum.

¢ The picture above shows the gradients plotted at various points in the plane.
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Algorithm
Start with some point xy € R? and fix a precision & > 0.
Repeatforn =1,2,...:
1. Check whether || Vf(x,)|| < e. If so, report the solution x* := x, and terminate.

2. Otherwise, set

Xnp1 7= X — Vf ()
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RIS R

Algorithm
Start with some point xy € R? and fix a precision & > 0.
Repeat forn = 1,2,...:
1. Check whether || Vf(x,)|| < e. If so, report the solution x* := x, and terminate.
2. Otherwise, set
Xng1 := Xp — a(n)Vf(xn)

Here, a(n) > 0 is a coefficient that may depend on n. It is called the step size in optimization,
or the learning rate in machine learning.
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GRADIENT DESCENT AND LOCAL MINIMA

[ . e , .
3 =2 -1

Peter Orbanz

¢ Suppose for both functions above, gradient descent is started at the point marked red.

o It will “walk downhill” as far as possible, then terminate.

¢ For the function on the left, the minimum it finds is global. For the function on the right, it
is only a local minimum.

Since the derivative at both minima is 0, gradient descent cannot detect whether they are
global or local.

For smooth functions, gradient descent finds local minima. If the function is complicated,
there may be no way to tell whether the solution is also a global minimum.
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OUTLOOK

Summary so far

¢ The derivative/gradient provides local information about how a function changes around a
point x.

¢ Optimization algorithms: If we know the gradient at our current location x, we can use this
information to make a step in “downhill” direction, and move closer to a (local) minimum.

What we do not know yet
That assumes that we can compute the gradient. There are two possibilities:

» For some functions, we are able to derive Vf (x) as a function of x. Gradient descent can
evaluate the gradient by evaluating that function.

o Otherwise, we have to estimate Vf(x) by evaluating the function f at points close to x.

For now, we will assume that we can compute the gradient as a function.

Next: Newton’s method
¢ Gradient descent is a first-order method. It uses only the first derivative.

¢ A similar method that uses two derivatives is called Newton’s method (or the
Newton—Raphson algorithm).

¢ Roughly speaking, higher-order methods converge in fewer steps, at the price of more
computation per step.
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Algorithm
Newton’s method searches for a root of f, i.e. it solves the equation f(x) = 0.
1. Start with some point x € R and fix a precision € > 0.
2. Repeatforn=1,2,...
X1 = Xn — f(on) /f ()

3. Terminate when | f(x,)| < €.

()
I ()
J()
—T < >
Xroot X1 X0
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Function evaluation

Most numerical evaluations of functions (v/a, sin(a), exp(a), etc) are implemented using
Newton’s method. To evaluate g at a, we have to transform x = g(a) into an equivalent
equation of the form

f(x,a)=0.

We then fix a and solve for x using Newton’s method for roots.

Example: Square root
To eveluate g(a) = v/a, we can solve

fr,a)=x*—a=0.
This is essentially how sqrt() is implemented in the standard C library.

Peter Orbanz 253



Algorithm
We can use Newton’s method for minimization by applying it to solve f/(x) = 0.
1. Start with some point x € R and fix a precision € > 0.
2. Repeatforn=1,2,...
St o= 3 — () 7 ()

3. Terminate when |’ (x,)| < €.

fx)
(%)
/(%)
~—+ >
Xopt X1 X0
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MULTIPLE DIMENSIONS

Peter Orbanz

Recall: Gradient descent

Xp41 = Xn — Vf(xn)

Newton’s method for minima

Xn41 = Xn — Hfil(xn) . vf(xn)
That requires that the matrix Hy(x) is invertible.
The Hessian measures the curvature of f.

Effect of the Hessian

Multiplication by H, f_l in general changes the direction of Vf (x,).

The correction takes into account how Vf(x) changes away from
Xn, as estimated using the Hessian at x;,.

Figure: Arrow is Vf, x 4+ Axy is Newton step.

[Figure: From Boyd & Vandenberghe, “Convex Optimization™]
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NEWTON: PROPERTIES

Convergence

* The algorithm always converges if f’/ > 0 (or Hy positive definite).
o The speed of convergence separates into two phases:
¢ In a (possibly small) region around the minimum, f can always be approximated by
a quadratic function.
¢ Once the algorithm reaches that region, the error decreases at quadratic rate.

Roughly speaking, the number of correct digits in the solution doubles in each step.
¢ Before it reaches that region, the convergence rate is linear.

High dimensions

o The required number of steps hardly depends on the dimension of R. Even in R10000,
you can usually expect the algorithm to reach high precision in half a dozen steps.

e Caveat I: The individual steps can become very expensive, since we have to invert Hy in
each step, which is of size d X d.

e Caveat II: High-dimensional functions tend to have many more local minima then
low-dimensional ones. Even if Newton still converges quickly, we have to ask even more
carefully what it is converging to.
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NEXT: CONSTRAINED OPTIMIZATION

So far
o If f is differentiable, we can search for local minima using gradient descent.

o If f is sufficiently nice (twice continuously differentiable), we know how to speed up the
search process using Newton’s method.

Constrained problems
o The numerical minimizers use the criterion Vf(x) = 0 for the minimum.

¢ In a constrained problem, the minimum is not identified by this criterion.

Next steps
We will figure out how the constrained minimum can be identified. We have to distinguish two
cases:

¢ Problems involving only equalities as constraints (easy).

¢ Problems also involving inequalities (a bit more complex).
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CONSTRAINED OPTIMIZATION

« An optimization problem for a given function f : R? — R is a problem of the form
m}n f(x)

which we read as "find x* = arg min, f(x)".

¢ A constrained optimization problem adds additional requirements on x,
min f(x)
x
subject to xe G,

where G C R? is called the feasible set.

¢ The set G is often defined by equations, e.g.

min f(x)
X
subject to g(x)=0

The equation g is called a constraint. The constraint g(x) = 0 above is also called an
equality constraint, whereas one of the form g(x) > 0 is an inequality constraint.

Peter Orbanz



Definition

Aset A C R? is called convex if, for every two points x, y € A, the straight line connecting x
and y is completely contained in A.

convex convex not convex

Quantitatively

A is convex if and only if M+ (1—=X)y € A forallx,y € Aand A € [0,1] .
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CONVEX FUNCTIONS

A function f is convex if every line segment f(x)
between function values lies above the graph of f.

¢ Equivalently:
If the area above (!) the curve is a convex set.

¢ Quantitatively: f is convex if
. . . X
M) + (1= NF0) > FOx+ (1= A)y)
for all x and y in the domain of f and all X € [0, 1].

* A twice differentiable function is convex if f”/ (x) > 0 (or Hy(x) positive semidefinite) for
all x.

Implications for optimization
If f is convex, then:
e f/(x) = 0is a sufficient criterion for a minimum.

e Local minima are global.

o If f is strictly convex (f” > 0 or Hy positive definite), there is only one minimum
(which is both gobal and local).
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Objective

min f(x)
subject to g(x) = 0

Idea
« The feasible set is the set of points x which satisfy g(x) = 0,
G:={x|g(x) =0} .
If g is reasonably smooth, G is a smooth surface in RY.
e We restrict the function f to this surface and call the restricted function f;.

e The constrained optimization problem says that we are looking for the minimum of f,.
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Constraint g.
f ( x) _ x% 4 x% Here, g is linear, so the graph of g is a (sloped) affine plane. The

The blue arrows are the gradients Vf(x) at various values of x. points x with g(x) = 0.

intersection of the plane with the x| -x,-plane is the set G of all

Peter Orbanz
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LAGRANGE OPTIMIZATION

)

» We can make the function f, given by the constraint g(x) = 0 visible by placing a plane
vertically through G. The graph of f; is the intersection of the graph of f with the plane.
¢ Here, f; has parabolic shape.

¢ The gradient of f at the miniumum of f; is not 0.
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Fact

Gradients are orthogonal to contour lines.

Intuition

¢ The gradient points in the direction in
which f grows most rapidly.

¢ Contour lines are sets along which f does
not change.
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{xlg(x) = 0}

(Vf(x0))g

(Vf(x0)) |
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{s(x) = 0}

Idea

» Decompose Vf into a component (Vf), in the set
{x|g(x) = 0} and a remainder (Vf) | .

¢ The two components are orthogonal.

o If f; is minimal within {x | g(x) = 0}, the component within
the set vanishes.

e The remainder need not vanish.

Consequence
e We need a criterion for (Vf), = 0.

Solution
o If (Vf), = 0, then Vf is orthogonal to the set g(x) = 0.

¢ Since gradients are orthogonal to contours, and the set is a contour of g, Vg is also
orthogonal to the set.

e Hence: At a minimum of f;, the two gradients point in the same direction:
Vf + AVg = 0 for some scalar A # 0.

Peter Orbanz
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Solution
The constrained optimization problem

min f(x)
st glx)=0
is solved by solving the equation system
Vf(x) + AVg(x) =0
8(x) =0

The vectors Vf and Vg are d-dimensional, so the system contains d 4 1 equations for the d + 1
variables xi, . .., X4, A
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Objective
For a function f and a convex function g, solve
min f(x)
subject to g(x) < 0
i.e. we replace g(x) = 0 as previously by g(x) < 0. This problem is called an optimization
problem with inequality constraint.

Feasible set
We again write G for the set of all points which satisfy the constraint,

G = {x[g(x) <0} .

G is often called the feasible set (the same name is used for equality constraints).
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Case distinction

1. The location x of the minimum can be in the interior of
G

2. x may be on the boundary of G.

Decomposition of G

G = in(G) U JG = interior U boundary
The interior is given by g(x) < 0, the boundary by g(x) = 0.

lighter shade of blue = larger value of f°

Criteria for minimum

1. Ininterior: f, = f and hence Vf; = Vf. We have to solve a standard optimization
problem with criterion Vf = 0.

2. On boundary: Here, Vf, # Vf. Since g(x) = 0, the geometry of the problem is the
same as we have discussed for equality constraints, with criterion Vf = AVg.
However: In this case, the sign of A matters.

Peter Orbanz

269



Observation

¢ An extremum on the boundary is a minimum only
if Vf points into G.

e Otherwise, it is a maximum instead.

Criterion for minimum on boundary

Since Vg points away from G (since g increases away
from G), Vf and Vg have to point in opposite directions:

Vf=AVg  withA <0

Convention
To make the sign of A explicit, we constrain \ to positive
values and instead write:

Vf =—-AVg
st. A >0
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Combined problem

Vf=— AVg
st g(x) <0
A =0ifx € in(G)
A>0ifx € 0G

Can we get rid of the "if x € -" distinction?

Yes: Note that g(x) < 0 holds if x is in the interior, and g(x) = 0 on the boundary.
Hence, we always have either A = 0 or g(x) = 0 (and never both).

That means we can substitute
A =0ifx € in(G)
A>0ifx € 0G

by
A-gx)=0 and A>0.
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Combined solution
The optimization problem with inequality constraints

minf(x)
subject to g(x) < 0

can be solved by solving

Vf(x) = —=AVg(x) } <— system of d + 1 equations for d + 1
s.L. Ag(x) =0 variables xq, ..., X4, A
8(x) <0
A>0

These conditions are known as the Karush-Kuhn-Tucker (or KKT) conditions.
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REMARKS

Haven’t we made the problem more difficult?

« To simplify the minimization of f for g(x) < 0, we have made f more complicated and

added a variable and two constraints. Well done.

¢ However: In the original problem, we do not know how to minimize f, since the usual

criterion Vf = 0 does not work.

¢ By adding A and additional constraints, we have reduced the problem to solving a system

of equations.

Summary: Conditions

Condition Ensures that...

Purpose

Vf(x) = =AVg(x) IfA=0: Vfis0

If A > 0: Vf is anti-parallel to Vg
Ag(x) =0 A = 0 in interior of G
A>0 Vf cannot flip to orientation of Vg

Peter Orbanz
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More precisely

If g is a convex function, then G = {x|g(x) < 0}isa
convex set. Why do we require convexity of G?

Problem

If G is not convex, the KKT conditions do not guarantee
that x is a minimum. (The conditions still hold, i.e. if G is
not convex, they are necessary conditions, but not
sufficient.)

Example (Figure)
e fis a linear function (lighter color = larger value)

¢ Vf is identical everywhere

o If G is not convex, there can be several points (here:
X|, X2, X3) which satisfy the KKT conditions. Only
X; minimizes f on G.

o If G is convex, such problems cannot occur.
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Numerical methods for constrained problems

Once we have transformed our problem using Lagrange multipliers, we still have to solve a
problem of the form

VI(x) = =AVe(x)
s.t. Ag(x) =0 and g(x)<0 and A >0

numerically.
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Idea f(x)

A constraint in the problem
minf(x) st. g(x) <0 —
Bilx) Ijo,00) (%)

can be expressed as an indicator function:

minf(x) + const. - Ijg o) (g(x))

The constant must be chosen large enough to enforce the
constraint.

Problem: The indicator function is piece-wise constant and not differentiable at 0. Newton or
gradient descent are not applicable.

Barrier function
A barrier function approximates I[g .y by a smooth function, e.g.

Bu(x) = —% log(—x) .

Peter Orbanz 276



NEWTON FOR CONSTRAINED PROBLEMS

Interior point methods
We can (approximately) solve
minf(x)s.t. gi(x) <0 fori=1,...,m

by solving

m

minf(x) + Z Bii(x) .
i=1
with one barrier function f3; ; for each constraint g;.
We do not have to adjust a multiplicative constant since 3;(x) — co asx 0.
Constrained problems: General solution strategy
1. Convert constraints into solvable problem using Lagrange multipliers.
2. Convert constraints of transformed problem into barrier functions.

3. Apply numerical optimization (usually Newton’s method).
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RELEVANCE OF CONVEXITY

A common textbook claim is that convexity is important for optimization because convex functions have only
one local and global minimum. That is correct, but not really the whole story.

[ 1

Not convex, but unique minimum and Recall that a numerical optimization algorithm
well-suited for numerical optimization. can only query a function at points.

Convexity allows us to draw global conclusions from local properties.

Convexity as a generalization of linearity
» Constant functions: If we know f(x) at a single point x, we know f.
o Linear functions: If we know f(x) and Vf(x) at a single point, we know f.

» Convex functions: If we know f(x) and Vf(x) at a single point, we know “on which side
of x”” the minimum occurs (that is: in which half-space).

There are various other global properties of convex functions that are determined by their behavior on the
neighborhood of a single point, some of which are much deeper and more surprising than the one above.
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If & is a random variable with E[e] = 0, then

Vi(x) := VF(x) + ¢

is called a stochastic gradient of f at x.

Stochastic gradient descent

Substituting into gradient descent with step size a : N — R :

Bnp1 = &n — a(n)Vf (i)
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CAN SGD CONVERGE?

Compared to gradient descent

¢ Fix x. Start a gradient descent sequence xj, x, . . . and a SGD sequence X1, X;, . ... Then

n n

Xp1 = X0 — Za(l)Vf(x,) and kn«‘ﬁl =X — Z Oé(l)%f()},)

i=1 i=1
 Each stochastic gradient is of the form §f(5c,-) = Vf (&) + &i. Define ¢; as
Vf (&) = Vf(x) + 6
Note that §; # €; in general.

¢ We now have
n

St =Xnp1 — Y ali)i

i=1

Convergence analysis

¢ We often ask convergence questions relative to gradient descent: If gradient descent
converges for a given problem, would SGD also converge?

o The answer depends on the sequence (1), «(2), ... and dj, 92, . . .. How dependent the
random variables 9, are is crucial.

e Evenifey,ey,... areii.d., the same is typically not true for 8y, 0o, . . ..
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CONVERGENCE CONDITIONS

Robbins-Monro conditions

oo [e%s}

E a(n) = oo E a(n)? < oo
n=1 n=1
also relevant for for gradient descent variance condition

o The first condition ensures points arbitrarily far from x( are reachable. This is typically

also required for ordinary gradient descent in R¥.

e The second condition ensures finite variance.

¢ You will often encounter these conditions in books and articles. They are only meaningful

if we also make assumptions on the dependence between €1, €3, . . ..

The variance condition
o For illustration, suppose d1, &2, . . . are i.i.d. with variance 0.
« Recall independent variables X, Y satisfy Var[X + Y] = Var[X] + Var[Y].

e We hence have:

Var[a(n)é,] = a(n)?c?  and Var[i a(n)é,,] = (Z a(n)2>02
n=1 n

The variance condition ensures the total variance is finite.

Peter Orbanz [H. Robbins and S. Monro, “A stochastic approximation method”, Ann. Math. Statist., 1951]
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SGD IN MACHINE LEARNING

¢ For an additive objective f, the cost of computing a gradient scales with sample size:
1 n 1 n
Sy X, 0) = — 3 f(Xi,0) hence  Vof(Xy,.. . Xa,0) = ~ > Vaf (X;,0)
i=1 i=1

« A mini batch is a random subset X, . . . , X; of a large data set X{, . .., X, (so k < n).

o A gradient is computed only for the cost on this subset.
Note X; is now the ith data point, not the ith gradient step. The role of X, on previous slides is now assumed by é,,.
Stochastic gradient view

o Let @9 f(X1,...,X:) be gradient computed on the mini batch.

¢ It deviates from the actual gradient by an error term €:

Vof (X1, ..., X, 0) = Vof (X1, ..., Xn,0) + ¢

Since Ehe mini~batch is selected at random, ¢ is a random variable, and
Vof (X1, ..., Xk, 0) is hence a stochastic gradient.
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