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Modelling Data

All models are wrong, but some are useful.

—George E. P. Box, Norman R. Draper (1987).

I Models are never correct for real world data.

I How do we deal with model misfit?

1. Model selection or averaging;
2. Quantify closeness to true model, and optimality of fitted model;
3. Increase the flexibility of your model class.



Nonparametric Modelling

I What is a nonparametric model?

1. A parametric model where the number of parameters increases
with data;

2. A really large parametric model;
3. A model over infinite dimensional function or measure spaces.

I Why nonparametric models in Bayesian theory of learning?

1. broad class of priors that allows data to “speak for itself”;
2. side-step model selection and averaging.

I How do we deal with the infinite parameter space?

1. Marginalize out all but a finite number of parameters;
2. Define infinite space implicitly (akin to the kernel trick) using either

Kolmogorov Consistency Theorem or de Finetti’s theorem.



Gaussian Processes

A Gaussian process (GP) is a random function f : X→ R such that for any
finite set of input points x1, . . . , xn,f (x1)

...
f (xn)

 ∼ N

m(x1)

...
m(xn)

 ,
c(x1, x1) . . . c(x1, xn)

...
. . .

...
c(xn, x1) . . . c(xn, xn)




where the parameters are the mean function m(x) and covariance kernel
c(x , y).

I The above finite dimensional marginal distributions are consistent , which
guarantees existence of GPs via the Kolmogorov Consistency Theorem.

I GPs can be visualized by iterative sampling f (xn)|f (x1), . . . , f (xn−1) on a
sequence of input points x1, x2, . . ..

[Rasmussen and Williams 2006]



De Finetti’s Theorem
Let θ1, θ2, . . . be an infinite sequence of random variables with joint
distribution p. If for all n ≥ 1, and all permutations σ ∈ Σn on n objects,

p(θ1, . . . , θn) = p(θσ(1), . . . , θσ(n))

That is, the sequence is infinitely exchangeable. Then there exists a latent
random parameter G such that:

p(θ1, . . . , θn) =

∫
ρ(G)

n∏
i=1

ρ(θi |G)dG

where ρ is a joint distribution over G and θi ’s.

I θi ’s are independent given G.

I Sufficient to define p through the conditionals p(θn|θ1, . . . , θn−1).

I G can be infinite dimensional (indeed it is often a random measure).

I The set of infinitely exchangeable sequences is convex and it is an
important theoretical topic to study the set of extremal points.

I Partial exchangeability: Markov, arrays...



Pólya Urn Scheme
Let α ≥ 0 and H be some distribution. The Pólya urn scheme operates as
follows:

1. Draw θ1 ∼ H.

2. For n = 2,3, . . ., let

θn|θ1, . . . , θn−1 ∼
1

n − 1 + α

n−1∑
i=1

δθi +
α

n − 1 + α
H

where δθ is a point mass at θ.

That is, with probability 1
n−1+α , θn = θi , while with probability α

n−1+α we have
that θn is drawn from H.

I The Pólya urn scheme generates a sequence θ1, θ2, . . .

I It is infinitely exchangeable.

I Also known as Blackwell-MacQueen urn scheme.

[Blackwell and MacQueen 1973]



Pólya Urn Scheme
Proof of exchangeability:
Suppose H is non-atomic.
Let θ1, . . . , θ

∗
K be the unique values, and mnk =

∑n
i=1 1(θi = θ∗k ). Then by

collecting terms in the generative process probabilities:

p(θ1, . . . , θn) =
αK ∏K

k=1 h(θ∗k )(mnk − 1)!∏n
i=1 i − 1 + α

where h(θ) is density of θ under H.

I If H has atoms, above proof works too, but we need to define the
clustering structure more carefully.

I It is possible to define a sequence of joint probabilities pn(θ1, . . . , θn) for
n ≥ 1, such that each pn is finitely exchangeable but not infinitely
exchangeable. We also need consistency :∫

pn+1(θ1, . . . , θn+1)dθn+1 = pn(θ1, . . . , θn)

I What is the de Finetti measure of the Pólya urn scheme?
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A Very Little Measure Theory

I A σ-algebra Σ is a family of subsets of a set Θ such that

I Σ is not empty;
I If A ∈ Σ then Θ\A ∈ Σ;
I If A1,A2, . . . ∈ Σ then ∪∞i=1Ai ∈ Σ.

I (Θ,Σ) is a measure space and A ∈ Σ are the measurable sets.

I A measure µ over (Θ,Σ) is a function µ : Σ→ [0,∞] such that

I µ(∅) = 0;
I If A1,A2, . . . ∈ Σ are disjoint then µ(∪∞i=1Ai ) =

∑∞
i=1 µ(Ai ).

I Everything we consider here will be measurable.
I A probability measure is one where µ(Θ) = 1.
I We will identify probability measures as equivalent to distributions

over random variables X taking on values in Θ. Basically
p(X ∈ A) = µ(A) for an event A ∈ Σ.



Dirichlet Processes
A Dirichlet Process (DP) is a random probability measure G over (Θ,Σ) such
that for any finite set of partitions A1∪̇ . . . ∪̇AK = Θ, the random vector

(G(A1), . . . ,G(AK ))

is Dirichlet distributed.

6
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I Reminder: probability measures are functions, and above definition is
very similar to that of Gaussian processes.

I Kolmogorov Consistency Theorem can be applied again to show that
random functions G : Σ→ [0,1] exists, but there are technical difficulties.

[Ferguson 1973]



Dirichlet Distributions

I A Dirichlet distribution is a distribution over the K -dimensional probability
simplex:

∆K =
{

(π1, . . . , πK ) : πk ≥ 0,
∑

k πk = 1
}

I We say (π1, . . . , πK ) is Dirichlet distributed,

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

with parameters (α1, . . . , αK ), if

p(π1, . . . , πK ) =
Γ(
∑

k αk )∏
k Γ(αk )

n∏
k=1

παk−1
k



Dirichlet Distributions



Dirichlet Distributions: Agglomerative Property

I Combining entries of probability vectors preserves Dirichlet property, for
example:

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

⇒ (π1 + π2, π3, . . . , πK ) ∼ Dirichlet(α1 + α2, α3, . . . , αK )

I Generally, if (I1, . . . , Ij ) is a partition of (1, . . . ,n):∑
i∈I1

πi , . . . ,
∑
i∈Ij

πi

 ∼ Dirichlet

∑
i∈I1

αi , . . . ,
∑
i∈Ij

αi





Dirichlet Distributions: Decimative Property

I The converse of the agglomerative property is also true, for example if:

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

(τ1, τ2) ∼ Dirichlet(α1β1, α1β2)

with β1 + β2 = 1,

⇒ (π1τ1, π1τ2, π2, . . . , πK ) ∼ Dirichlet(α1β1, α2β2, α2, . . . , αK )



Dirichlet Processes

I A Dirichlet process (DP) is an “infinitely decimated” Dirichlet variable:

1 ∼ Dirichlet(α)

(π1, π2) ∼ Dirichlet(α/2, α/2) π1 + π2 = 1
(π11, π12, π21, π22) ∼ Dirichlet(α/4, α/4, α/4, α/4) πi1 + πi2 = πi

...

I Each decimation step involves drawing from a Beta distribution (a
Dirichlet with 2 components) and multiplying into the relevant entry.

I Demo: DPgenerate



Dirichlet Processes
A Dirichlet Process (DP) is a random probability measure G over (Θ,Σ) such
that for any finite set of partitions A1∪̇ . . . ∪̇AK = Θ, the random vector

(G(A1), . . . ,G(AK ))

is Dirichlet distributed.
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I Reminder: probability measures are functions, and above definition is
very similar to that of Gaussian processes.

I Kolmogorov Consistency Theorem can be applied again to show that
random functions G : Σ→ [0,1] exists, but there are technical difficulties.

[Ferguson 1973]



Parameters of Dirichlet Processes
I A DP has two parameters:

I Base distribution H, which is like the mean of the DP.
I Strength parameter α, which is like an inverse-variance of the DP.

I We write:

G ∼ DP(α,H)

if for any partition (A1, . . . ,AK ) of Θ:

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

I The first two cumulants of the DP:

Expectation: E[G(A)] = H(A)

Variance: V[G(A)] =
H(A)(1− H(A))

α + 1

where A is any measurable subset of Θ.
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Representations of Dirichlet Processes

I Suppose G ∼ DP(α,H). G is a (random) probability measure over Θ.
We can treat it as a distribution over Θ. Let

θ1, . . . , θn ∼ G

be random variables with distribution G.

I We saw in the demo that draws from a Dirichlet process seem to be
discrete distributions. If so, then:

G =
∞∑

k=1

πkδθ∗k

and there is positive probability that sets of θi ’s can take on the same
value θ∗k for some k , i.e. the θi ’s cluster together.

I We are concerned with representations of Dirichlet processes based
upon both the clustering property and the sum of point masses.



Posterior Dirichlet Processes

I Suppose G is DP distributed, and θ is G distributed:

G ∼ DP(α,H)

θ|G ∼ G

I This gives p(G) and p(θ|G).

I We are interested in:

p(θ) =

∫
p(θ|G)p(G) dG

p(G|θ) =
p(θ|G)p(G)

p(θ)



Posterior Dirichlet Processes

Conjugacy between Dirichlet Distribution and Multinomial.

I Consider:

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

z|(π1, . . . , πK ) ∼ Discrete(π1, . . . , πK )

z is a multinomial variate, taking on value i ∈ {1, . . . ,n} with probability
πi .

I Then:

z ∼ Discrete
(

α1P
i αi
, . . . , αKP

i αi

)
(π1, . . . , πK )|z ∼ Dirichlet(α1 + δ1(z), . . . , αK + δK (z))

where δi (z) = 1 if z takes on value i , 0 otherwise.

I Converse also true.



Posterior Dirichlet Processes
I Fix a partition (A1, . . . ,AK ) of Θ. Then

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

P(θ ∈ Ai |G) = G(Ai )

I Using Dirichlet-multinomial conjugacy,

P(θ ∈ Ai ) = H(Ai )

(G(A1), . . . ,G(AK ))|θ ∼ Dirichlet(αH(A1)+δθ(A1), . . . , αH(AK )+δθ(AK ))

I The above is true for every finite partition of Θ. In particular, taking a
really fine partition,

p(dθ) = H(dθ)

I Also, the posterior G|θ is also a Dirichlet process:

G|θ ∼ DP
(
α + 1,

αH + δθ
α + 1

)



Posterior Dirichlet Processes

G ∼ DP(α,H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
(
α + 1, αH+δθ

α+1

)



Pólya Urn Scheme

I First sample:
θ1|G ∼ G G ∼ DP(α,H)

⇐⇒ θ1 ∼ H G|θ1 ∼ DP(α + 1, αH+δθ1
α+1 )

I Second sample:
θ2|θ1,G ∼ G G|θ1 ∼ DP(α + 1, αH+δθ1

α+1 )

⇐⇒ θ2|θ1 ∼
αH+δθ1
α+1 G|θ1, θ2 ∼ DP(α + 2, αH+δθ1 +δθ2

α+2 )

I nth sample

θn|θ1:n−1,G ∼ G G|θ1:n−1 ∼ DP(α + n − 1, αH+
Pn−1

i=1 δθi
α+n−1 )

⇐⇒ θn|θ1:n−1 ∼
αH+

Pn−1
i=1 δθi

α+n−1 G|θ1:n ∼ DP(α + n, αH+
Pn

i=1 δθi
α+n )



Pólya Urn Scheme

I Pólya urn scheme produces a sequence θ1, θ2, . . . with the following
conditionals:

θn|θ1:n−1 ∼
αH +

∑n−1
i=1 δθi

α + n − 1

I Picking balls of different colors from an urn:

I Start with no balls in the urn.
I with probability ∝ α, draw θn ∼ H, and add a ball of that color into

the urn.
I With probability ∝ n − 1, pick a ball at random from the urn, record
θn to be its color, return the ball into the urn and place a second ball
of same color into urn.

I Pólya urn scheme is like a “representer” for the DP—a finite projection of
an infinite object G.



Exchangeability and De Finetti’s Theorem

I Starting with a DP, we constructed the Pólya urn scheme.

I De Finetti’s Theorem gives the converse.

I Since θi are iid G, their joint distribution is invariant to permutations, thus
θ1, θ2, . . . are infinitely exchangeable.

I Thus a random measures must exist making them iid.

I This is G.



Chinese Restaurant Process

I Draw θ1, . . . , θn from a Pólya urn scheme.

I They take on K < n distinct values, say θ∗1 , . . . , θ
∗
K .

I This defines a partition of 1, . . . ,n into K clusters, such that if i is in
cluster k , then θi = θ∗k .

I Random draws θ1, . . . , θn from a Pólya urn scheme induces a random
partition of 1, . . . ,n.

I The induced distribution over partitions is a Chinese restaurant process
(CRP).



Chinese Restaurant Process

I Generating from the CRP:

I First customer sits at the first table.
I Customer n sits at:

I Table k with probability nk
α+n−1 where nk is the number of customers

at table k .
I A new table K + 1 with probability α

α+n−1 .
I Customers⇔ integers, tables⇔ clusters.

I The CRP exhibits the clustering property of the DP.

I Rich-gets-richer effect implies small number of large clusters.

I Expected number of clusters is K = O(α log n).
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Chinese Restaurant Process

I To get back from the CRP to Pólya urn scheme, simply draw

θ∗k ∼ H

for k = 1, . . . ,K , then for i = 1, . . . ,n set

θi = θ∗zi

where zi is the table that customer i sat at.

I The clustering (partition) is independent from the values assigned to
each cluster.

I The CRP teases apart the clustering property of the DP, from the base
distribution.



Stick-breaking Construction
I Returning to the posterior process:

G ∼ DP(α,H)

θ|G ∼ G
⇔

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ

α+1 )

I Consider a partition (θ,Θ\θ) of Θ. We have:

(G(θ),G(Θ\θ))|θ ∼ Dirichlet((α + 1)αH+δθ

α+1 (θ), (α + 1)αH+δθ

α+1 (Θ\θ))

= Dirichlet(1, α)

I G has a point mass located at θ:

G = βδθ + (1− β)G′ with β ∼ Beta(1, α)

and G′ is the (renormalized) probability measure with the point mass
removed.

I What is G′?



Stick-breaking Construction
I Currently, we have:

G ∼ DP(α,H)

θ ∼ G
⇒

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ

α+1 )

G = βδθ + (1− β)G′

β ∼ Beta(1, α)

I Consider a further partition (θ,A1, . . . ,AK ) of Θ:

(G(θ),G(A1), . . . ,G(AK ))

=(β, (1− β)G′(A1), . . . , (1− β)G′(AK ))

∼Dirichlet(1, αH(A1), . . . , αH(AK ))

I The agglomerative/decimative property of Dirichlet implies:

(G′(A1), . . . ,G′(AK ))|θ ∼ Dirichlet(αH(A1), . . . , αH(AK ))

G′ ∼ DP(α,H)



Stick-breaking Construction
I We have:

G ∼ DP(α,H)

G = β1δθ∗1 + (1− β1)G1

G = β1δθ∗1 + (1− β1)(β2δθ∗2 + (1− β2)G2)

...

G =
∞∑

k=1

πkδθ∗k

where

πk = βk
∏k−1

i=1 (1− βi ) βk ∼ Beta(1, α) θ∗k ∼ H

π

(4)π
(5)π

(2)π
(3)π

(6)π

(1)



Stick-breaking Construction

I We call the construction for π1, π2 the stick-breaking construction.

I Also known as the GEM distribution, write π ∼ GEM(α).

I Starting with a DP, we showed that draws from the DP looks like a sum
of point masses, with masses drawn from a stick-breaking construction.

I The steps are limited by assumptions of regularity on Θ and smoothness
on H.

I [Sethuraman 1994] started with the stick-breaking construction, and
showed that draws are indeed DP distributed, under very general
conditions.



Representations of Dirichlet Processes
I Posterior Dirichlet process:

G ∼ DP(α,H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
(
α + 1, αH+δθ

α+1

)
I Pólya urn scheme:

θn|θ1:n−1 ∼
αH +

∑n−1
i=1 δθi

α + n − 1

I Chinese restaurant process:

p(customer n sat at table k |past) =

{
nk

n−1+α if occupied table
α

n−1+α if new table

I Stick-breaking construction:

πk = βk

k−1∏
i=1

(1− βi ) βk ∼ Beta(1, α) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗k



Extensions of Dirichlet Processes

I Two-parameter generalization of the Chinese restaurant process:

p(customer n sat at table k |past) =

{
nk−d

n−1+α if occupied table
α+dK

n−1+α if new table

Gives the Pitman-Yor process.

I Other stick-breaking constructions:

πk = βk

k−1∏
i=1

(1− βi ) βk ∼ Beta(ak ,bk ) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗k

ak = 1− d , bk = α + dk gives Pitman-Yor process.

[Pitman and Yor 1997, Perman et al. 1992]



Pitman-Yor Processes

I Two salient features of the Pitman-Yor process:

I With more occupied tables, the chance of even more tables
becomes higher.

I Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

I The above means that Pitman-Yor processes produce Zipf’s Law type
behaviour, with K = O(αnd ).
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Pitman-Yor Processes

Draw from a Pitman-Yor process
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Draw from a Dirichlet process
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Normalized Gamma Processes

I A gamma distribution is a distribution over [0,∞). A gamma distributed
variable γ ∼ Gamma(a,b) has density:

p(γ) =
ba

Γ(a)
γa−1e−bγ

I We can construct a Dirichlet variable by normalizing gamma variables:

γk ∼ Gamma(αk ,1)

(π1, . . . , πK ) = 1PK
k=1 γk

(γ1, . . . , γK ) ∼ Dirichlet(α1, . . . , αK )

I Similarly a DP can be constructed by normalizing a gamma process.



Normalized Gamma Processes

I A gamma process G̃ ∼ ΓP(H̃) is a random measure satisfying:

I G̃(A) ∼ Gamma(H̃(A)) for A ∈ Σ;
I G̃(A), G̃(B) independent if A ∪ B = ∅.

I A gamma process is a completely random measure—a random
measure with independence on disjoint sets.

I This provides an avenue to generalize the DP by normalizing other
completely random measures (e.g. normalized generalized inverse
Gaussian process, normalized stable process).

I Another important example of completely random measures is the beta
process.

I Completely random measures are strongly related to Lévy processes,
which are in turn strongly related to infinitely divisible distributions.
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Density Estimation
I Parametric density estimation (e.g. Gaussian, mixture models)

Data: x = {x1, x2, . . .}
Model: xi |w ∼ F (·|w)

I Prior over parameters

p(w)

I Posterior over parameters

p(w |x) =
p(w)p(x|w)

p(x)

I Prediction with posteriors

p(x?|x) =

∫
p(x?|w)p(w |x) dw



Density Estimation
I Bayesian nonparametric density estimation with Dirichlet processes

Data: x = {x1, x2, . . .}
Model: xi ∼ G

I Prior over distributions

G ∼ DP(α,H)

I Posterior over distributions

p(G|x) =
p(G)p(x|G)

p(x)

I Prediction with posteriors

p(x?|x) =

∫
p(x?|G)p(G|x) dF =

∫
G(x?)p(G|x) dG

I Not quite feasible, since G is a discrete distribution, in particular it has no
density.



Density Estimation

I Solution: Convolve the DP with a smooth distribution:

G ∼ DP(α,H)

F (·) =

∫
F (·|θ)dG(θ)

xi ∼ Fx

⇒

G =
∞∑

k=1

πkδθ∗k

Fx (·) =
∞∑

k=1

πk F (·|θ∗k )

xi ∼ Fx



Density Estimation
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F (·|µ,Σ) is Gaussian with mean µ, covariance Σ.
H(µ,Σ) is Gaussian-inverse-Wishart conjugate prior.
Red: mean density. Blue: median density. Grey: 5-95 quantile. Others:
draws. Black: data points.



Density Estimation
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Clustering
I Recall our approach to density estimation:

G =
∞∑

k=1

πkδθ∗k ∼ DP(α,H)

Fx (·) =
∞∑

k=1

πk F (·|θ∗k )

xi ∼ Fx

I Above model equivalent to:

zi ∼ Discrete(π)

θi = θ∗zi

xi |zi ∼ F (·|θi ) = F (·|θ∗zi
)

I This is simply a mixture model with an infinite number of components.
This is called a DP mixture model .



Clustering

I DP mixture models are used in a variety of clustering applications,
where the number of clusters is not known a priori.

I They are also used in applications in which we believe the number of
clusters grows without bound as the amount of data grows.

I DPs have also found uses in applications beyond clustering, where the
number of latent objects is not known or unbounded.

I Nonparametric probabilistic context free grammars.
I Visual scene analysis.
I Infinite hidden Markov models/trees.
I Haplotype inference.
I ...

I In many such applications it is important to be able to model the same
set of objects in different contexts.

I This corresponds to the problem of grouped clustering and can be
tackled using hierarchical Dirichlet processes.

[Teh et al. 2006]



Semiparametric Modelling

I Linear regression model for inferring effectiveness of new medical
treatments.

yij = β>xij + b>i zij + εij

yij is outcome of j th trial on i th subject.
xij , zij are predictors (treatment, dosage, age, health...).
β are fixed-effects coefficients.
bi are random-effects subject-specific coefficients.
εij are noise terms.

I Care about inferring β. If xij is treatment, we want to determine
p(β > 0|x,y).



Semiparametric Modelling

yij = β>xij + b>i zij + εij

I Usually we assume Gaussian noise εij ∼ N (0, σ2). Is this a sensible
prior? Over-dispersion, skewness,...

I May be better to model noise nonparametrically,

εij ∼ F
F ∼ DP

I Also possible to model subject-specific random effects
nonparametrically,

bi ∼ G
G ∼ DP



Model Selection/Averaging
I Data: x = {x1, x2, . . .}

Models: p(θk |Mk ), p(x|θk ,Mk )

I Marginal likelihood

p(x|Mk ) =

∫
p(x|θk ,Mk )p(θk |Mk ) dθk

I Model selection

M = argmax
Mk

p(x|Mk )

I Model averaging

p(x?|x) =
∑
Mk

p(x?|Mk )p(Mk |x) =
∑
Mk

p(x?|Mk )
p(x|Mk )p(Mk )

p(x)

I But: is this computationally feasible?



Model Selection/Averaging

I Marginal likelihood is usually extremely hard to compute.

p(x|Mk ) =

∫
p(x|θk ,Mk )p(θk |Mk ) dθk

I Model selection/averaging is to prevent underfitting and overfitting.

I But reasonable and proper Bayesian methods should not overfit
[Rasmussen and Ghahramani 2001].

I Use a really large model M∞ instead, and let the data speak for
themselves.



Model Selection/Averaging
Clustering

How many clusters are there?



Model Selection/Averaging
Spike Sorting
How many neurons are there?

[Görür 2007, Wood et al. 2006a]



Model Selection/Averaging
Topic Modelling
How many topics are there?

Figure from Blei et al. [Blei et al. 2004, Teh et al. 2006]



Model Selection/Averaging
Grammar Induction

How many grammar symbols are there?

Figure from Liang et al. [Liang et al. 2007b, Finkel et al. 2007]



Model Selection/Averaging
Visual Scene Analysis

How many objects, parts, features?

Figure from Sudderth et al. [Sudderth et al. 2007]



Summary

I Dirichlet process is “just” a glorified Dirichlet distribution.

I Draws from a DP are probability measures consisting of a weighted sum
of point masses.

I Many representations: Pólya urn scheme, Chinese restaurant process,
stick-breaking construction, normalized gamma process.

I DP mixture models are mixture models with countably infinite number of
components.

I Important underpinning concepts: de Finetti’s Theorem, Kolmogorov
Consistency Theorem.

I I have not delved into inference.



Tutorials on Nonparametric Bayes

I Zoubin Gharamani, UAI 2005.

I Michael Jordan, NIPS 2005.

I Volker Tresp, ICML nonparametric Bayes workshop 2006.

I Workshop on Bayesian Nonparametric Regression, Cambridge, July
2007.

I My Machine Learning Summer School 2007 tutorial and practical course.



Outline

Bayesian Nonparametric Modelling

Dirichlet Processes

Representations of Dirichlet Processes

Some Applications of Dirichlet Processes

Hierarchical Dirichlet Processes
Grouped Clustering
Hierarchical Dirichlet Processes
Representations

Nested and Dependent Dirichlet Processes

Indian Buffet Processes



Grouped Clustering



Document Topic Modelling

I Information retrieval: finding useful information from large collections of
documents.

I Example: Google, CiteSeer, Amazon...

I Model documents as “bags of words”.



Document Topic Modelling

I We model documents as coming from an underlying set of topics.

I Summarize documents.
I Document/query comparisons.
I Do not know the number of topics a priori—use DP mixtures

somehow.
I But: topics have to be shared across documents...



Document Topic Modelling

I Share topics across documents in a collection, and across different
collections.

I More sharing within collections than across.

I Use DP mixture models as we do not know the number of topics a priori.



Hierarchical Dirichlet Processes

I Use a DP mixture for each group.

I Unfortunately there is no sharing of clusters
across different groups because H is smooth.

I Solution: make the base distribution H discrete.

I Put a DP prior on the common base distribution.

[Teh et al. 2006]
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Hierarchical Dirichlet Processes

I A hierarchical Dirichlet process:

G0 ∼ DP(α0,H)

G1,G2|G0 ∼ DP(α,G0)

I Extension to other hierarchies is straightforward. 1i
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Hierarchical Dirichlet Processes

I Making G0 discrete forces shared cluster between G1 and G2.



Stick-breaking Construction

I We shall assume the following HDP hierarchy:

G0 ∼ DP(γ,H)

Gj |G0 ∼ DP(α,G0) for j = 1, . . . , J

I The stick-breaking construction for the HDP is:

G0 =
∑∞

k=1 π0kδθ∗k θ∗k ∼ H

π0k = β0k
∏k−1

l=1 (1− β0l ) β0k ∼ Beta
(
1, γ
)

Gj =
∑∞

k=1 πjkδθ∗k

πjk = βjk
∏k−1

l=1 (1− βjl ) βjk ∼ Beta
(
αβ0k , α(1−

∑k
l=1 β0l )

)



Hierarchical Pòlya Urn Scheme

I Let G ∼ DP(α,H).

I We can visualize the Pòlya urn scheme as follows:

2

1θ θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗
1θ∗ . . . . .

. . . . .θ2 3 4 5 6 7

6543

where the arrows denote to which θ∗k each θi was assigned and

θ1, θ2, . . . ∼ G i.i.d.
θ∗1 , θ

∗
2 , . . . ∼ H i.i.d.

(but θ1, θ2, . . . are not independent of θ∗1 , θ
∗
2 , . . .).



Hierarchical Pòlya Urn Scheme

I Let G0 ∼ DP(γ,H) and G1,G2|G0 ∼ DP(α,G0).

I The hierarchical Pòlya urn scheme to generate draws from G1,G2:

21θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .

. . . . .θ

11 12 13 14 15 16

11 12 13 14 15 θ16 17

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .21 22 23 24 25 26

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .01 02 03 0504 06

θ θ θ θ . . . . .θ θ θ272625242322



Chinese Restaurant Franchise

I Let G0 ∼ DP(γ,H) and G1,G2|G0 ∼ DP(α,G0).

I The Chinese restaurant franchise describes the clustering of data items
in the hierarchy:
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Nested Dirichlet Processes

I The HDP assumes that data group structure is
observed.

I The group structure may not be known in
practice, even if there is prior belief in some
group structure.

I Even if known, we may still believe that some
groups are more similar to each other than to
other groups.

I We can cluster groups using a second level of
mixture models.

I Using a second DP mixture to model this leads to
the nested Dirichlet process.

[Rodríguez et al. 2006]
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Nested Dirichlet Processes
I Cluster groups. Each group j belongs to cluster kj :

kj ∼ π π ∼ GEM(α)

I Group j inherits the DP from cluster kj :

Gj = G∗kj

I Place a HDP prior on {G∗k} (not crucial):

G∗k ∼ DP(β,G∗0) G∗0 ∼ DP(γ,H)

I Data:

xji ∼ F (θji ) θji ∼ Gj

Gj

H

x

θji

ji

jk

π

G*
k

0G*



Nested Dirichlet Processes

G∗0 ∼ DP(γ,H)

Q ∼ DP(α,DP(β,G∗0))

Gj ∼ Q
θji ∼ Gj

xji ∼ F (θji )

Gj

H

0G*

Q

x

θji

ji

α

β

γ



Dependent Dirichlet Processes
I The HDP induces a straightforward dependency among groups.

I What if the data is smoothly varying across some spatial or temporal
domain?

I Topic modelling: topic popularity and composition can both change
slowly as time passes.

I Haplotype inference: haplotype occurrence can change smoothly
as function of geography.

I a dependent Dirichlet process is a stochastic process {Gt} indexed by t
(space or time), such that each Gt ∼ DP(α,H) and if t , t ′ are
neighbouring points, Gt and Gt′ should be “similar” to each other.

I Simple example:

π ∼ GEM(α) (θ∗tk ) ∼ GP(µ,Σ) for each k

Gt =
∞∑

k=1

πkδθ∗tk
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Beyond Clustering

I Dirichlet processes are nonparametric models of clustering.

I Can nonparametric models go beyond clustering to describe data in
more expressive ways?

I Hierarchical (e.g. taxonomies)?
I Distributed (e.g. multiple causes)?



Indian Buffet Processes
I The Indian Buffet Process (IBP) is akin to the Chinese restaurant

process but describes each customer with a binary vector instead of
cluster.

I Generating from an IBP:

I Parameter α.
I First customer picks Poisson(α) dishes to eat.
I Subsequent customer i picks dish k with probability nk

i ; and picks
Poisson(αi ) new dishes.
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Indian Buffet Processes

I The IBP is infinitely exchangeable, though this is much harder to see.

I De Finetti’s Theorem again states that there is some random measure
underlying the IBP.

I This random measure is the Beta process.

[Griffiths and Ghahramani 2006, Thibaux and Jordan 2007]



Beta Processes

I A beta process B ∼ BP(c, αH) is a random discrete measure with form:

B =
∞∑

k=1

µkδθ∗k

where the points P = {(θ∗1 , µ1), (θ∗2 , µ2), . . .} are spikes in a 2D Poisson
process with base measure:

αcµ−1(1− µ)c−1dµH(dθ)

I The beta process with c = 1 is the de Finetti measure for the IBP. When
c 6= 1 we have a two parameter generalization of the IBP.

I This is an example of a completely random measure.

I A beta process does not have Beta distributed marginals.

[Hjort 1990]



Stick-breaking Construction for Beta Processes

I When c = 1 it was shown that the following generates a draw of B:

βk ∼ Beta(1, α) µk = (1− βk )
∏k−1

i=1 (1− βi ) θ∗k ∼ H

B =
∞∑

k=1

µkδθ∗k

I The above is the complement of the stick-breaking construction for DPs!

π
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(3)µ

(6)µ

(1)µ
(2)µ

(4)µ
(5)µ

(5)π

(2)π
(3)π

(6)π

(1)

[Teh et al. 2007]



Indian Buffet Processes
Applications of Indian Buffet Processes.

I The IBP can be used in concert with different likelihood models in a
variety of applications.

Z ∼ IBP(α) X ∼ F (Z ,Y )

Y ∼ H p(Z ,Y |X ) =
p(Z ,Y )p(X |Z ,Y )

p(X )

I Latent factor models for distributed representation [Griffiths and
Ghahramani 2005].

I Matrix factorization for collaborative filtering [Meeds et al 2007].

I Latent causal discovery for medical diagnostics [Wood et al 2006].

I Protein complex discovery [Chu et al 2006].

I Psychological choice behaviour [Görür and Rasmussen 2006].

I Independent Components Analysis
[Knowles and Ghahramani 2007, Teh et al. 2007].



Indian Buffet Processes
Application: causal discovery [Wood et al 2006].

I Causal model of patient symptoms and diseases.

connectivity

diseases

symptoms

Z

3Y Y Y

X X X X X2 3 4 5

1 2

1

Noisy-or observations:

p(Xit = 1|Y ,Z ) = 1− (1− εi )
∏

k (1− λik )zik ykt

I Usually given model and the task is to infer diseases Y given X .

I Given sets of patient symptoms X , we can learn the disease causes of
these symptoms by learning both Y and Z .



Indian Buffet Processes
Application: collaborative filtering [Meeds et al 2007].

I Model how customers like movies in terms of binary features Zc , Zm and
interaction matrix Y .
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Indian Buffet Processes
Application: Independent Components Analysis

I Each image Xi is a linear combination of sparse features:

Xi =
∑

k

Λk yik

where yik is activity of feature k with sparse prior. One possibility is a
mixture of a Gaussian and a point mass at 0:

yik = zik aik aik ∼ N (0,1) Z ∼ IBP(α)

I An ICA model with infinite number of features.

[Knowles and Ghahramani 2007, Teh et al. 2007]



Next Week

I Infinite hidden Markov models [Beal et al. 2002] (NIPS).

I Dirichlet diffusion trees [Neal 2003] (Valencia).

I Nested Chinese restaurant processes [Blei et al. 2004] (NIPS).

I Infinite relational model [Kemp et al. 2006] (AAAI)?
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Dirichlet Processes were first introduced by [Ferguson 1973], while [Antoniak 1974] further developed DPs as well as introduce
the mixture of DPs. [Blackwell and MacQueen 1973] showed that the Pólya urn scheme is exchangeable with the DP being its de
Finetti measure. Further information on the Chinese restaurant process can be obtained at [Aldous 1985, Pitman 2002]. The DP
is also related to Ewens’ Sampling Formula [Ewens 1972]. [Sethuraman 1994] gave a constructive definition of the DP via a
stick-breaking construction. DPs were rediscovered in the machine learning community by [Neal 1992, Rasmussen 2000].

Hierarchical Dirichlet Processes (HDPs) were first developed by [Teh et al. 2006], although an aspect of the model was first
discussed in the context of infinite hidden Markov models [Beal et al. 2002]. HDPs and generalizations have been applied across
a wide variety of fields.
Dependent Dirichlet Processes are sets of coupled distributions over probability measures, each of which is marginally DP
[MacEachern et al. 2001]. A variety of dependent DPs have been proposed in the literature since then
[Srebro and Roweis 2005, Griffin 2007, Caron et al. 2007]. The infinite mixture of Gaussian processes of
[Rasmussen and Ghahramani 2002] can also be interpreted as a dependent DP.
Indian Buffet Processes (IBPs) were first proposed in [Griffiths and Ghahramani 2006], and extended to a two-parameter family
in [Griffiths et al. 2007b]. [Thibaux and Jordan 2007] showed that the de Finetti measure for the IBP is the beta process of
[Hjort 1990], while [Teh et al. 2007] gave a stick-breaking construction and developed efficient slice sampling inference algorithms
for the IBP.
Nonparametric Tree Models are models that use distributions over trees that are consistent and exchangeable. [Blei et al. 2004]
used a nested CRP to define distributions over trees with a finite number of levels. [Neal 2001, Neal 2003] defined Dirichlet
diffusion trees, which are binary trees produced by a fragmentation process. [Teh et al. 2008] used Kingman’s coalescent
[Kingman 1982b, Kingman 1982a] to produce random binary trees using a coalescent process. [Roy et al. 2007] proposed
annotated hierarchies, using tree-consistent partitions first defined in [Heller and Ghahramani 2005] to model both relational and
featural data.

Markov chain Monte Carlo Inference algorithms are the dominant approaches to inference in DP mixtures. [Neal 2000] is a
good review of algorithms based on Gibbs sampling in the CRP representation. Algorithm 8 in [Neal 2000] is still one of the best
algorithms based on simple local moves. [Ishwaran and James 2001] proposed blocked Gibbs sampling in the stick-breaking
representation instead due to the simplicity in implementation. This has been further explored in [Porteous et al. 2006]. Since
then there has been proposals for better MCMC samplers based on proposing larger moves in a Metropolis-Hastings framework
[Jain and Neal 2004, Liang et al. 2007a], as well as sequential Monte Carlo [Fearnhead 2004, Mansingkha et al. 2007].
Other Approximate Inference Methods have also been proposed for DP mixture models. [Blei and Jordan 2006] is the first
variational Bayesian approximation, and is based on a truncated stick-breaking representation. [Kurihara et al. 2007] proposed an
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improved VB approximation based on a better truncation technique, and using KD-trees for extremely efficient inference in large
scale applications. [Kurihara et al. 2007] studied improved VB approximations based on integrating out the stick-breaking
weights. [Minka and Ghahramani 2003] derived an expectation propagation based algorithm. [Heller and Ghahramani 2005]
derived tree-based approximation which can be seen as a Bayesian hierarchical clustering algorithm. [Daume III 2007] developed
admissible search heuristics to find MAP clusterings in a DP mixture model.

Computer Vision and Image Processing. HDPs have been used in object tracking
[Fox et al. 2006, Fox et al. 2007b, Fox et al. 2007a]. An extension called the transformed Dirichlet process has been used in
scene analysis [Sudderth et al. 2006b, Sudderth et al. 2006a, Sudderth et al. 2007], a related extension has been used in fMRI
image analysis [Kim and Smyth 2007, Kim 2007]. An extension of the infinite hidden Markov model called the nonparametric
hidden Markov tree has been introduced and applied to image denoising [Kivinen et al. 2007].
Natural Language Processing. HDPs are essential ingredients in defining nonparametric context free grammars
[Liang et al. 2007b, Finkel et al. 2007]. [Johnson et al. 2007] defined adaptor grammars, which is a framework generalizing both
probabilistic context free grammars as well as a variety of nonparametric models including DPs and HDPs. DPs and HDPs have
been used in information retrieval [Cowans 2004], word segmentation [Goldwater et al. 2006b], word morphology modelling
[Goldwater et al. 2006a], coreference resolution [Haghighi and Klein 2007], topic modelling
[Blei et al. 2004, Teh et al. 2006, Li et al. 2007]. An extension of the HDP called the hierarchical Pitman-Yor process has been
applied to language modelling [Teh 2006a, Teh 2006b, Goldwater et al. 2006a].[Savova et al. 2007] used annotated hierarchies to
construct syntactic hierarchies. Theses on nonparametric methods in NLP include [Cowans 2006, Goldwater 2006].
Other Applications. Applications of DPs, HDPs and infinite HMMs in bioinformatics include
[Xing et al. 2004, Xing et al. 2006, Xing et al. 2007, Xing and Sohn 2007a, Xing and Sohn 2007b]. DPs have been applied in
relational learning [Shafto et al. 2006, Kemp et al. 2006, Xu et al. 2006], spike sorting [Wood et al. 2006a, Görür 2007]. The HDP
has been used in a cognitive model of categorization [Griffiths et al. 2007a]. IBPs have been applied to infer hidden causes
[Wood et al. 2006b], in a choice model [Görür et al. 2006], to modelling dyadic data [Meeds et al. 2007], to overlapping clustering
[Heller and Ghahramani 2007], and to matrix factorization [Wood and Griffiths 2006].
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