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Modelling Data

All models are wrong, but some are useful.

—George E. P. Box, Norman R. Draper (1987).

I Models are never correct for real world data.

I How do we deal with model misfit?

1. Model selection or averaging;
2. Quantify closeness to true model, and optimality of fitted model;
3. Increase the flexibility of your model class.



Nonparametric Modelling

I What is a nonparametric model?

1. A parametric model where the number of parameters increases
with data;

2. A really large parametric model;
3. A model over infinite dimensional function or measure spaces.

I Why nonparametric models in Bayesian theory of learning?

1. broad class of priors that allows data to “speak for itself”;
2. side-step model selection and averaging.

I How do we deal with the infinite parameter space?

1. Marginalize out all but a finite number of parameters;
2. Define infinite space implicitly (akin to the kernel trick) using either

Kolmogorov Consistency Theorem or de Finetti’s theorem.



Gaussian Processes

A Gaussian process (GP) is a random function f : X→ R such that for any
finite set of input points x1, . . . , xn,f (x1)

...
f (xn)

 ∼ N

m(x1)

...
m(xn)

 ,
c(x1, x1) . . . c(x1, xn)

...
. . .

...
c(xn, x1) . . . c(xn, xn)




where the parameters are the mean function m(x) and covariance kernel
c(x , y).

I The above finite dimensional marginal distributions are consistent , which
guarantees existence of GPs via the Kolmogorov Consistency Theorem.

I GPs can be visualized by iterative sampling f (xn)|f (x1), . . . , f (xn−1) on a
sequence of input points x1, x2, . . ..

[Rasmussen and Williams 2006]



De Finetti’s Theorem
Let θ1, θ2, . . . be an infinite sequence of random variables with joint
distribution p. If for all n ≥ 1, and all permutations σ ∈ Σn on n objects,

p(θ1, . . . , θn) = p(θσ(1), . . . , θσ(n))

That is, the sequence is infinitely exchangeable. Then there exists a latent
random parameter G such that:

p(θ1, . . . , θn) =

∫
ρ(G)

n∏
i=1

ρ(θi |G)dG

where ρ is a joint distribution over G and θi ’s.

I θi ’s are independent given G.

I Sufficient to define p through the conditionals p(θn|θ1, . . . , θn−1).

I G can be infinite dimensional (indeed it is often a random measure).

I The set of infinitely exchangeable sequences is convex and it is an
important theoretical topic to study the set of extremal points.

I Partial exchangeability: Markov, arrays...



Pólya Urn Scheme
Let α ≥ 0 and H be some distribution. The Pólya urn scheme operates as
follows:

1. Draw θ1 ∼ H.

2. For n = 2,3, . . ., let

θn|θ1, . . . , θn−1 ∼
1

n − 1 + α

n−1∑
i=1

δθi +
α

n − 1 + α
H

where δθ is a point mass at θ.

That is, with probability 1
n−1+α , θn = θi , while with probability α

n−1+α we have
that θn is drawn from H.

I The Pólya urn scheme generates a sequence θ1, θ2, . . .

I It is infinitely exchangeable.

I Also known as Blackwell-MacQueen urn scheme.

[Blackwell and MacQueen 1973]



Pólya Urn Scheme
Proof of exchangeability:
Suppose H is non-atomic.
Let θ1, . . . , θ

∗
K be the unique values, and mnk =

∑n
i=1 1(θi = θ∗k ). Then by

collecting terms in the generative process probabilities:

p(θ1, . . . , θn) =
αK ∏K

k=1 h(θ∗k )(mnk − 1)!∏n
i=1 i − 1 + α

where h(θ) is density of θ under H.

I If H has atoms, above proof works too, but we need to define the
clustering structure more carefully.

I It is possible to define a sequence of joint probabilities pn(θ1, . . . , θn) for
n ≥ 1, such that each pn is finitely exchangeable but not infinitely
exchangeable. We also need consistency :∫

pn+1(θ1, . . . , θn+1)dθn+1 = pn(θ1, . . . , θn)

I What is the de Finetti measure of the Pólya urn scheme?
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A Very Little Measure Theory

I A σ-algebra Σ is a family of subsets of a set Θ such that

I Σ is not empty;
I If A ∈ Σ then Θ\A ∈ Σ;
I If A1,A2, . . . ∈ Σ then ∪∞i=1Ai ∈ Σ.

I (Θ,Σ) is a measure space and A ∈ Σ are the measurable sets.

I A measure µ over (Θ,Σ) is a function µ : Σ→ [0,∞] such that

I µ(∅) = 0;
I If A1,A2, . . . ∈ Σ are disjoint then µ(∪∞i=1Ai ) =

∑∞
i=1 µ(Ai ).

I Everything we consider here will be measurable.
I A probability measure is one where µ(Θ) = 1.
I We will identify probability measures as equivalent to distributions

over random variables X taking on values in Θ. Basically
p(X ∈ A) = µ(A) for an event A ∈ Σ.



Dirichlet Processes
A Dirichlet Process (DP) is a random probability measure G over (Θ,Σ) such
that for any finite set of partitions A1∪̇ . . . ∪̇AK = Θ, the random vector

(G(A1), . . . ,G(AK ))

is Dirichlet distributed.

6

A
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A

A

2
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I Reminder: probability measures are functions, and above definition is
very similar to that of Gaussian processes.

I Kolmogorov Consistency Theorem can be applied again to show that
random functions G : Σ→ [0,1] exists, but there are technical difficulties.

[Ferguson 1973]



Dirichlet Distributions

I A Dirichlet distribution is a distribution over the K -dimensional probability
simplex:

∆K =
{

(π1, . . . , πK ) : πk ≥ 0,
∑

k πk = 1
}

I We say (π1, . . . , πK ) is Dirichlet distributed,

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

with parameters (α1, . . . , αK ), if

p(π1, . . . , πK ) =
Γ(
∑

k αk )∏
k Γ(αk )

n∏
k=1

παk−1
k



Dirichlet Distributions



Dirichlet Distributions: Agglomerative Property

I Combining entries of probability vectors preserves Dirichlet property, for
example:

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

⇒ (π1 + π2, π3, . . . , πK ) ∼ Dirichlet(α1 + α2, α3, . . . , αK )

I Generally, if (I1, . . . , Ij ) is a partition of (1, . . . ,n):∑
i∈I1

πi , . . . ,
∑
i∈Ij

πi

 ∼ Dirichlet

∑
i∈I1

αi , . . . ,
∑
i∈Ij

αi





Dirichlet Distributions: Decimative Property

I The converse of the agglomerative property is also true, for example if:

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

(τ1, τ2) ∼ Dirichlet(α1β1, α1β2)

with β1 + β2 = 1,

⇒ (π1τ1, π1τ2, π2, . . . , πK ) ∼ Dirichlet(α1β1, α2β2, α2, . . . , αK )



Dirichlet Processes

I A Dirichlet process (DP) is an “infinitely decimated” Dirichlet variable:

1 ∼ Dirichlet(α)

(π1, π2) ∼ Dirichlet(α/2, α/2) π1 + π2 = 1
(π11, π12, π21, π22) ∼ Dirichlet(α/4, α/4, α/4, α/4) πi1 + πi2 = πi

...

I Each decimation step involves drawing from a Beta distribution (a
Dirichlet with 2 components) and multiplying into the relevant entry.

I Demo: DPgenerate



Dirichlet Processes
A Dirichlet Process (DP) is a random probability measure G over (Θ,Σ) such
that for any finite set of partitions A1∪̇ . . . ∪̇AK = Θ, the random vector

(G(A1), . . . ,G(AK ))

is Dirichlet distributed.
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I Reminder: probability measures are functions, and above definition is
very similar to that of Gaussian processes.

I Kolmogorov Consistency Theorem can be applied again to show that
random functions G : Σ→ [0,1] exists, but there are technical difficulties.

[Ferguson 1973]



Parameters of Dirichlet Processes
I A DP has two parameters:

I Base distribution H, which is like the mean of the DP.
I Strength parameter α, which is like an inverse-variance of the DP.

I We write:

G ∼ DP(α,H)

if for any partition (A1, . . . ,AK ) of Θ:

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

I The first two cumulants of the DP:

Expectation: E[G(A)] = H(A)

Variance: V[G(A)] =
H(A)(1− H(A))

α + 1

where A is any measurable subset of Θ.
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Representations of Dirichlet Processes

I Suppose G ∼ DP(α,H). G is a (random) probability measure over Θ.
We can treat it as a distribution over Θ. Let

θ1, . . . , θn ∼ G

be random variables with distribution G.

I We saw in the demo that draws from a Dirichlet process seem to be
discrete distributions. If so, then:

G =
∞∑

k=1

πkδθ∗k

and there is positive probability that sets of θi ’s can take on the same
value θ∗k for some k , i.e. the θi ’s cluster together.

I We are concerned with representations of Dirichlet processes based
upon both the clustering property and the sum of point masses.



Posterior Dirichlet Processes

I Suppose G is DP distributed, and θ is G distributed:

G ∼ DP(α,H)

θ|G ∼ G

I This gives p(G) and p(θ|G).

I We are interested in:

p(θ) =

∫
p(θ|G)p(G) dG

p(G|θ) =
p(θ|G)p(G)

p(θ)



Posterior Dirichlet Processes

Conjugacy between Dirichlet Distribution and Multinomial.

I Consider:

(π1, . . . , πK ) ∼ Dirichlet(α1, . . . , αK )

z|(π1, . . . , πK ) ∼ Discrete(π1, . . . , πK )

z is a multinomial variate, taking on value i ∈ {1, . . . ,n} with probability
πi .

I Then:

z ∼ Discrete
(

α1P
i αi
, . . . , αKP

i αi

)
(π1, . . . , πK )|z ∼ Dirichlet(α1 + δ1(z), . . . , αK + δK (z))

where δi (z) = 1 if z takes on value i , 0 otherwise.

I Converse also true.



Posterior Dirichlet Processes
I Fix a partition (A1, . . . ,AK ) of Θ. Then

(G(A1), . . . ,G(AK )) ∼ Dirichlet(αH(A1), . . . , αH(AK ))

P(θ ∈ Ai |G) = G(Ai )

I Using Dirichlet-multinomial conjugacy,

P(θ ∈ Ai ) = H(Ai )

(G(A1), . . . ,G(AK ))|θ ∼ Dirichlet(αH(A1)+δθ(A1), . . . , αH(AK )+δθ(AK ))

I The above is true for every finite partition of Θ. In particular, taking a
really fine partition,

p(dθ) = H(dθ)

I Also, the posterior G|θ is also a Dirichlet process:

G|θ ∼ DP
(
α + 1,

αH + δθ
α + 1

)



Posterior Dirichlet Processes

G ∼ DP(α,H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
(
α + 1, αH+δθ

α+1

)



Pólya Urn Scheme

I First sample:
θ1|G ∼ G G ∼ DP(α,H)

⇐⇒ θ1 ∼ H G|θ1 ∼ DP(α + 1, αH+δθ1
α+1 )

I Second sample:
θ2|θ1,G ∼ G G|θ1 ∼ DP(α + 1, αH+δθ1

α+1 )

⇐⇒ θ2|θ1 ∼
αH+δθ1
α+1 G|θ1, θ2 ∼ DP(α + 2, αH+δθ1 +δθ2

α+2 )

I nth sample

θn|θ1:n−1,G ∼ G G|θ1:n−1 ∼ DP(α + n − 1, αH+
Pn−1

i=1 δθi
α+n−1 )

⇐⇒ θn|θ1:n−1 ∼
αH+

Pn−1
i=1 δθi

α+n−1 G|θ1:n ∼ DP(α + n, αH+
Pn

i=1 δθi
α+n )



Pólya Urn Scheme

I Pólya urn scheme produces a sequence θ1, θ2, . . . with the following
conditionals:

θn|θ1:n−1 ∼
αH +

∑n−1
i=1 δθi

α + n − 1

I Picking balls of different colors from an urn:

I Start with no balls in the urn.
I with probability ∝ α, draw θn ∼ H, and add a ball of that color into

the urn.
I With probability ∝ n − 1, pick a ball at random from the urn, record
θn to be its color, return the ball into the urn and place a second ball
of same color into urn.

I Pólya urn scheme is like a “representer” for the DP—a finite projection of
an infinite object G.



Exchangeability and De Finetti’s Theorem

I Starting with a DP, we constructed the Pólya urn scheme.

I De Finetti’s Theorem gives the converse.

I Since θi are iid G, their joint distribution is invariant to permutations, thus
θ1, θ2, . . . are infinitely exchangeable.

I Thus a random measures must exist making them iid.

I This is G.



Chinese Restaurant Process

I Draw θ1, . . . , θn from a Pólya urn scheme.

I They take on K < n distinct values, say θ∗1 , . . . , θ
∗
K .

I This defines a partition of 1, . . . ,n into K clusters, such that if i is in
cluster k , then θi = θ∗k .

I Random draws θ1, . . . , θn from a Pólya urn scheme induces a random
partition of 1, . . . ,n.

I The induced distribution over partitions is a Chinese restaurant process
(CRP).



Chinese Restaurant Process

I Generating from the CRP:

I First customer sits at the first table.
I Customer n sits at:

I Table k with probability nk
α+n−1 where nk is the number of customers

at table k .
I A new table K + 1 with probability α

α+n−1 .
I Customers⇔ integers, tables⇔ clusters.

I The CRP exhibits the clustering property of the DP.

I Rich-gets-richer effect implies small number of large clusters.

I Expected number of clusters is K = O(α log n).
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Chinese Restaurant Process

I To get back from the CRP to Pólya urn scheme, simply draw

θ∗k ∼ H

for k = 1, . . . ,K , then for i = 1, . . . ,n set

θi = θ∗zi

where zi is the table that customer i sat at.

I The clustering (partition) is independent from the values assigned to
each cluster.

I The CRP teases apart the clustering property of the DP, from the base
distribution.



Stick-breaking Construction
I Returning to the posterior process:

G ∼ DP(α,H)

θ|G ∼ G
⇔

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ

α+1 )

I Consider a partition (θ,Θ\θ) of Θ. We have:

(G(θ),G(Θ\θ))|θ ∼ Dirichlet((α + 1)αH+δθ

α+1 (θ), (α + 1)αH+δθ

α+1 (Θ\θ))

= Dirichlet(1, α)

I G has a point mass located at θ:

G = βδθ + (1− β)G′ with β ∼ Beta(1, α)

and G′ is the (renormalized) probability measure with the point mass
removed.

I What is G′?



Stick-breaking Construction
I Currently, we have:

G ∼ DP(α,H)

θ ∼ G
⇒

θ ∼ H

G|θ ∼ DP(α + 1, αH+δθ

α+1 )

G = βδθ + (1− β)G′

β ∼ Beta(1, α)

I Consider a further partition (θ,A1, . . . ,AK ) of Θ:

(G(θ),G(A1), . . . ,G(AK ))

=(β, (1− β)G′(A1), . . . , (1− β)G′(AK ))

∼Dirichlet(1, αH(A1), . . . , αH(AK ))

I The agglomerative/decimative property of Dirichlet implies:

(G′(A1), . . . ,G′(AK ))|θ ∼ Dirichlet(αH(A1), . . . , αH(AK ))

G′ ∼ DP(α,H)



Stick-breaking Construction
I We have:

G ∼ DP(α,H)

G = β1δθ∗1 + (1− β1)G1

G = β1δθ∗1 + (1− β1)(β2δθ∗2 + (1− β2)G2)

...

G =
∞∑

k=1

πkδθ∗k

where

πk = βk
∏k−1

i=1 (1− βi ) βk ∼ Beta(1, α) θ∗k ∼ H

π

(4)π
(5)π

(2)π
(3)π

(6)π

(1)



Stick-breaking Construction

I We call the construction for π1, π2 the stick-breaking construction.

I Also known as the GEM distribution, write π ∼ GEM(α).

I Starting with a DP, we showed that draws from the DP looks like a sum
of point masses, with masses drawn from a stick-breaking construction.

I The steps are limited by assumptions of regularity on Θ and smoothness
on H.

I [Sethuraman 1994] started with the stick-breaking construction, and
showed that draws are indeed DP distributed, under very general
conditions.



Representations of Dirichlet Processes
I Posterior Dirichlet process:

G ∼ DP(α,H)

θ|G ∼ G
⇐⇒

θ ∼ H

G|θ ∼ DP
(
α + 1, αH+δθ

α+1

)
I Pólya urn scheme:

θn|θ1:n−1 ∼
αH +

∑n−1
i=1 δθi

α + n − 1

I Chinese restaurant process:

p(customer n sat at table k |past) =

{
nk

n−1+α if occupied table
α

n−1+α if new table

I Stick-breaking construction:

πk = βk

k−1∏
i=1

(1− βi ) βk ∼ Beta(1, α) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗k



Extensions of Dirichlet Processes

I Two-parameter generalization of the Chinese restaurant process:

p(customer n sat at table k |past) =

{
nk−d

n−1+α if occupied table
α+dK

n−1+α if new table

Gives the Pitman-Yor process.

I Other stick-breaking constructions:

πk = βk

k−1∏
i=1

(1− βi ) βk ∼ Beta(ak ,bk ) θ∗k ∼ H G =
∞∑

k=1

πkδθ∗k

ak = 1− d , bk = α + dk gives Pitman-Yor process.

[Pitman and Yor 1997, Perman et al. 1992]



Pitman-Yor Processes

I Two salient features of the Pitman-Yor process:

I With more occupied tables, the chance of even more tables
becomes higher.

I Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

I The above means that Pitman-Yor processes produce Zipf’s Law type
behaviour, with K = O(αnd ).
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Pitman-Yor Processes

Draw from a Pitman-Yor process
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Normalized Gamma Processes

I A gamma distribution is a distribution over [0,∞). A gamma distributed
variable γ ∼ Gamma(a,b) has density:

p(γ) =
ba

Γ(a)
γa−1e−bγ

I We can construct a Dirichlet variable by normalizing gamma variables:

γk ∼ Gamma(αk ,1)

(π1, . . . , πK ) = 1PK
k=1 γk

(γ1, . . . , γK ) ∼ Dirichlet(α1, . . . , αK )

I Similarly a DP can be constructed by normalizing a gamma process.



Normalized Gamma Processes

I A gamma process G̃ ∼ ΓP(H̃) is a random measure satisfying:

I G̃(A) ∼ Gamma(H̃(A)) for A ∈ Σ;
I G̃(A), G̃(B) independent if A ∪ B = ∅.

I A gamma process is a completely random measure—a random
measure with independence on disjoint sets.

I This provides an avenue to generalize the DP by normalizing other
completely random measures (e.g. normalized generalized inverse
Gaussian process, normalized stable process).

I Another important example of completely random measures is the beta
process.

I Completely random measures are strongly related to Lévy processes,
which are in turn strongly related to infinitely divisible distributions.
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Density Estimation
I Parametric density estimation (e.g. Gaussian, mixture models)

Data: x = {x1, x2, . . .}
Model: xi |w ∼ F (·|w)

I Prior over parameters

p(w)

I Posterior over parameters

p(w |x) =
p(w)p(x|w)

p(x)

I Prediction with posteriors

p(x?|x) =

∫
p(x?|w)p(w |x) dw



Density Estimation
I Bayesian nonparametric density estimation with Dirichlet processes

Data: x = {x1, x2, . . .}
Model: xi ∼ G

I Prior over distributions

G ∼ DP(α,H)

I Posterior over distributions

p(G|x) =
p(G)p(x|G)

p(x)

I Prediction with posteriors

p(x?|x) =

∫
p(x?|G)p(G|x) dF =

∫
G(x?)p(G|x) dG

I Not quite feasible, since G is a discrete distribution, in particular it has no
density.



Density Estimation

I Solution: Convolve the DP with a smooth distribution:

G ∼ DP(α,H)

F (·) =

∫
F (·|θ)dG(θ)

xi ∼ Fx

⇒

G =
∞∑

k=1

πkδθ∗k

Fx (·) =
∞∑

k=1

πk F (·|θ∗k )

xi ∼ Fx



Density Estimation
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Red: mean density. Blue: median density. Grey: 5-95 quantile. Others:
draws. Black: data points.



Density Estimation
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Clustering
I Recall our approach to density estimation:

G =
∞∑

k=1

πkδθ∗k ∼ DP(α,H)

Fx (·) =
∞∑

k=1

πk F (·|θ∗k )

xi ∼ Fx

I Above model equivalent to:

zi ∼ Discrete(π)

θi = θ∗zi

xi |zi ∼ F (·|θi ) = F (·|θ∗zi
)

I This is simply a mixture model with an infinite number of components.
This is called a DP mixture model .



Clustering

I DP mixture models are used in a variety of clustering applications,
where the number of clusters is not known a priori.

I They are also used in applications in which we believe the number of
clusters grows without bound as the amount of data grows.

I DPs have also found uses in applications beyond clustering, where the
number of latent objects is not known or unbounded.

I Nonparametric probabilistic context free grammars.
I Visual scene analysis.
I Infinite hidden Markov models/trees.
I Haplotype inference.
I ...

I In many such applications it is important to be able to model the same
set of objects in different contexts.

I This corresponds to the problem of grouped clustering and can be
tackled using hierarchical Dirichlet processes.

[Teh et al. 2006]



Semiparametric Modelling

I Linear regression model for inferring effectiveness of new medical
treatments.

yij = β>xij + b>i zij + εij

yij is outcome of j th trial on i th subject.
xij , zij are predictors (treatment, dosage, age, health...).
β are fixed-effects coefficients.
bi are random-effects subject-specific coefficients.
εij are noise terms.

I Care about inferring β. If xij is treatment, we want to determine
p(β > 0|x,y).



Semiparametric Modelling

yij = β>xij + b>i zij + εij

I Usually we assume Gaussian noise εij ∼ N (0, σ2). Is this a sensible
prior? Over-dispersion, skewness,...

I May be better to model noise nonparametrically,

εij ∼ F
F ∼ DP

I Also possible to model subject-specific random effects
nonparametrically,

bi ∼ G
G ∼ DP



Model Selection/Averaging
I Data: x = {x1, x2, . . .}

Models: p(θk |Mk ), p(x|θk ,Mk )

I Marginal likelihood

p(x|Mk ) =

∫
p(x|θk ,Mk )p(θk |Mk ) dθk

I Model selection

M = argmax
Mk

p(x|Mk )

I Model averaging

p(x?|x) =
∑
Mk

p(x?|Mk )p(Mk |x) =
∑
Mk

p(x?|Mk )
p(x|Mk )p(Mk )

p(x)

I But: is this computationally feasible?



Model Selection/Averaging

I Marginal likelihood is usually extremely hard to compute.

p(x|Mk ) =

∫
p(x|θk ,Mk )p(θk |Mk ) dθk

I Model selection/averaging is to prevent underfitting and overfitting.

I But reasonable and proper Bayesian methods should not overfit
[Rasmussen and Ghahramani 2001].

I Use a really large model M∞ instead, and let the data speak for
themselves.



Model Selection/Averaging
Clustering

How many clusters are there?



Model Selection/Averaging
Spike Sorting
How many neurons are there?

[Görür 2007, Wood et al. 2006a]



Model Selection/Averaging
Topic Modelling
How many topics are there?

Figure from Blei et al. [Blei et al. 2004, Teh et al. 2006]



Model Selection/Averaging
Grammar Induction

How many grammar symbols are there?

Figure from Liang et al. [Liang et al. 2007b, Finkel et al. 2007]



Model Selection/Averaging
Visual Scene Analysis

How many objects, parts, features?

Figure from Sudderth et al. [Sudderth et al. 2007]



Summary

I Dirichlet process is “just” a glorified Dirichlet distribution.

I Draws from a DP are probability measures consisting of a weighted sum
of point masses.

I Many representations: Pólya urn scheme, Chinese restaurant process,
stick-breaking construction, normalized gamma process.

I DP mixture models are mixture models with countably infinite number of
components.

I Important underpinning concepts: de Finetti’s Theorem, Kolmogorov
Consistency Theorem.

I I have not delved into inference.



Tutorials on Nonparametric Bayes

I Zoubin Gharamani, UAI 2005.

I Michael Jordan, NIPS 2005.

I Volker Tresp, ICML nonparametric Bayes workshop 2006.

I Workshop on Bayesian Nonparametric Regression, Cambridge, July
2007.

I My Machine Learning Summer School 2007 tutorial and practical course.
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Grouped Clustering



Document Topic Modelling

I Information retrieval: finding useful information from large collections of
documents.

I Example: Google, CiteSeer, Amazon...

I Model documents as “bags of words”.



Document Topic Modelling

I We model documents as coming from an underlying set of topics.

I Summarize documents.
I Document/query comparisons.
I Do not know the number of topics a priori—use DP mixtures

somehow.
I But: topics have to be shared across documents...



Document Topic Modelling

I Share topics across documents in a collection, and across different
collections.

I More sharing within collections than across.

I Use DP mixture models as we do not know the number of topics a priori.



Hierarchical Dirichlet Processes

I Use a DP mixture for each group.

I Unfortunately there is no sharing of clusters
across different groups because H is smooth.

I Solution: make the base distribution H discrete.

I Put a DP prior on the common base distribution.

[Teh et al. 2006]
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Hierarchical Dirichlet Processes

I A hierarchical Dirichlet process:

G0 ∼ DP(α0,H)

G1,G2|G0 ∼ DP(α,G0)

I Extension to other hierarchies is straightforward. 1i
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Hierarchical Dirichlet Processes

I Making G0 discrete forces shared cluster between G1 and G2.



Stick-breaking Construction

I We shall assume the following HDP hierarchy:

G0 ∼ DP(γ,H)

Gj |G0 ∼ DP(α,G0) for j = 1, . . . , J

I The stick-breaking construction for the HDP is:

G0 =
∑∞

k=1 π0kδθ∗k θ∗k ∼ H

π0k = β0k
∏k−1

l=1 (1− β0l ) β0k ∼ Beta
(
1, γ
)

Gj =
∑∞

k=1 πjkδθ∗k

πjk = βjk
∏k−1

l=1 (1− βjl ) βjk ∼ Beta
(
αβ0k , α(1−

∑k
l=1 β0l )

)



Hierarchical Pòlya Urn Scheme

I Let G ∼ DP(α,H).

I We can visualize the Pòlya urn scheme as follows:

2

1θ θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗
1θ∗ . . . . .

. . . . .θ2 3 4 5 6 7

6543

where the arrows denote to which θ∗k each θi was assigned and

θ1, θ2, . . . ∼ G i.i.d.
θ∗1 , θ

∗
2 , . . . ∼ H i.i.d.

(but θ1, θ2, . . . are not independent of θ∗1 , θ
∗
2 , . . .).



Hierarchical Pòlya Urn Scheme

I Let G0 ∼ DP(γ,H) and G1,G2|G0 ∼ DP(α,G0).

I The hierarchical Pòlya urn scheme to generate draws from G1,G2:

21θ θ θ θ θ

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .

. . . . .θ

11 12 13 14 15 16

11 12 13 14 15 θ16 17

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .21 22 23 24 25 26

θ∗θ∗θ∗θ∗θ∗θ∗ . . . . .01 02 03 0504 06

θ θ θ θ . . . . .θ θ θ272625242322



Chinese Restaurant Franchise

I Let G0 ∼ DP(γ,H) and G1,G2|G0 ∼ DP(α,G0).

I The Chinese restaurant franchise describes the clustering of data items
in the hierarchy:
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Nested Dirichlet Processes

I The HDP assumes that data group structure is
observed.

I The group structure may not be known in
practice, even if there is prior belief in some
group structure.

I Even if known, we may still believe that some
groups are more similar to each other than to
other groups.

I We can cluster groups using a second level of
mixture models.

I Using a second DP mixture to model this leads to
the nested Dirichlet process.

[Rodríguez et al. 2006]
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Nested Dirichlet Processes
I Cluster groups. Each group j belongs to cluster kj :

kj ∼ π π ∼ GEM(α)

I Group j inherits the DP from cluster kj :

Gj = G∗kj

I Place a HDP prior on {G∗k} (not crucial):

G∗k ∼ DP(β,G∗0) G∗0 ∼ DP(γ,H)

I Data:

xji ∼ F (θji ) θji ∼ Gj

Gj

H

x

θji

ji

jk

π

G*
k

0G*



Nested Dirichlet Processes

G∗0 ∼ DP(γ,H)

Q ∼ DP(α,DP(β,G∗0))

Gj ∼ Q
θji ∼ Gj

xji ∼ F (θji )

Gj

H

0G*

Q

x

θji

ji

α

β

γ



Dependent Dirichlet Processes
I The HDP induces a straightforward dependency among groups.

I What if the data is smoothly varying across some spatial or temporal
domain?

I Topic modelling: topic popularity and composition can both change
slowly as time passes.

I Haplotype inference: haplotype occurrence can change smoothly
as function of geography.

I a dependent Dirichlet process is a stochastic process {Gt} indexed by t
(space or time), such that each Gt ∼ DP(α,H) and if t , t ′ are
neighbouring points, Gt and Gt′ should be “similar” to each other.

I Simple example:

π ∼ GEM(α) (θ∗tk ) ∼ GP(µ,Σ) for each k

Gt =
∞∑

k=1

πkδθ∗tk
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Beyond Clustering

I Dirichlet processes are nonparametric models of clustering.

I Can nonparametric models go beyond clustering to describe data in
more expressive ways?

I Hierarchical (e.g. taxonomies)?
I Distributed (e.g. multiple causes)?



Indian Buffet Processes
I The Indian Buffet Process (IBP) is akin to the Chinese restaurant

process but describes each customer with a binary vector instead of
cluster.

I Generating from an IBP:

I Parameter α.
I First customer picks Poisson(α) dishes to eat.
I Subsequent customer i picks dish k with probability nk

i ; and picks
Poisson(αi ) new dishes.
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Indian Buffet Processes

I The IBP is infinitely exchangeable, though this is much harder to see.

I De Finetti’s Theorem again states that there is some random measure
underlying the IBP.

I This random measure is the Beta process.

[Griffiths and Ghahramani 2006, Thibaux and Jordan 2007]



Beta Processes

I A beta process B ∼ BP(c, αH) is a random discrete measure with form:

B =
∞∑

k=1

µkδθ∗k

where the points P = {(θ∗1 , µ1), (θ∗2 , µ2), . . .} are spikes in a 2D Poisson
process with base measure:

αcµ−1(1− µ)c−1dµH(dθ)

I The beta process with c = 1 is the de Finetti measure for the IBP. When
c 6= 1 we have a two parameter generalization of the IBP.

I This is an example of a completely random measure.

I A beta process does not have Beta distributed marginals.

[Hjort 1990]



Stick-breaking Construction for Beta Processes

I When c = 1 it was shown that the following generates a draw of B:

βk ∼ Beta(1, α) µk = (1− βk )
∏k−1

i=1 (1− βi ) θ∗k ∼ H

B =
∞∑

k=1

µkδθ∗k

I The above is the complement of the stick-breaking construction for DPs!

π

(4)π
(3)µ

(6)µ

(1)µ
(2)µ

(4)µ
(5)µ

(5)π

(2)π
(3)π

(6)π

(1)

[Teh et al. 2007]



Indian Buffet Processes
Applications of Indian Buffet Processes.

I The IBP can be used in concert with different likelihood models in a
variety of applications.

Z ∼ IBP(α) X ∼ F (Z ,Y )

Y ∼ H p(Z ,Y |X ) =
p(Z ,Y )p(X |Z ,Y )

p(X )

I Latent factor models for distributed representation [Griffiths and
Ghahramani 2005].

I Matrix factorization for collaborative filtering [Meeds et al 2007].

I Latent causal discovery for medical diagnostics [Wood et al 2006].

I Protein complex discovery [Chu et al 2006].

I Psychological choice behaviour [Görür and Rasmussen 2006].

I Independent Components Analysis
[Knowles and Ghahramani 2007, Teh et al. 2007].



Indian Buffet Processes
Application: causal discovery [Wood et al 2006].

I Causal model of patient symptoms and diseases.

connectivity

diseases

symptoms

Z

3Y Y Y

X X X X X2 3 4 5

1 2

1

Noisy-or observations:

p(Xit = 1|Y ,Z ) = 1− (1− εi )
∏

k (1− λik )zik ykt

I Usually given model and the task is to infer diseases Y given X .

I Given sets of patient symptoms X , we can learn the disease causes of
these symptoms by learning both Y and Z .



Indian Buffet Processes
Application: collaborative filtering [Meeds et al 2007].

I Model how customers like movies in terms of binary features Zc , Zm and
interaction matrix Y .
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Indian Buffet Processes
Application: Independent Components Analysis

I Each image Xi is a linear combination of sparse features:

Xi =
∑

k

Λk yik

where yik is activity of feature k with sparse prior. One possibility is a
mixture of a Gaussian and a point mass at 0:

yik = zik aik aik ∼ N (0,1) Z ∼ IBP(α)

I An ICA model with infinite number of features.

[Knowles and Ghahramani 2007, Teh et al. 2007]



Next Week

I Infinite hidden Markov models [Beal et al. 2002] (NIPS).

I Dirichlet diffusion trees [Neal 2003] (Valencia).

I Nested Chinese restaurant processes [Blei et al. 2004] (NIPS).

I Infinite relational model [Kemp et al. 2006] (AAAI)?



Bibliography I
Dirichlet Processes and Beyond in Machine Learning
Dirichlet Processes were first introduced by [Ferguson 1973], while [Antoniak 1974] further developed DPs as well as introduce
the mixture of DPs. [Blackwell and MacQueen 1973] showed that the Pólya urn scheme is exchangeable with the DP being its de
Finetti measure. Further information on the Chinese restaurant process can be obtained at [Aldous 1985, Pitman 2002]. The DP
is also related to Ewens’ Sampling Formula [Ewens 1972]. [Sethuraman 1994] gave a constructive definition of the DP via a
stick-breaking construction. DPs were rediscovered in the machine learning community by [Neal 1992, Rasmussen 2000].

Hierarchical Dirichlet Processes (HDPs) were first developed by [Teh et al. 2006], although an aspect of the model was first
discussed in the context of infinite hidden Markov models [Beal et al. 2002]. HDPs and generalizations have been applied across
a wide variety of fields.
Dependent Dirichlet Processes are sets of coupled distributions over probability measures, each of which is marginally DP
[MacEachern et al. 2001]. A variety of dependent DPs have been proposed in the literature since then
[Srebro and Roweis 2005, Griffin 2007, Caron et al. 2007]. The infinite mixture of Gaussian processes of
[Rasmussen and Ghahramani 2002] can also be interpreted as a dependent DP.
Indian Buffet Processes (IBPs) were first proposed in [Griffiths and Ghahramani 2006], and extended to a two-parameter family
in [Griffiths et al. 2007b]. [Thibaux and Jordan 2007] showed that the de Finetti measure for the IBP is the beta process of
[Hjort 1990], while [Teh et al. 2007] gave a stick-breaking construction and developed efficient slice sampling inference algorithms
for the IBP.
Nonparametric Tree Models are models that use distributions over trees that are consistent and exchangeable. [Blei et al. 2004]
used a nested CRP to define distributions over trees with a finite number of levels. [Neal 2001, Neal 2003] defined Dirichlet
diffusion trees, which are binary trees produced by a fragmentation process. [Teh et al. 2008] used Kingman’s coalescent
[Kingman 1982b, Kingman 1982a] to produce random binary trees using a coalescent process. [Roy et al. 2007] proposed
annotated hierarchies, using tree-consistent partitions first defined in [Heller and Ghahramani 2005] to model both relational and
featural data.

Markov chain Monte Carlo Inference algorithms are the dominant approaches to inference in DP mixtures. [Neal 2000] is a
good review of algorithms based on Gibbs sampling in the CRP representation. Algorithm 8 in [Neal 2000] is still one of the best
algorithms based on simple local moves. [Ishwaran and James 2001] proposed blocked Gibbs sampling in the stick-breaking
representation instead due to the simplicity in implementation. This has been further explored in [Porteous et al. 2006]. Since
then there has been proposals for better MCMC samplers based on proposing larger moves in a Metropolis-Hastings framework
[Jain and Neal 2004, Liang et al. 2007a], as well as sequential Monte Carlo [Fearnhead 2004, Mansingkha et al. 2007].
Other Approximate Inference Methods have also been proposed for DP mixture models. [Blei and Jordan 2006] is the first
variational Bayesian approximation, and is based on a truncated stick-breaking representation. [Kurihara et al. 2007] proposed an
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improved VB approximation based on a better truncation technique, and using KD-trees for extremely efficient inference in large
scale applications. [Kurihara et al. 2007] studied improved VB approximations based on integrating out the stick-breaking
weights. [Minka and Ghahramani 2003] derived an expectation propagation based algorithm. [Heller and Ghahramani 2005]
derived tree-based approximation which can be seen as a Bayesian hierarchical clustering algorithm. [Daume III 2007] developed
admissible search heuristics to find MAP clusterings in a DP mixture model.

Computer Vision and Image Processing. HDPs have been used in object tracking
[Fox et al. 2006, Fox et al. 2007b, Fox et al. 2007a]. An extension called the transformed Dirichlet process has been used in
scene analysis [Sudderth et al. 2006b, Sudderth et al. 2006a, Sudderth et al. 2007], a related extension has been used in fMRI
image analysis [Kim and Smyth 2007, Kim 2007]. An extension of the infinite hidden Markov model called the nonparametric
hidden Markov tree has been introduced and applied to image denoising [Kivinen et al. 2007].
Natural Language Processing. HDPs are essential ingredients in defining nonparametric context free grammars
[Liang et al. 2007b, Finkel et al. 2007]. [Johnson et al. 2007] defined adaptor grammars, which is a framework generalizing both
probabilistic context free grammars as well as a variety of nonparametric models including DPs and HDPs. DPs and HDPs have
been used in information retrieval [Cowans 2004], word segmentation [Goldwater et al. 2006b], word morphology modelling
[Goldwater et al. 2006a], coreference resolution [Haghighi and Klein 2007], topic modelling
[Blei et al. 2004, Teh et al. 2006, Li et al. 2007]. An extension of the HDP called the hierarchical Pitman-Yor process has been
applied to language modelling [Teh 2006a, Teh 2006b, Goldwater et al. 2006a].[Savova et al. 2007] used annotated hierarchies to
construct syntactic hierarchies. Theses on nonparametric methods in NLP include [Cowans 2006, Goldwater 2006].
Other Applications. Applications of DPs, HDPs and infinite HMMs in bioinformatics include
[Xing et al. 2004, Xing et al. 2006, Xing et al. 2007, Xing and Sohn 2007a, Xing and Sohn 2007b]. DPs have been applied in
relational learning [Shafto et al. 2006, Kemp et al. 2006, Xu et al. 2006], spike sorting [Wood et al. 2006a, Görür 2007]. The HDP
has been used in a cognitive model of categorization [Griffiths et al. 2007a]. IBPs have been applied to infer hidden causes
[Wood et al. 2006b], in a choice model [Görür et al. 2006], to modelling dyadic data [Meeds et al. 2007], to overlapping clustering
[Heller and Ghahramani 2007], and to matrix factorization [Wood and Griffiths 2006].
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