
Integrals in Statistical Modelling

• Parameter estimation

θ̂ = argmax
θ

∫
dY P (Y|θ)P (X|Y , θ)

(or using EM)

θnew = argmax
θ

∫
dY P (Y|X , θold) log P (X ,Y|θ)

• Prediction
p(x|D, m) =

∫
dθ p(θ|D, m)p(x|θ,D, m)

• Model selection or weighting (by marginal likelihood)

p(D|m) =

∫
dθ p(θ|m)p(D|θ,m)

These integrals are often intractable:

• Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian
models ⇒ numerical integration.

• Computational intractability: Numerical integral (or sum if Y or θ are discrete) may be
exponential in data or model size.



Simple Monte Carlo Sampling

Idea: Sample from p(x), average values of F (x).

Simple Monte Carlo: ∫
F (x)p(x)dx ' 1

T

T∑
t=1

F (x(t)),

where x(t) are (independent) samples drawn from p(x).[
For example: x(t) = G−1(u(t)) with u ∼ Uniform[0, 1] and G(x) =

∫ x

−∞ p(x′)dx′
]

Attractions:

• unbiased
• variance goes as 1/T , independent of dimension!

Problems:

• it may be difficult or impossible to obtain the samples directly from p(x)

• regions of high density p(x) may not correspond to regions where F (x) varies a lot (thus
each evaluation might have very high variance).



Importance Sampling

Idea: Sample from a different distribution q(x) and weight those samples by p(x)/q(x)

Sample x(t) from q(x):∫
F (x)p(x)dx =

∫
F (x)

p(x)

q(x)
q(x)dx ' 1

T

T∑
t=1

F (x(t))
p(x(t))

q(x(t))
,

where q(x) is non-zero wherever p(x) is; weights w(t) ≡ p(x(t))/q(x(t))
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Attraction: unbiased; no need for upper bound (cf rejection sampling).

Problems: it may be difficult to find a suitable q(x). Monte Carlo average may be dominated
by few samples (high variance); or none of the high weight samples may be found!



Unnormalised densities

What if we have f (x) ∝ p(x), but the normaliser is unknown?

IS still works if we just normalise the weights:

x(i) ∼ q and w(i) = f (x)/q(x) ⇒

∑
i F (x(i))w(i)∑

i w
(i)

→
〈F (x)w(x)〉q
〈w(x)〉q

=

∫
dx F (x)

f (x)

q(x)
q(x)∫

dx
f (x)

q(x)
q(x)

=

∫
dx F (x)

f (x)

Zf

Indeed
∑

i

w(i) →
∫

dx f (x) so IS provides a way to find the normaliser for f .

For example, if f (θ) = P (θ)P (D|θ), then Zf is the marginal likelihood or evidence for the
model (sampling from f itself doesn’t help us find this).



Unnormalised densities

What if we also have g(x) ∝ q(x) with intractable normaliser?

As long as we can sample from g(x)/Zg we can still find expectations:

∑
i F (x(i))w(i)∑

i w
(i)

→
〈F (x)w(x)〉q
〈w(x)〉q

=

∫
dx F (x)

f (x)

g(x)

g(x)

Zg∫
dx

f (x)

g(x)

g(x)

Zg

=

∫
dx F (x)

f (x)

Zf

But now,
∑

i

w(i) → Zf

Zg
, so we can only recover the ratio of normalisers.

If g(θ) ∝ P (θ) and f (θ) = g(θ)P (D|θ) [i.e., prior is non-normalised, but likelihood is a
normalised conditional], then this ratio is still the evidence.



Analysis of Importance Sampling

Weights:

w(t) ≡ p(x(t))

q(x(t))

Define a weighting function w(x) = p(x)/q(x).

Importance sample is unbiased:

Eq [w(x)F (x)] =

∫
q(x)w(x)F (x)dx =

∫
p(x)F (x)dx

Eq [w(x)] =

∫
q(x)w(x)dx = 1

The weights have variance Var [w(x)] = Eq

[
w(x)2

]
− 1, with:

Eq

[
(w(x)2)

]
=

∫
p(x)2

q(x)2
q(x)dx =

∫
p(x)2

q(x)
dx

• How does variance effect the estimated integral?
• How does it relate to the effective number of samples?
• What happens if p(x) = N (0, σ2

p) and q(x) = N (0, σ2
q)?



Improving proposals

So IS works well when the proposal density q is similar to the target f .

Idea: Move q closer using a Markov chain sampler for f .

Define the Markov chain transition probability to be Tf(x
′, x). We can easily sample from:

q̃(x) =

∫
dx′q(x′)Tf(x

′, x).

Can we use these samples for to compute importance-weighted integrals?

Unfortunately, computing the density q̃(x) is intractable in general (even an unnormalised
version).

Annealed Importance Sampling (AIS) adds two tricks to make this idea work.



Joint sampling

Idea 1: Consider samples of the pair:

(x1, x) ∼ q̃(x1, x) = q(x1)Tf(x1, x)

We could use these as proposals for samples from f̃ (x1, x) = f (x)T−1
f (x, x1), where

T−1
f (x, x1) is the reversed transition process satisfying

f (x)T−1
f (x, x1) = f (x1)Tf(x1, x)

Then, if we use weights w(i) =
f̃ (x

(i)
1 , x(i))

q̃(x
(i)
1 , x(i))

, we can evaluate expectations with respect to the

joint. But if the function evaluated depends only on x (and not x1), then this is the same as
evaluating with respect to the marginal on x, which (by the above) is f .

BUT, this doesn’t really help:

w =
f̃ (x1, x)

q̃(x1, x)
=

f (x)T−1
f (x, x1)

q(x1)Tf(x1, x)
=

f (x1)Tf(x1, x)

q(x1)Tf(x1, x)
=

f (x1)

q(x1)



Intermediate transitions

Idea 2: Use a Markov chain for a distribution q1 “between” q and f .

(x1, x) ∼ q̃(x1, x) = q(x1)T1(x1, x)

f̃ (x1, x) = f (x)T−1
1 (x, x1)

with
q1(x)T−1

1 (x, x1) = q1(x1)T1(x1, x)

Then the weights are

w =
f̃ (x1, x)

q̃(x1, x)
=

f (x)T−1
1 (x, x1)

q(x1)T1(x1, x)
=

f (x)T1(x1, x)q1(x1)/q1(x)

q(x1)T1(x1, x)
=

f (x)

q1(x)

q1(x1)

q(x1)

Each ratio f/q1 and q1/q should be better behaved than f/q because q1 lies in between –
we will analyse a specific case soon.



Annealed Importance Sampling

AIS uses a chain of n proposal distributions

q → qn−1 → qn−2 → · · · → q1

with MCMC transitions Ti(x, x′) corresponding to qi.

A usual choice: qi = q1−βifβi with 0 < βn−1 < βn−2 < · · · < β1 < 1 (note unnormalised qi).

We use this to generate a sample:

(xn−1, xn−2, . . . , x1, x) ∼ q̃ = q(xn−1)Tn−1(xn−1, xn−2) . . . T1(x1, x)

and weight relative to

f̃ = f (x)T−1
1 (x, x1)T

−1
2 (x1, x2) . . . T−1

n−1(xn−2, xn−1)

By similar algebra to before, this gives weights:

w(xn−1, xn−2, . . . , x1, x) =
qn−1(xn−1)

q(xn−1)

qn−2(xn−2)

qn−1(xn−2)
. . .

q1(x1)

q2(x1)

f (x)

q1(x)



Weight variance

For AIS with standard annealing schedule:

w(xn−1, xn−2, . . . , x1, x) =

n∏
k=1

qk−1(xk−1)

qk(xk−1)

where qn = q; q0 = f ; βn = 0 and β0 = 1;

=

n∏
k=1

q1−βk−1(xk−1)f
βk−1(xk−1)

q1−βk(xk−1)fβk(xk−1)

=

n∏
k=1

fβk−1−βk(xk−1)

qβk−1−βk(xk−1)

and, if the βs are evenly spaced by 1/n

=
( n∏

k=1

f (xk−1)

q(xk−1)

)1/n

As n → ∞, and provided the Markov chain “mixes” (weird, because non-stationary), this
will approach log-normal with shrinking variance.



Some notes

• Trade-off between computation (Markov steps) and variance. Neal argues optimal point
when Var [log w] = 1.

• If Ti is properly normalised conditional, normaliser of target joint is just normaliser of f .
So

∑
i w

(i) → Zf .

• Can extend chain using Tf . Weight (on all samples together) remains the same.

• See Neal, R. (1998). Annealed importance sampling. Technical Report 9805 (revised),
Department of Statistics, University of Toronto.
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