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Discrete Choice Models
Terminology

Goal of choice models
understand and model the behavioral process that leads to the
subject’s choice

Data: Comparison of alternatives from a choice set

Psychophysics experiments
Marketing: which cell phone to buy

Alternatives:
Items or courses of action
Features (i.e. aspects) may or may not be known
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Discrete Choice Models
Terminology

Choice set
discrete – finitely many alternatives
exhaustive – all possible alternatives are included
mutually exclusive – choosing one implies not choosing any other

Data
repeated choice from subsets of the choice set
number of times each alternative is chosen over some others

Task: Learn the true choice probabilities
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Discrete Choice Models
Different approaches

Algebraic or absolute theories in economics vs probabilistic or
stochastic theories in psychology

Random utility models – randomness in the determination of
subjective value
Constant utility models – randomness in the decision rule
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Discrete Choice Models
Economic view of decision making

Desirability precedes availability
preferences are predetermined in any choice situation, and do not
depend on what alternatives are available.

A vaguely biological flavor
Preferences are determined from a genetically-coded taste
template.

The expressed preferences are functions of the consumer’s taste
template, experience and personal characteristics.
Unobserved characteristics vary continuously with the observed
characteristics of a consumer.
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Discrete Choice Models
Psychological views of decision making

Alternatives are viewed as a set of aspects that are known.
The randomness in choice comes from the decision rule.
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Discrete Choice Models
Different approaches

Psychology:
I Process Models

F Bradley-Terry-Luce (BTL)
F Elimination by Aspects (EBA)

I Diffusion Models
I Race Models

Economics: Random Utility Maximization Models
I logit, nested logit
I probit
I mixed logit
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Discrete Choice Models
Basic assumptions

Simple scalability
The alternatives can be scaled such that the choice probability is
a monotone function of the scale values of the respective
alternatives.

Independence from irrelevant alternatives (IIA)
The probability of choosing an alternative over another does not
depend on the choice set.
Simple scalability implies IIA

There are cases where both assumptions are violated, e.g. when
alternatives share aspects.
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Brief History

Thurstone (1927) introduced a Law of Comperative Judgement:
alternative i with true stimulus level Vi is perceived with a normal
error as Vi + εi , and the choice probability for a paired comparison
satisfied P[1,2](1) = Φ(V1 − V2), a form now called binomial probit
model.
Random Utility Maximization (RUM) model is Thurstone’s work
introduced by Marschak (1960) into economics, exploring the
theoretical implications for choice probabilities of maximization of
utilities that contained some random elements.
Independence from irrelevant alternatives (IIA) axiom introduced
by Luce (1959) allowed multinomial choice probabilities to be
inferred from binomial choice experiments. Luce showed for
positive probabilities that IIA implies strict utilities wi s.t.
PC(i) = wi/

∑
k∈C wk . Marschak proved for a finite universe of

objects that IIA implies RUM.
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Brief History

Multinomial Logit (MNL) was introduced by McFadden (1968) in
which the strict utilities were specified as functions of observed
attributes of the alternatives, PC(i) = exp(Vi)/

∑
k∈C exp(Vk ).

McFadden showed that the Luce model was consistent with a
RUM model with iid additive disturbances iff these disturbances
had Extreme Value Type I distribution.
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Bradley Terry Luce (BTL)

Starts with the IIA assumption and arrives at the choice probabilities:

P(x ; A) =
U(x)∑

y∈A U(y)

A: choice set
U(α): utility of alternative x
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Elimination by aspects

Takes into account similarities between alternatives. Represents
characteristics of the alternatives in terms of their aspects:

x ′ = α, β, . . .

Choice probabilities

P(x ; A) =

∑
α∈x ′−Ao U(α)P(x ; Aα)∑

β∈A′−Ao U(β)

A′: set of aspects that belongs to at least one alternative in set A
Ao: set of aspects that belong to all alternatives in A
U(α): utility of aspect α
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Elimination by aspects

b

f

c

a
e

d

g

x

y

z

Can cope with choice scenarios
where IIA and simple scalability
assumptions do not hold.
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Elimination by aspects
Independence from irrelevant alternatives

b
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Bus Car

Bus

IIA suggests the probability
of choosing the car to drop
from 1/2 to 1/3 when a
second bus is introduced as
the third alternative.
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Elimination by aspects
Simple scalability

b a

b a

Simple scalability assumes
that the choice probabilities
change smoothly with the
scale (utility) of an
alternative. However, in
some situations introducing
a small but unique aspect
may lead to an immense
change in the probabilities.
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Random Utility Maximization

True utility

Unj = Vnj + εnj

Choice probability

Pni = Prob(Uni > Unj ∀j 6= i)

Vnj = V (xnj , sn) ∀j
xnj : observed attributes of alternative j
sn : attributes of decision maker n
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Random Utility Maximization

True utility

Unj = Vnj + εnj

Choice probability

Pni = Prob(Uni > Unj ∀j 6= i)
= Prob(Vni + εni > Vnj + εnj ∀j 6= i)
= Prob(εnj − εnj < Vni − Vnj ∀j 6= i)

=

∫
ε
I(εnj − εnj < Vni − Vnj ∀j 6= i)f (εn) dεn,

where εn = [ε1, . . . , εJ ]
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Logit
Extreme Value

Error density and distribution

f (εnj) = e−εnj e−e−εnj
, F (εnj) = e−e−εnj

Choice probability

Pni =

∫ ( ∏
j 6=i

e−e−εni +Vni−Vnj
)

e−εnj e−e−εnj
dεni

=
eVni∑
j eVnj

=
eβT xni∑
j eβT xnj
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Nested Logit
Generalized Extreme Value

The set of alternatives are partitioned into subsets called nests such
that:

IIA holds within each nest.
IA does not hold in general for alternatives in different nests.

Error distribution

F (εn) = exp
(
−

K∑
k=1

(
∑
j∈Bk

e−εnj/λk )λk
)

λk is a measure of the degree of independence among the alternatives
in nest k .
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Generalized Extreme Value
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Choice probability
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∑
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eVnj/λk )λk−1∑K
l=1(
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eVnj/λl )λl
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Nested Logit

The model is RUM consistent if 0 ≤ λk ≤ 1 ∀k
For λk > 1, the model is RUM consistent for some range of
explanatory variables.
λk < 0 is RUM inconsistent as it implies that improving attributes
of an alternative can decrease its probability of being selected.
if λk = 1 the model reduces to Logit
as λk → 0 the model approaches the Elimination by Aspects
model
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Generalizations of Nested Logit

Higher-level nests
Overlapping nests

I Cross Nested Logit
F multiple overlapping nests

I Ordered GEV
F correlation depends on the ordering of alternatives

I Paired Combinatorial Logit
F each pair of alternatives constitutes a nest with its own correlation

I Generalized Nested Logit
F multiple overlapping nests with a different membership weight to each

net for each alternative.
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Simple procedure for defining any GEV

Define Yj = exp(Vj), and consider a function G = G(Y1, . . . , YJ)

with partial derivatives Gi = ∂G
∂Yi

Pi =
YiGi

G
if

1 G ≥ 0 for all positive values of Yj ∀j .
2 G is homogeneous of degree one,

i.e. G(ρY1, . . . , ρYJ) = ρG(Y1, . . . , YJ)

3 G →∞ as Yj →∞ for any j
4 The cross partial derivatives of G have alternating signs.
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Simple procedure for defining any GEV
Examples

Logit: G =
∑J

j=1 Yj

Nested Logit: G =
∑K

l=1

( ∑
j∈Bl

Y 1/λl

)λl
, 0 ≤ λk ≤ 1 ∀k

Paired Combinatorial Logit: G =
∑J−1

k=1
∑J

l=k+1

(
Y 1/λkl

k + Y 1/λkl
l )

)λkl

Generalized Nested Logit: G =
∑K

k=1

( ∑
j∈Bk

(αjkYj)
1/λk

)λk
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Probit
Normal

Error distribution: Normal

φ(εn) =
1

(2π)J/2|Ω|1/2 e−
1
2 εT

n Ω−1εn

Choice Probabilities

Pni =

∫
I(Vni + εni > Vnj + εnj ∀j 6= i)φ(εn) dεn,

This integral does not have a closed form.
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Mixed Logit
can approximate any RUM model

A hierarchical model where the logit parameters β are given prior
distributions so that the choice probabilities are given as:

Pni =

∫
Lni(β)f (β) dβ,

where Lni(β) is the logit probability evaluated at parameters β:

Lni(β) =
eVniβ∑J
i=1 eVnjβ

f (β) can be discrete or continuous. e.g. if β takes M possible values,
we have a latent class model
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Extensions of Choice Models

Model extensions
Nonparametric distributions over noise distribution
Nonparametric distributions over explanatory variable parameters
Nonparametric prior over the functions on explanatory variables

Application areas
Conjoint analysis
Ranking, information retrieval
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