Gradient Descent

Nicolas Le Roux

Optimiza

Pooloo

Approximations to Newto method

Stochastic Optimization

Learning (Bottor

TONG

latural Gradien

Online Natural Gradier

Results

Using Gradient Descent for Optimization and Learning

Nicolas Le Roux

15 May 2009

Ontimization

Basi

method

Stochastic Optimization

Learning (Bottou

TONGA

Natural Gradier

Online Natural Gradient

Results

Why having a good optimizer?

- plenty of data available everywhere
- extract information efficiently

Approximations to Newton

Natural Gradient

Online Natural Gradient

Why gradient descent?

- cheap
- suitable for large models
- it works

. . . .

Basic

method

Otooriaatio Optimization

Learning (Botto

TONG

Natural Gradie

Online Natural Gradient

Online Natural Gradie

Optimization vs Learning

Optimization

- function f to minimize
- time $T(\rho)$ to reach error level ρ

method

Learning (Botto

TONG

Natural Gradie

Online Natural Gradier

Optimization vs Learning

Optimization

- function f to minimize
- time $T(\rho)$ to reach error level ρ

Learning

- measure of quality f (cost function)
- get training samples x_1, \ldots, x_n from p
- choose a model $\mathcal F$ with parameters θ
- minimize $E_p[f(\theta, x)]$

Optimization

Basics

method

Learning (Botto

TONG

Natural Gradie

Online Natural Gradier

Results

Outline

Optimization

Basics

Approximations to Newton method Stochastic Optimization

- 2 Learning (Bottou)
- 3 TONGA

Natural Gradient
Online Natural Gradient
Results

Stochastic Optimization

Learning (Botto

TONG

Vatural Gradie

Online Natural Gradie

D 1:

The basics

Taylor expansion of *f* to the first order:

$$f(\theta + \varepsilon) = f(\theta) + \varepsilon^{\mathsf{T}} \nabla_{\theta} f + o(\|\varepsilon\|)$$

Best improvement obtained with

$$\varepsilon = -\eta \nabla_{\theta} f \qquad \eta > 0$$

Gradient Descent

Nicolas Le Roux

Ontimization

Basics

method

Stochastic Optimization

Learning (Bottou

TONG

Natural Gradient

Online Natural Gradient

Results

Quadratic bowl

$$\eta = .1$$

Optimization

Basics

method

Stochastic Optimization

Learning (Botto

TONG

Natural Gradie

Online Natural Gradier

D 1

Optimal learning rate

$$\eta_{\mathsf{min,opt}} = rac{1}{\lambda_{\mathsf{min}}} \ \eta_{\mathsf{min,div}} = rac{2}{\lambda_{\mathsf{min}}}$$

$$-\lambda_{\mathsf{max}}$$

$$\begin{array}{l} \eta_{\rm max,opt} = \frac{1}{\lambda_{\rm max}} \\ \eta_{\rm max,div} = \frac{2}{\lambda_{\rm max}} \end{array}$$

$$egin{array}{lcl} \eta &=& \eta_{
m max,opt} \ \kappa &=& rac{\eta}{\eta_{
m min,opt}} = rac{\lambda_{
m max}}{\lambda_{
m min}} \end{array}$$

$$T(\rho) = O\left(d\kappa \log \frac{1}{\rho}\right)$$

Basics

method

Stochastic Optimization

Learning (Botto

TONG

Natural Gradier

Online Natural Gradie

Doculte

Limitations of gradient descent

- Speed of convergence highly dependent on κ
- Not invariant to linear transformations

$$\theta' = k\theta
f(\theta' + \varepsilon) = f(\theta') + \varepsilon^T \nabla_{\theta'} f + o(\|\varepsilon\|)
\varepsilon = -\eta \nabla_{\theta'} f$$

But
$$\nabla_{\theta'} f = \frac{\nabla_{\theta} f}{k}$$
!

Stochastic Optimizatio

Learning (Bottou

TONGA

latural Gradie

Online Natural Gradie

- ·

Newton method

Second-order Taylor expansion of f around θ :

$$f(\theta + \varepsilon) = f(\theta) + \varepsilon^{\mathsf{T}} \nabla_{\theta} f + \frac{\varepsilon^{\mathsf{T}} H \varepsilon}{2} + o(\|\varepsilon\|^{2})$$

Best improvement obtained with

$$\varepsilon = -\eta H^{-1} \nabla_{\theta} f$$

Basics

Approximations to Ne method

Stochastic Optimization

Learning (Bottou

TONGA

Natural Gradient

Online Natural Gradient

Results

Quadratic bowl

Basics

Approximations to Newton method

Stochastic Optimization

Learning (Bottou

TONG

Natural Gradient

Online Natural Gradient

Results

Rosenbrock function

Optiiii

Basics

method

Stochastic Optimization

Learning (Bottou

TONG

Notural Cradia

Online Natural Gradie

Dogulto

Properties of Newton method

- Newton method assumes the function is locally quadratic (Beyond Newton method, Minka)
- H must be positive definite
- storing H and finding ε are in d^2

$$T(
ho) = O\left(d^2 \log \log \frac{1}{
ho}\right)$$

Optimization

Basics

Approximations to Newton method

Stochastic Optimizatio

Learning (Bottou

TONGA

Natural Gradien

Online Natural Gradient

Limitations of Newton method

Newton method looks powerful

but...

Basics

Approximations to Newton method

Stochastic Optimizatio

Learning (Botto

IONGA

Natural Gradier

Online Natural Gradie

D. II

Limitations of Newton method

Newton method looks powerful

but...

- H may be hard to compute
- it is expensive

Stochastic Optimization

Learning (Bottor

TONG/

Natural Gradier

Online Natural Gradie

Gauss-Newton

Only works when f is a sum of squared residuals!

$$f(\theta) = \frac{1}{2} \sum_{i} r_{i}^{2}(\theta)$$

$$\frac{\partial f}{\partial \theta} = \sum_{i} r_{i} \frac{\partial r_{i}}{\partial \theta}$$

$$\frac{\partial^{2} f}{\partial \theta^{2}} = \sum_{i} \left[r_{i} \frac{\partial^{2} r_{i}}{\partial \theta^{2}} + \left(\frac{\partial r_{i}}{\partial \theta} \right) \left(\frac{\partial r_{i}}{\partial \theta} \right)^{T} \right]$$

$$\theta = \theta - \eta \left(\sum_{i} \left(\frac{\partial r_{i}}{\partial \theta} \right) \left(\frac{\partial r_{i}}{\partial \theta} \right)^{T} \right)^{-1} \frac{\partial f}{\partial \theta}$$

Optimization

Approximations to Newton method

Stochastic Optimization

Learning (Botto

TONGA

Natural Grad

Online Natural Gradie

Regults

Properties of Gauss-Newton

$$\theta = \theta - \eta \left(\sum_{i} \left(\frac{\partial r_{i}}{\partial \theta} \right) \left(\frac{\partial r_{i}}{\partial \theta} \right)^{T} \right)^{-1} \frac{\partial f}{\partial \theta}$$

Discarded term: $r_i \frac{\partial^2 r_i}{\partial \theta^2}$

- Does not require the computation of H
- Only valid close to the optimum where $r_i = 0$
- Computation cost in $O(d^2)$

method

Learning (Botto

TONG

Natural Gradie

Online Natural Gradie

Danisha

Levenberg-Marquardt

$$\theta = \theta - \eta \left(\sum_{i} \left(\frac{\partial r_{i}}{\partial \theta} \right) \left(\frac{\partial r_{i}}{\partial \theta} \right)^{T} + \lambda I \right)^{-1} \frac{\partial f}{\partial \theta}$$

- "Damped" Gauss-Newton
- Intermediate between Gauss-Newton and Steepest Descent
- Slower optimization but more robust
- Cost in *O*(*d*²)

- 1 -

Approximations to Newton method

Stochastic Optimization

Learning (Botto

TONG

Vatural Gradien

Online Natural Gradie

Quasi-Newton methods

- Gauss-Newton and Levenberg-Marquardt can only be used in special cases
- What about the general case?

Approximations to Newton

Quasi-Newton methods

- Gauss-Newton and Levenberg-Marguardt can only be used in special cases
- What about the general case?
- H characterizes the change in gradient when moving in parameter space
- Let's find a matrix which does the same!

Online Natural Gradient

BFGS

We look for a matrix B such that

$$abla_{ heta}f(heta+arepsilon)-
abla_{ heta}f(heta)=B_{t}^{-1}arepsilon$$
 : Secant equation

....

Learning (Botto

TONG

National Condi

Online Natural Gradie

Online Natural Grad

BFGS

We look for a matrix B such that

$$abla_{ heta}f(heta+arepsilon)-
abla_{ heta}f(heta)=B_{t}^{-1}arepsilon$$
 : Secant equation

- Problem: this is underconstrained
- Solution: set additional constraints: small
 ||B_{t+1} B_t||_W

Basic

Approximations to Newton method

Stochastic Optimization

Learning (Botto

TONG

Natural Gradie

Online Natural Gradie

Doculte

BFGS - (2)

- $B_0 = I$
- while not converged:
 - $p_t = -B_t \nabla f(\theta_t)$
 - $\eta_t = linemin(f, \theta_t, p_t)$
 - $s_t = \eta_t p_t$ (change in parameter space)
 - $\theta_{t+1} = \theta_t + s_t$
 - $y_t = \nabla f(\theta_{t+1}) \nabla f(\theta_t)$ (change in gradient space)
 - $\rho_t = (s_t^T y_t)^{-1}$
 - $B_{t+1} = (I \rho_t s_t y_t^T) B_t (I \rho_t y_t s_t^T) + \rho_t s_t s_t^T$ (stems from Sherman-Morrisson formula)

.

Approximations to Newton method

otoonaotio optimizatio

Learning (Botto

TONGA

Natural Gradier

Online Natural Gradient

Danilla

BFGS - (3)

- Requires a line search
- No matrix inversion required
- Update in O(d²)
- Can we do better than $O(d^2)$?

method

Learning (Botto

TONGA

Natural Gradier

Online Natural Gradie

L-BFGS

- Low-rank estimate of B
- Based on the last m moves in parameters and gradient spaces
- Cost O(md) per update
- Same ballpark as steepest descent!

Conjugate Gradient

We want to solve

$$Ax = b$$

- Relies on conjugate directions
- u and v are conjugate if $u^T A v = 0$.
- d mutually conjugate directions form a base of R^d
- Goal: to move along conjugate directions close to steepest descent directions

Ontimization

Basics

Approximations to Newton method

Stochastic Optimization

Learning (Botto

TONGA

Natural Gradie

Online Natural Gradie

Paculte

Nonlinear Conjugate Gradient

- Extension to non-quadratic functions
- Requires a line search in every direction (Important for conjugacy!)
- Various direction updates (Polak-Ribiere)

Basi

method

Stochastic Optimization

Learning (Bottou

TONGA

Natural Gradien

Online Natural Gradie

D ----It-

Going from batch to stochastic

- dataset composed of n samples
- $f(\theta) = \frac{1}{n} \sum_{i} f_i(\theta, \mathbf{x}_i)$

Do we really need to see all the examples before making a parameter update?

_

Pool

method

Stochastic Optimization

Learning (Bottou

TONGA

Natural Gradie

Online Natural Gradient

Stochastic optimization

- Information is redundant amongst samples
- We can afford more frequent, noisier updates
- But problems arise...

Optimization

Optimizati

method

Stochastic Optimization

Learning (Bottou

TONG

Natural Gradie

Online Natural Gradien

Online Natural Gradien

Stochastic (Bottou)

Advantage

 much faster convergence on large redundant datasets

Disadvantages

- Keeps bouncing around unless η is reduced
- Extremely hard to reach high accuracy
- Theoretical definitions for convergence not as well defined
- Most second-orders methods will not work

Stochastic Optimization

Learning (Botton

TONG

Natural Gradie

Online Natural Gradien

Online Natural Grad

Batch (Bottou)

Advantage

- Guaranteed convergence to a local minimum under simple conditions
- Lots of tricks to speed up the learning

Disadvantage

Painfully slow on large problems

Basi

method

Stochastic Optimization

Learning (Bottou

TONGA

Natural Gradi

Online Natural Gradie

_ .

Problems arising in stochastic setting

- First order descent: $O(dn) \Longrightarrow O(dn)$
- Second order methods: $O(d^2 + dn) \Longrightarrow O(d^2n)$
- Special cases: algorithms requiring line search
 - BFGS: not critical, may be replaced by a one-step update
 - Conjugate Gradient: critical, no stochastic version

Ontimization

-1.

method

Stochastic Optimization

Learning (Bottou

TONGA

Natural Gradier

Online Natural Gradie

Doculto

Successful stochastic methods

- Stochastic gradient descent
- Online BFGS (Schraudolph, 2007)
- Online L-BFGS (Schraudolph, 2007)

. . . .

Dooi

method

Stochastic Optimization

Learning (Botton

TONG

Natural Gradie

Online Natural Gradier

Online Natural Gradie

Conclusions of the tutorial

Batch methods

- Second-order methods have much faster convergence
- They are too expensive when d is large
- Except for L-BFGS and Nonlinear Conjugate Gradient

Stochastic Optimization

Learning (Bottou

TONG

Natural Gradie

Online Natural Gradie

Offilitie (Vatural Orau)

Conclusions of the tutorial

Stochastic methods

- Much faster updates
- Terrible convergence rates
 - Stochastic Gradient Descent: $T(
 ho) = O\left(rac{d}{
 ho}
 ight)$
 - Second-order Stochastic Descent:

$$T(
ho) = O\left(\frac{d^2}{
ho}\right)$$

Optimizatio

Basics

method

оснавис Оринидаи

Learning (Bottou)

.

Natural Gradie

Online Natural Gradie

Regulto

Outline

1 Optimization

Basics

Approximations to Newton method Stochastic Optimization

- 2 Learning (Bottou)
- **3** TONGA

Natural Gradient

Online Natural Gradient

Results

Rasi

method

Stochastic Optimizatio

Learning (Bottou)

TONGA

Natural Gradie

Online Natural Gradient

Danisha

Learning

- Measure of quality f ("cost function")
- Get training samples x_1, \ldots, x_n from p
- Choose a model $\mathcal F$ with parameters θ
- Minimize $E_p[f(\theta, x)]$
- Time budget T

Optimization

Basi

method

Stochastic Optimization

Learning (Bottou)

TONGA

Natural Gradier

Online Natural Gradie

Results

Small-scale vs. Large-scale Learning

- Small-scale learning problem: the active budget constraint is the number of examples *n*.
- Large-scale learning problem: the active budget constraint is the computing time T.

tochastic Optimization

Learning (Bottou)

TONG

Natural Gradie

Online Natural Gradie

D II

Which algorithm should we use?

$T(\rho)$ for various algorithms:

- Gradient Descent: $T(\rho) = O\left(nd\kappa\log\frac{1}{\rho}\right)$
- Second Order Gradient Descent:

$$T(
ho) = O\left(d^2 \log \log \frac{1}{
ho}\right)$$

- Stochastic Gradient Descent: $T(\rho) = O\left(\frac{d}{\rho}\right)$
- Second-order Stochastic Descent:

$$T(
ho) = O\left(\frac{d^2}{
ho}\right)$$

Second Order Gradient Descent seems a good choice!

Optimizatio

_ .

method

Stochastic Optimization

Learning (Bottou)

TONGA

Natural Gradier

Online Natural Gradient

Results

Large-scale learning

- We are limited by the time T
- We can choose between ρ and n
- Better optimization means fewer examples

Learning (Bottou)

Generalization error

$$E(\tilde{f}_n) - E(f^*) = E(f_F^*) - E(f^*)$$
 Approximation error $+ E(f_n) - E(f_F^*)$ Estimation error $+ E(\tilde{f}_n) - E(f_n)$ Optimization error

There is no need to optimize thoroughly if we cannot process enough data points!

Learning (Bottou)

Natural Gradient

Which algorithm should we use?

Time to reach $E(\tilde{f}_n) - E(f^*) < \epsilon$:

- Gradient Descent: $O\left(\frac{d^2\kappa}{\epsilon^{1/\alpha}}\log^2\frac{1}{\epsilon}\right)$
- Second Order Gradient Descent: $O\left(\frac{d^2\kappa}{\epsilon^{1/\alpha}}\log\frac{1}{\epsilon}\log\log\frac{1}{\epsilon}\right)$
- Stochastic Gradient Descent: $O\left(\frac{d\kappa^2}{\epsilon}\right)$
- Second-order Stochastic Descent: $O\left(\frac{d^2}{\epsilon}\right)$ with $\frac{1}{2} \le \alpha \le 1$ (statistical estimation rate).

Optimization

Ориници

method

Stochastic Optimization

Learning (Bottou)

TONG/

Natural Gradie

Online Natural Gradient

In a nutshell

- Simple stochastic gradient descent is extremely efficient
- Fast second-order stochastic gradient descent can win us a constant factor
- Are there other possible factors of improvement?

Approximations to Newto method

Stochastic Optimization

Learning (Bottou)

TONGA

Natural Gradier

Online Natural Gradie

Poculte

What we did not talk about (yet)

- we have access to $x_1, \ldots, x_n \sim p$
- we wish to minimize $E_{x \sim p}[f(\theta, x)]$
- can we use the uncertainty in the dataset to get information about p?

Optimization

Optimizati

method

oondotto optimizatio

Learning (Botto

TONGA

Natural Gradie

Online Natural Gradie

Results

Outline

Optimization
 Basics

Approximations to Newton method Stochastic Optimization

- 2 Learning (Bottou)
- **3** TONGA

Natural Gradient
Online Natural Gradient
Results

MICOIAS LE INOU

Basics

Approximations to Newton method

Stochastic Optimizatio

Learning (Bottou

TONG

Natural Gradient

Online Natural Gradie

Danisha

Cost functions

Empirical cost function

$$f(\theta) = \frac{1}{n} \sum_{i} f(\theta, \mathbf{x}_i)$$

True cost function

$$f^*(\theta) = E_{\mathsf{X} \sim p}[f(\theta, \mathsf{X})]$$

Natural Gradient

Gradients

Empirical gradient

$$g = \frac{1}{n} \sum_{i} \nabla_{\theta} f(\theta, \mathbf{x}_i)$$

True gradient

$$g^* = E_{x \sim p}[\nabla_{\theta} f(\theta, x)]$$

Central-limit theorem:

$$g|g^* \sim \mathcal{N}\left(g^*, \frac{C}{n}\right)$$

method

Learning (Botto

TONG

Natural Gradient

Online Natural Gradier

Posterior over *g**

Using

$$g^* \sim \mathcal{N}(0, \sigma^2 I)$$

we have

$$g^*|g \sim \mathcal{N}\left(\left(I + \frac{C}{n\sigma^2}\right)^{-1}g, \left(\frac{I}{\sigma^2} + nC^{-1}\right)^{-1}\right)$$

and then

$$\varepsilon^{T} g^{*} | g \sim \mathcal{N} \left(\varepsilon^{T} \left(I + \frac{C}{n\sigma^{2}} \right)^{-1} g, \varepsilon^{T} \left(\frac{I}{\sigma^{2}} + nC^{-1} \right)^{-1} \varepsilon \right)$$

Natural Gradient

Aggressive strategy

$$\varepsilon^{T} g^{*} | g \sim \mathcal{N} \left(\varepsilon^{T} \left(I + \frac{C}{n\sigma^{2}} \right)^{-1} g, \varepsilon^{T} \left(\frac{I}{\sigma^{2}} + nC^{-1} \right)^{-1} \varepsilon \right)$$

- we want to minimize $E_{q^*}[\varepsilon^T q^*]$
- Solution:

$$\varepsilon = -\eta \left(I + \frac{C}{n\sigma^2} \right)^{-1} g$$

method

Stochastic Optimization

Learning (Bottou

TONG

Natural Gradient

Online Natural Gradie

Aggressive strategy

$$\varepsilon^{T} g^{*} | g \sim \mathcal{N} \left(\varepsilon^{T} \left(I + \frac{C}{n\sigma^{2}} \right)^{-1} g, \varepsilon^{T} \left(\frac{I}{\sigma^{2}} + nC^{-1} \right)^{-1} \varepsilon \right)$$

- we want to minimize $E_{g^*}[\varepsilon^T g^*]$
- Solution:

$$\varepsilon = -\eta \left(I + \frac{C}{n\sigma^2} \right)^{-1} g$$

This is the regularized natural gradient.

0---------------

Baci

method

Stochastic Optimization

Learning (Bottou

TONG

Natural Gradient

Online Natural Gradie

Conservative strategy

$$\varepsilon^{T} g^{*} | g \sim \mathcal{N} \left(\varepsilon^{T} \left(I + \frac{C}{\sigma^{2}} \right)^{-1} g, \varepsilon^{T} \left(\frac{I}{\sigma^{2}} + nC^{-1} \right)^{-1} \varepsilon \right)$$

- we want to minimize $Pr(\varepsilon^T g^* > 0)$
- Solution:

$$\varepsilon = -\eta \left(\frac{C}{n}\right)^{-1} g$$

Otochastic Optimization

Learning (Bottou

TONGA

Natural Gradient

Online Natural Gradier

Conservative strategy

$$\varepsilon^{T} g^{*} | g \sim \mathcal{N} \left(\varepsilon^{T} \left(I + \frac{C}{\sigma^{2}} \right)^{-1} g, \varepsilon^{T} \left(\frac{I}{\sigma^{2}} + nC^{-1} \right)^{-1} \varepsilon \right)$$

- we want to minimize $Pr(\varepsilon^T g^* > 0)$
- Solution:

$$\varepsilon = -\eta \left(\frac{C}{n}\right)^{-1} g$$

This is the natural gradient.

method

Stochastic Optimization

Learning (Bottou

TONGA

Natural Gradier

Online Natural Gradient

.

Online Natural Gradient

- Natural gradient has nice properties
- Its cost per iteration is in d²
- Can we make it faster?

Approximations to Newton

method

Stochastic Optimizatio

Learning (Bottor

TONGA

Natural Gradien

Online Natural Gradient

. .

Goals

$$\varepsilon = -\eta \left(I + \frac{C}{n\sigma^2} \right)^{-1} g$$

We must be able to update and invert *C* whenever a new gradient arrives.

D--:--

Approximations to Newton method

Stochastic Optimizatio

Learning (Bottor

TONG

Natural Gradient

Online Natural Gradient

Results

Plan of action

Updating (uncentered) C:

$$C_t \propto \gamma C_{t-1} + (1-\gamma)g_t g_t^T$$

Stochastic Optimizatio

Learning (Bottou

TONG

Natural Gradier

Online Natural Gradient

Regulto

Plan of action

Updating (uncentered) C:

$$C_t \propto \gamma C_{t-1} + (1-\gamma)g_t g_t^T$$

Inverting C:

 maintain low-rank estimates of C using its eigendecomposition.

D--:-

method

Stochastic Optimization

Learning (Bottor

TONG

National Conditions

Online Natural Gradient

.

Eigendecomposition of C

- Computing k eigenvectors of C = GG^T is O(kd²)
- But computing k eigenvectors of G^TG is $O(kp^2)$!
- Still too expensive to compute for each new sample (and p must not grow)

_ .

method

Stochastic Optimization

Learning (Bottor

TONG

Material Condition

Online Natural Gradient

Ommio reacardi Or

Eigendecomposition of C

- Computing k eigenvectors of C = GG^T is O(kd²)
- But computing k eigenvectors of G^TG is $O(kp^2)$!
- Still too expensive to compute for each new sample (and p must not grow)
- Done only every b steps

Pool

method

Otochastic Optimizatio

Learning (Botto

TONG

Natural Gradian

Online Natural Gradient

Offilia Natural Oraci

To prove I'm not cheating

• eigendecomposition every b steps

$$C_{t} = \gamma^{t}C + \sum_{k=1}^{t} \gamma^{t-k} g_{k} g_{k}^{T} + \lambda t \qquad t = 1, \dots, b$$

$$v_{t} = C_{t}^{-1} g_{t}$$

$$X_{t} = \left[\gamma^{\frac{t}{2}} U \quad \gamma^{\frac{t-1}{2}} g_{1} \quad \dots \quad \gamma^{\frac{1}{2}} g_{t-1} \quad g_{t} \right]$$

$$C_{t} = X_{t} X_{t}^{T} + \lambda t \qquad v_{t} = X_{t} \alpha_{t} \qquad g_{t} = X_{t} y_{t}$$

$$\alpha_{t} = (X_{t}^{T} X_{t} + \lambda t)^{-1} y_{t}$$

$$v_{t} = X_{t} (X_{t}^{T} X_{t} + \lambda t)^{-1} y_{t}$$

....

Learning (Botto

TONG

Natural Gradier

Online Natural Gradient

- Valuar Orac

Computation complexity

- *d* dimensions
- k eigenvectors
- b steps between two updates
- Computing the eigendecomposition (every b steps): k(k + b)²
- Computing the natural gradient: $d(k+b) + (k+b)^2$
- if $p \ll (k+b)$, cost per example is O(d(k+b))

D--!--

Approximations to Newton

method

Diochastic Optimization

Learning (Botto

TONGA

Natural Gradier

Online Natural Gradient

Dooult

What next

- Complexity in O(d(k+b))
- We need a small k
- If $d > 10^6$, how large should k be?

Gradient Descent

Nicolas Le Roux

Ontimization

Basic

Approximations to Newton method

Stochastic Optimizatio

Learning (Botto

TONG

Natural Gradient

Online Natural Gradient

Results

Decomposing C

C is almost block-diagonal!

_ .

Approximations to Newton method

Stochastic Optimization

Learning (Bottou

TONGA

Material Condition

Online Natural Gradient

Results

Quality of approximation

Minimum with k = 5

......

Basics

method

Otochastic Optimization

Learning (Bottou

TONG

Natural Gradient

Online Natural Gradient

Results

Evolution of C

Optimization

Basic

Approximations to Newton method

Stochastic Optimization

Learning (Botto

TONGA

Natural Gradient

Online Natural Gradient

Results

Results - MNIST

Approximations to Newton

Online Natural Gradient

Results

Stochastic gradient Block diagonal TONGA

Results - Rectangles

Basics

Approximations to Newton method

Stochastic Optimizatio

Learning (Bottou

TONG

Natural Gradient

Online Natural Gradient

Results

Results - USPS

method

Stochastic Optimization

Learning (Bottor

TONG

Natural Gradier

Online Natural Gradient

Results

TONGA - Conclusion

- Introducing uncertainty speeds up training
- There exists a fast implementation of the online natural gradient

0--------------

Basi

method

Stochastic Optimization

Learning (Bottou

TONGA

atural Gradier

Online Natural Gradie

Results

Difference between C and H

- H accounts for small changes in the parameter space
- C accounts for small changes in the input space
- C is not just a "cheap cousin" of H

Optimizatio

method

Stochastic Optimization

Learning (Botto

TONG

Natural Gradient

Online Natural Gradie

Results

Future research

Much more to do!

- Can we combine the effects of H and C?
- Are there better approximations of C and H?
- Anything you can think of!

Gradient Descent

Nicolas Le Roux

Ontimization

Basics

Approximations to Newton method

Stochastic Optimization

Learning (Bottor

TONGA

Natural Gradient

Online Natural Gradient

Results

Thank you!

Questions?