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Why having a good
optimizer?

¢ plenty of data available everywhere

e extract information efficiently
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Why gradient descent?

e cheap
¢ suitable for large models

e it works
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Optimization vs Learning

Optimization
e function f to minimize

e time T (p) to reach error level p
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Optimization vs Learning

Optimization
e function f to minimize
e time T (p) to reach error level p
Learning
e measure of quality f (cost function)
e get training samples X, ..., X, from p
e choose a model F with parameters ¢

e minimize Ep[f(6,x)]
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The basics

Basics

Taylor expansion of f to the first order:

f(6 +¢2) =f(0) + <" Vof +0(]e])

Best improvement obtained with

e = —nVf n>0
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Limitations of gradient
descent

e Speed of convergence highly dependent on «

o Not invariant to linear transformations

¢ = ko
(0 +2) = 1(0)+e" Vol +o0(]le])
g = —HVQ/f

But Vof = V' |
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Newton method

Second-order Taylor expansion of f around 6:

Natural Gradient T H
Online Natural Gradient f(e —|— 5) f— f(e) + €T vgf + c c

+o([le]1?)
Best improvement obtained with

e = —nH 1V, f
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Properties of Newton

| method
e e Newton method assumes the function is locally
guadratic (Beyond Newton method, Minka)

e H must be positive definite

e storing H and finding ¢ are in d?

T(p)=0 <d2 log log l)
p
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Limitations of Newton

method

¢ Newton method looks powerful

but...
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Limitations of Newton
method

¢ Newton method looks powerful

but...
e H may be hard to compute

e it is expensive
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Gauss-Newton
s Only works when f is a sum of squared residuals!
1 2
f(6) = 5> i)
a on
o0 i 00

o°f 9%r [(on\ [on\"
o = Z[“aeﬁ(@) (@)

o= a(2 (3 ()
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e Only valid close to the optimum where r; = 0

Properties of
Gauss-Newton

(@) 6))

22

O0°T;i
Discarded term: r; — 502

Does not require the computation of H

o Computation cost in O(d?)
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Natural Gradient

Levenberg-Marquardt

-1
c‘)ri c‘)ri T of
9_6—n<zi: (%) (%) +)\I> 5
“Damped” Gauss-Newton

Intermediate between Gauss-Newton and
Steepest Descent

Slower optimization but more robust
Cost in O(d?)
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Quasi-Newton methods

e Gauss-Newton and Levenberg-Marquardt can
only be used in special cases

¢ What about the general case?
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Quasi-Newton methods

Basics

Approximations to Newton
method

Gauss-Newton and Levenberg-Marquardt can
only be used in special cases

What about the general case?

H characterizes the change in gradient when
moving in parameter space

Let’'s find a matrix which does the same!
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BFGS

We look for a matrix B such that

Vo (6 4 €) — Vof (9) = B e : Secant equation
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Stochastic Optimization

BFGS

We look for a matrix B such that

Vo (6 4 €) — Vof (9) = B e : Secant equation

e Problem: this is underconstrained

e Solution: set additional constraints: small
Bt+1 — Billw
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BFGS - (2)

Basics

Approximations to Newton
method

Stochasic Optimizaton e By =1
¢ while not converged:

e pt = —BVf(6)

- e 1 = linemin(f, 6;, pt)

e s; = 1Pt (Change in parameter space)

® Oy1 =0 + st

o yi = VFf(6i41) — VF(6;) (change in gradient
space)

o p=(s{y)!

e Biy1 = (I — peSeyy )Be(l — piyeS{ ) + peSesy
(stems from Sherman-Morrisson formula)
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BFGS - (3)

Requires a line search

No matrix inversion required
Update in O(d?)

Can we do better than O(d?)?
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L-BFGS

Low-rank estimate of B

Based on the last m moves in parameters and
gradient spaces

Cost O(md) per update

Same ballpark as steepest descent!
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Conjugate Gradient

We want to solve

Ax =Db

Relies on conjugate directions

u and v are conjugate if uTAv = 0.

d mutually conjugate directions form a base of
Rd

Goal: to move along conjugate directions close
to steepest descent directions
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Nonlinear Conjugate
Gradient

e Extension to non-quadratic functions

e Requires a line search in every direction
(Important for conjugacy!)

¢ Various direction updates (Polak-Ribiere)
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Going from batch to
stochastic

e dataset composed of n samples

o £(0) =5 25 fi(0,x)
Do we really need to see all the examples before
making a parameter update?
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Stochastic optimization

¢ Information is redundant amongst samples
¢ We can afford more frequent, noisier updates
e But problems arise...



Gradient Descent

Nicolas Le Roux

Stochastic (Bottou)

Stochastic Optimization Advant ag e
e much faster convergence on large redundant
Natural Gradient datasets

Disadvantages
e Keeps bouncing around unless 7 is reduced
e Extremely hard to reach high accuracy
e Theoretical definitions for convergence not as
well defined
e Most second-orders methods will not work



Gradient Descent

Nicolas Le Roux

Batch (Bottou)

Basics

Approximations to Newtor
method

Stochastic Optimization

Advantage

e Guaranteed convergence to a local minimum
under simple conditions

o Lots of tricks to speed up the learning
Disadvantage

e Painfully slow on large problems
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Problems arising in
stochastic setting

Stochastic Optimization

Natural Gradient

e First order descent: O(dn) = O(dn)
 Second order methods: O(d? + dn) = O(d?n)
e Special cases: algorithms requiring line search

e BFGS: not critical, may be replaced by a
one-step update

e Conjugate Gradient: critical, no stochastic
version
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Natural Gradient

Online Natural Gradient

¢ Stochastic gradient descent
e Online BFGS (Schraudolph, 2007)
e Online L-BFGS (Schraudolph, 2007)
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Conclusions of the
tutorial

Batch methods

e Second-order methods have much faster
convergence

e They are too expensive when d is large

e Except for L-BFGS and Nonlinear Conjugate
Gradient
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Conclusions of the

Stochastic methods

e Much faster updates
¢ Terrible convergence rates
e Stochastic Gradient Descent: T(p) = O (

tutorial

e Second-order Stochastic Descent:

T()=0(

d2
P

)

d

')
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Learning

Measure of quality f (“cost function”)
Get training samples X, ..., X, from p
Choose a model F with parameters 0
Minimize E,[f(6,x)]

Time budget T
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Small-scale vs.
Large-scale Learning

e Small-scale learning problem: the active budget
constraint is the number of examples n.

e Large-scale learning problem: the active budget
constraint is the computing time T.
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Which algorithm should
we use?

T (p) for various algorithms:
e Gradient Descent: T(p) = 0O (ndnlog %)
e Second Order Gradient Descent:
T(p)=0 (dz log log %)
e Stochastic Gradient Descent: T (p) = O (%)
e Second-order Stochastic Descent:
T()=0(%)

Second Order Gradient Descent seems a good
choice!
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Large-scale learning

e We are limited by the time T
e We can choose between p and n

e Better optimization means fewer examples
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Generalization error

E(f,) — E(f*) = E(f}) — E(f*) Approximation error
+ fn
+ E(f,) — E(f,) Optimization error

m
—~
~
|
m
—~
—
T x
~
m
2}
=,
3
Q
=,
o
>
D
=
=
o
=

There is no need to optimize thoroughly if we cannot
process enough data points!
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Which algorithm should
we use?

Time to reach E(f,) — E(f*) < ¢
e Gradient Descent: O ( e % log? )

e Second Order Gradient Descent:
o) ( 2 log 2 log log 2 )

e Stochastic Gradient Descent: O <%)

e Second-order Stochastic Descent: O (

with 3 < o < 1 (statistical estimation rate).

d2
e
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In a nutshell

e Simple stochastic gradient descent is extremely
efficient

e Fast second-order stochastic gradient descent
can win us a constant factor

e Are there other possible factors of improvement?
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What we did not talk
about (yet)

e we have access to Xy, ..., Xn, ~ p
e we wish to minimize Ey,[f (6, X)]

e can we use the uncertainty in the dataset to get
information about p?
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Results

Outline
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Cost functions

Empirical cost function
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Gradients

w0 Empirical gradient

Stochastic Optimization

1
g= ﬁZV@f(@,Xi)

Natural Gradient

Online Natural Gradient

True gradient
g* = Exwp[VOf (97 X)]

Central-limit theorem:

* *C
alg” ~ N (9
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Using
we have

g’lg~ N (I
and then

ETg*|gNN gT (

Posterior over g*

g* ~ N(0,02%)

c\*' | AN\t
+n(72> g,(UZJrnC >

I+F

-1
< ) Q,ET(I
g g

-1
+ nC‘1>

3
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Aggressive strategy

c\* | !
sTg*|g~N el (I—i—ﬁ) g,e' <?—|—nCl> €

o we want to minimize Eg:[c7 g*]

e Solution:

AN
no2 g
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Aggressive strategy

c\*' ! -
ETg*|g ~N el (l +F) g,ET <?+ncl) 5

o we want to minimize Eg:[c7 g*]

()
E= -0 |+7 g

This is the regularized natural gradient.

e Solution:
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ch -t | -1
e'grlg ~ N | €T (I + —2> g,e" (—2 + nCl) 5
g g

Online Natural Gradient

Results

e we want to minimize Pr(s"g* > 0)

e Solution:
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Conservative strategy

ch -t | -1
e'grlg ~ N | €T (I + —2> g,e" (—2 + nCl) 5
g g

e we want to minimize Pr(s"g* > 0)

C -1
e=-n(+) ¢

This is the natural gradient.

e Solution:
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Online Natural Gradient

¢ Natural gradient has nice properties
e Its cost per iteration is in d?

e Can we make it faster?
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Goals

Stochastic Optimization

Natural Gradient

Online Natural Gradient C - 1
Restlts E = — ”7 I _.I_ —_ g
No?

We must be able to update and invert C whenever a
new gradient arrives.
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Plan of action

Updating (uncentered) C:

Ci < 7Cr_1 + (1 — 7)aeg{
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Plan of action

Updating (uncentered) C:
Online Natural Gradient Ct o< VCt—l + (1 — f)/)gtgtT

Results

Inverting C:

e maintain low-rank estimates of C using its
eigendecomposition.
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Eigendecomposition of C

e Computing k eigenvectors of C = GG is
O(kd?)
o But computing k eigenvectors of GTG is O(kp?)!

¢ Still too expensive to compute for each new
sample (and p must not grow)
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Eigendecomposition of C

Computing k eigenvectors of C = GG is
O(kd?)
But computing k eigenvectors of GTG is O(kp?)!

Still too expensive to compute for each new
sample (and p must not grow)

Done only every b steps
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To prove I’'m not cheating

e eigendecomposition every b steps

t

Ci = 7'C+) 7 ool +At  t=1...b
k=1

Ve = Ct‘lgt

X, = [’Y%U YO . G gt]

Ci = XX/ + At Vi = Xy Ot = XtV

ap = (Xtht—i‘)\t)ilyt

Vt - Xt(XtTXt—{—)\t)_lyt
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Computation complexity

d dimensions
k eigenvectors

b steps between two updates

Computing the eigendecomposition (every b
steps): k(k + b)?

Computing the natural gradient:

d(k +b) + (k + b)?

if p < (k + b), cost per example is O(d(k + b))
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What next

Approximations to Newtor
method

Stochastic Optimization

Natural Gradient

e Complexity in O(d(k + b))

Results

e We need a small k
e Ifd > 108, how large should k be?
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Decomposing C

C is almost block-diagonal!
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Quality of approximation

- - - Full matrix approximation
—Block diagonal approximation

Ratio of the squared Frobenius norms

- - - Full matrix approximation
N —Block diagonal approximation

Ratio of the squared Frobenius norms

Ta06 o0 1600 2000
Number k of eigenvectors kept

5 E 3 3 0
Number k of eigenvectors kept

Minimum with k =5
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Negative log-likelihood on the test set

Results - MNIST

~ Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsiz
Stochastic batchsiz

Stochastic batchsize=2000

Classification error on the test set

s
Tg o=
E ToF gy =
I
IIIII]-I

~—— Block diagonal TONGA
Stochastic batchsiz
Stochastic batchsize=400
Stochastic batchsize=1000.
Stochastic batchsize=2000

C
CPU time (in seconds)

300 w0 00

00

Too0

1500

CPU time (in seconds)
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Results - Rectangles

Basics

Approximations to Newton
method

Stochastic Optimization

Learning (Bottou)

TONGA

Stochastic gradient
018 —Block diagonal TONGA{

- Stochastic gradient
018 —Block diagonal TONGA{

Natural Gradient
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Negative log-likelihood on the validation set
Classification error on the validation set

T 15 2 25 3 35
CPU time (in seconds) x10°
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Results - USPS

Negative log-likelihood

— Block diagonal TONGA|
Stochastic gradient

——Block diagonal TONGA|

Stochastic gradient

1
. 5 e
2
g
£
o8 s
ﬁaxs
G
° 1
o
o8 I
z
) i

B 30 0 %0
CPU time (in seconds)
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TONGA - Conclusion

¢ Introducing uncertainty speeds up training

e There exists a fast implementation of the online
natural gradient
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Difference between C
e and H

Stochastic Optimization
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Results

H accounts for small changes in the parameter
space

e C accounts for small changes in the input space

e C is not just a “cheap cousin” of H
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Future research

Much more to do!
e Can we combine the effects of H and C?
e Are there better approximations of C and H?
¢ Anything you can think of!
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Thank you!
Questions?
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