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Set-up

» Models: m belong to a class of models M.
» Data: X = {xq,Xo,...,Xn}.
» Latent variables: Y = {y1,¥2,...,¥n}.
» Parameters: 6, for model m € M.
» Likelihood:

n

P(X|Y,0m) = [ [ P(ilYi, Om)
i=1
p(Y0m) = HP Yilom)

» Prior:

p(m)
P(0m|m)



Bayesian Inference

» Posterior distribution:
Om|m)p(Y0m)P(X|Y, Om)

B _ R
(O, YIm) = p(Om, Y|m, X) = p(X|m)

x(m) = p(m|X)

» Evidence:

» Bayes Factors:




Metropolis-Hastings

» Metropolis-Hastings is a standard and flexible Markov chain
Monte Carlo transition kernel.

» Distribution we wish to sample from:

» Proposal kernel:

» Acceptance probability:

(0 — ) = min <1 W)
" w(0)q(8 — f)



Reversible-Jump Markov Chain Monte Carlo

» To do Bayesian model averaging, we are interested in computing
w(m,O0m)

where for different m's 6,,’s come from different spaces with
different dimensionalities.

» Most MCMC techniques can only deal with sampling from
distributions over a single space, e.g. the posterior distribution
over parameters of a single model.

» Reversible-Jump MCMC allows us to sample from the full
posterior w(m, 6,) over both models and parameters properly.



Simple Example

» Imagine mixtures of either 1 or 2 Gaussians in 1D:

m=1: N(eo, 0'2)
m=2: .5N(91,02)+.5N(92,02)
where o2 is known and parameters consist of the mean 6, for

model 1 and the means (61, 62) for model 2.

» Conditioned on m we can easily sample 6 or (61, 62) depending
on value of m.

» How do we sample m? The 0 spaces are different for different m’s,
so we have to change the ¢’s if we propose changing m.



Simple Example

» Say m = 1 and we propose changing m =1 — m = 2. We would
also need to propose (64, 02) as well. Since this proposal is a
“split” of one Gaussian into two, a reasonable proposal would be:

§~N(0,v)
01— 0p+96
Oo — 6y — 9§

This preserves the overall mean of the distribution over the data.

» To compute the MH acceptance probability we need the reverse
proposal probabilities for m =2 — m = 1. Given a particular
(01,02), notice that the only 6, that could have be used to propose
(61, 62) is their average:

o = (61 +62)/2



Simple Example

» Recap of the proposal and the reverse proposal:

m=1—-m=2 m=2-m=1
o — (01,02) = (0o + 9,00 — &) (01,02) — o = (01 + 02)/2
d ~N(0,v)

» The acceptance probability is:

. 7T(m:2,60+(5,60—5)1
min (1’ (1, 00)N(5: 0, v) >

Notice that the dimensions match up.



Another Example

» If the 6y — (04, 02) proposal is simply:

01 = 6o
0> NN(O, V)

i.e. the first Gaussian stays the same, create a second Gaussian.
» Then the reverse proposal (61, 62) — 6y would have needed to be:

o = 04

i.e. drop the second Gaussian and keep the first one.



General Case

» We want a proposal q(m — w) where m,w € M.

» We need to design proposals for the parameters q(6,» — 6w) and
reverse proposals q(0w — Om).

» The acceptance probability of RIMCMC,

: 71'(W)ﬂ'(‘gw‘w)q(w - m)qu - em)
mn (1’ (M) (Omlm)q(m — w)q(m — ew)>

only makes sense if the 6 densities are both wrt the same
underlying measure. Simple case: measure lies on a 2D plane in
(6o, 61, 62) space satisfying 6y = (01 + 02)/2.
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