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Set-up
I Models: m belong to a class of modelsM.
I Data: X = {x1, x2, . . . , xn}.
I Latent variables: Y = {y1, y2, . . . , yn}.
I Parameters: θm for model m ∈M.
I Likelihood:

p(X |Y , θm) =
n∏

i=1

p(xi |yi , θm)

p(Y |θm) =
n∏

i=1

p(yi |θm)

I Prior:

p(m)

p(θm|m)



Bayesian Inference

I Posterior distribution:

π(θm,Y |m) = p(θm,Y |m,X ) =
p(θm|m)p(Y |θm)p(X |Y , θm)

p(X |m)

π(m) = p(m|X )

I Evidence:
p(X |m)

I Bayes Factors:
p(X |m)

p(X |m′)



Metropolis-Hastings

I Metropolis-Hastings is a standard and flexible Markov chain
Monte Carlo transition kernel.

I Distribution we wish to sample from:

π(θ)

I Proposal kernel:
q(θ → θ̃)

I Acceptance probability:

α(θ → θ̃) = min

(
1,
π(θ̃)q(θ̃ → θ)

π(θ)q(θ → θ̃)

)



Reversible-Jump Markov Chain Monte Carlo

I To do Bayesian model averaging, we are interested in computing

π(m, θm)

where for different m’s θm’s come from different spaces with
different dimensionalities.

I Most MCMC techniques can only deal with sampling from
distributions over a single space, e.g. the posterior distribution
over parameters of a single model.

I Reversible-Jump MCMC allows us to sample from the full
posterior π(m, θm) over both models and parameters properly.



Simple Example

I Imagine mixtures of either 1 or 2 Gaussians in 1D:

m = 1 : N (θ0, σ
2)

m = 2 : .5N (θ1, σ
2) + .5N (θ2, σ

2)

where σ2 is known and parameters consist of the mean θ0 for
model 1 and the means (θ1, θ2) for model 2.

I Conditioned on m we can easily sample θ0 or (θ1, θ2) depending
on value of m.

I How do we sample m? The θ spaces are different for different m’s,
so we have to change the θ’s if we propose changing m.



Simple Example
I Say m = 1 and we propose changing m = 1→ m = 2. We would

also need to propose (θ1, θ2) as well. Since this proposal is a
“split” of one Gaussian into two, a reasonable proposal would be:

δ ∼ N (0, v)

θ1 ← θ0 + δ

θ2 ← θ0 − δ

This preserves the overall mean of the distribution over the data.
I To compute the MH acceptance probability we need the reverse

proposal probabilities for m = 2→ m = 1. Given a particular
(θ1, θ2), notice that the only θ0 that could have be used to propose
(θ1, θ2) is their average:

θ0 = (θ1 + θ2)/2



Simple Example

I Recap of the proposal and the reverse proposal:

m = 1→ m = 2 m = 2→ m = 1
θ0 → (θ1, θ2) = (θ0 + δ, θ0 − δ) (θ1, θ2)→ θ0 = (θ1 + θ2)/2
δ ∼ N (0, v)

I The acceptance probability is:

min
(

1,
π(m = 2, θ0 + δ, θ0 − δ)1

π(1, θ0)N (δ; 0, v)

)
Notice that the dimensions match up.



Another Example

I If the θ0 → (θ1, θ2) proposal is simply:

θ1 = θ0

θ2 ∼ N (0, v)

i.e. the first Gaussian stays the same, create a second Gaussian.
I Then the reverse proposal (θ1, θ2)→ θ0 would have needed to be:

θ0 = θ1

i.e. drop the second Gaussian and keep the first one.



General Case
I We want a proposal q(m→ w) where m,w ∈M.
I We need to design proposals for the parameters q(θm → θw ) and

reverse proposals q(θw → θm).
I The acceptance probability of RJMCMC,

min
(

1,
π(w)π(θw |w)q(w → m)q(θw → θm)

π(m)π(θm|m)q(m→ w)q(θm → θw )

)
only makes sense if the θ densities are both wrt the same
underlying measure. Simple case: measure lies on a 2D plane in
(θ0, θ1, θ2) space satisfying θ0 = (θ1 + θ2)/2.
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