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One of the central problems in systems neuroscience is that of characteriz-
ing the functional relationship between sensory stimuli and neural spike re-
sponses. Investigators call this the neural coding problem, because the spike
trains of neurons can be considered a code by which the brain represents infor-
mation about the state of the external world. One approach to understanding
this code is to build mathematical models of the mapping between stimuli and
spike responses; the code can then be interpreted by using the model to pre-
dict the neural response to a stimulus, or to decode the stimulus that gave rise
to a particular response. In this chapter, we will examine likelihood-based ap-
proaches, which use the explicit probability of response to a given stimulus
for both fitting the model and assessing its validity. We will show how the
likelihood can be derived for several types of neural models, and discuss theo-
retical considerations underlying the formulation and estimation of such mod-
els. Finally, we will discuss several ideas for evaluating model performance,
including time-rescaling of spike trains and optimal decoding using Bayesian
inversion of the likelihood function.

3.1 The Neural Coding Problem

Neurons exhibit stochastic variability. Even for repeated presentations of a
fixed stimulus, a neuron’s spike response cannot be predicted with certainty.
Rather, the relationship between stimuli and neural responses is probabilistic.
Understanding the neural code can therefore be framed as the problem of de-
termining p(y|x), the probability of response y conditional on a stimulus x. For
a complete solution, we need to be able compute p(y|x) for any x, meaning a
description of the full response distribution for any stimulus we might present
to a neuron. Unfortunately, we cannot hope to get very far trying to measure
this distribution directly, due to the high dimensionality of stimulus space (e.g.,
the space of all natural images) and the finite duration of neurophysiology ex-
periments. Figure 3.1 shows an illustration of the general problem.

A classical approach to the neural coding problem has been to restrict at-
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Figure 3.1 Illustration of the neural coding problem. The goal is to find a model
mapping x to y that provides an accurate representation of the conditional distribu-
tion p(y|x). Right: Simulated distribution of neural responses to two distinct stimuli,
x1 and x2 illustrating (1) stochastic variability in responses to a single stimulus, and (2)
that the response distribution changes as a function of x. A complete solution involves
predicting p(y|x) for any x.

tention to a small, parametric family of stimuli (e.g., flashed dots, moving
bars, or drifting gratings). The motivation underlying this approach is the
idea that neurons are sensitive only to a restricted set of stimulus features, and
that we can predict the response to an arbitrary stimulus simply by knowing
the response to these features. If x{ψ} denotes a parametric set of features to
which a neuron modulates its response, then the classical approach posits that
p(y|x) ≈ p(y|xψ), where xψ is the stimulus feature that most closely resembles
x.

Although the “classical" approach to neural coding is not often explicitly
framed in this way, it is not so different in principle from the “statistical mod-
eling" approach that has gained popularity in recent years, and which we pur-
sue here. In this framework, we assume a probabilistic model of the neural re-
sponse, and attempt to fit the model parameters θ so that p(y|x, θ), the response
probability under the model, provides a good approximation to p(y|x). Al-
though the statistical approach is often applied using stimuli drawn stochasti-
cally from a high-dimensional ensemble (e.g. Gaussian white noise) rather than
a restricted parametric family (e.g. sine gratings), the goals are essentially sim-
ilar: to find a simplified and computationally tractable description of p(y|x).
The statistical framework differs primarily in its emphasis on detailed quanti-
tative prediction of spike responses, and in offering a unifying mathematical
framework (likelihood) for fitting and validating models.
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3.2 Model Fitting with Maximum Likelihood

Let us now turn to the problem of using likelihood for fitting a model of an
individual neuron’s response. Suppose we have a set of stimuli x = {xi} and
a set of spike responses y = {yi} obtained during a neurophysiology experi-
ment, and we would like to fit a model that captures the mapping from x to
y. Given a particular model, parametrized by the vector θ, we can apply a
tool from classical statistics known as maximum likelihood to obtain an asymp-
totically optimal estimate of θ. For this, we need an algorithm for computing
p(y|x, θ), which, considered as a function of θ, is called the likelihood of the data.
The maximum likelihood (ML) estimate θ̂ is the set of parameters under which
these data are most probable, or the maximizer of the likelihood function:

θ̂ = arg max
θ

p(y|x, θ). (3.1)

Although this solution is easily stated, it is unfortunately the case that for
many models of neural response (e.g. detailed biophysical models such as
Hodgkin-Huxley) it is difficult or impossible to compute likelihood. Moreover,
even when we can find simple algorithms for computing likelihood, maximiz-
ing it can be quite difficult; in most cases, θ lives in a high-dimensional space,
containing tens to hundreds of parameters (e.g. describing a neuron’s receptive
field and spike-generation properties). Such nonlinear optimization problems
are often intractable.

In the following sections, we will introduce several probabilistic neural spike
models, derive the likelihood function for each model, and discuss the factors
affecting ML estimation of its parameters. We will also compare ML with stan-
dard (e.g. moment-based) approaches to estimating model parameters.

3.2.1 The LNP Model

One of the best-known models of neural response is the linear-nonlinear-Poisson
(LNP) model, which is alternately referred to as the linear-nonlinear “cascade”
model. The model, which is schematized in the left panel of figure 3.2, consists
of a linear filter (k), followed by a point nonlinearity (f ), followed by Pois-
son spike generation. Although many interpretations are possible, a simple
description of the model’s components holds that:

• k represents the neuron’s space-time receptive field, which describes how
the stimulus is converted to intracellular voltage;

• f describes the conversion of voltage to an instantaneous spike rate, ac-
counting for such nonlinearities as rectification and saturation;

• instantaneous rate is converted to a spike train via an inhomogeneous Pois-
son process.
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The parameters of this model can be written as θ = {k, φf}, where φf are the
parameters governing f . Although the LNP model is not biophysically realis-
tic (especially the assumption of Poisson spiking), it provides a compact and
reasonably accurate description of average responses, e.g., peri-stimulus time
histogram (PSTH), in many early sensory areas.
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Figure 3.2 Schematic and dependency structure of the linear-nonlinear-Poisson
model. Left: LNP model consists of a linear filter k, followed by a point nonlinearity
f , followed by Poisson spike generation. Right: Depiction of a discretized white noise
Gaussian stimulus (above) and spike response (below). Arrows indicate the causal de-
pendency entailed by the model between portions of the stimulus and portions of the
response. The highlighted gray box and gray oval show this dependence for a single
time bin of the response, while gray boxes and arrows indicate the (time-shifted) de-
pendency for neighboring bins of the response. As indicated by the diagram, all time
bins of the response are conditionally independent given the stimulus (equation (3.2)).

Another reason for the popularity of the LNP model is the existence of a
simple and computationally efficient fitting algorithm, which consists in using
spike-triggered average (STA) as an estimate for k and a simple histogram pro-
cedure to estimate φf (see [6, 8]). It is a well-known result that the STA (or
“reverse correlation”) gives an unbiased estimate of the direction of k (i.e. the
STA converges to αk, for some unknown α) if the raw stimulus distribution
p(x) is spherically symmetric, and f shifts the mean of the spike-triggered en-
semble away from zero (i.e. the expected STA is not the zero vector) [7, 15].
However, the STA does not generally provide an optimal estimate of k, except
in a special case we will examine in more detail below [16].

First, we derive the likelihood function of the LNP model. The right panel of
figure 3.2 shows the dependency structure (also known as a graphical model)
between stimulus and response, where arrows indicate conditional dependence.
For this model, the bins of the response are conditionally independent of one
another given the stimulus, an essential feature of Poisson processes, which
means that the probability of the entire spike train factorizes as

p(y|x, θ) =
∏

i

p(yi|xi, θ), (3.2)
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where yi is the spike count in the ith time bin, and xi is the stimulus vector
causally associated with this bin. Equation (3.2) asserts that the likelihood of
the entire spike train is the product of the single-bin likelihoods. Under this
model, single-bin likelihood is given by the Poisson distribution with rate pa-
rameter ∆f(k·xi), where k·xi, is the dot product of k with xi and ∆ is the width
of the time bin. The probability of having yi spikes in the ith bin is therefore

p(yi|xi, θ) =
1
yi!

[∆f(k · xi)]yi e−∆f(k·xi), (3.3)

and the likelihood of the entire spike train can be rewritten as:

p(y|x, θ) = ∆n
∏

i

f(k · xi)yi

yi!
e−∆f(k·xi), (3.4)

where n is the total number of spikes.
We can find the ML estimate θ̂ = {k̂, φ̂f} by maximizing the log of the likeli-

hood function (which is monotonically related to likelihood), and given by

log p(y|x, θ) =
∑

i

yi log f(k · xi)−∆
∑

i

f(k · xi) + c, (3.5)

where c is a constant that does not depend on k or f . Because there is an extra
degree of freedom between the amplitude of k and input scaling of f , we can
constrain k to be a unit vector, and consider only the angular error in estimating
k. By differentiating the log-likelihood with respect to k and setting it to zero,
we find that the ML estimate satisfies:

λk̂ =
∑

i

yi
f ′(k̂ · xi)
f(k̂ · xi)

xi −∆
∑

i

f ′(k̂ · xi)xi, (3.6)

where λ is a Lagrange multiplier introduced to constrain k to be a unit vec-
tor. As noted in [16], the second term on the right hand converges to a vector
proportional to k if the stimulus distribution p(x) is spherically symmetric. (It
is the expectation over p(x) of a function radially symmetric around k.) If we
replace this term by its expectation, we are left with just the first term, which
is a weighted STA, since yi is the spike count and xi is the stimulus preceding
the ith bin. This term is proportional to the (ordinary) STA if f ′/f is constant,
which occurs only when f(z) = eaz+b.

Therefore, the STA corresponds to the ML estimate for k whenever f is ex-
ponential; conversely, if f differs significantly from exponential, equation (3.6)
specifies a different weighting of the spike-triggered stimuli, and the tradi-
tional STA is suboptimal. Figure 3.3 illustrates this point with a comparison
between the STA and the ML estimate for k on spike trains simulated using
three different nonlinearities. In the simulations, we found the ML estimate by
directly maximizing log-likelihood (equation (3.5)) for both k and φf , begin-
ning with the STA as an initial estimate for k. As expected, the ML estimate
outperforms the STA except when f is exponential (rightmost column).
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Figure 3.3 Comparison of spike-triggered average (STA) and maximum likelihood
(ML) estimates of the linear filter k in an LNP model. Top row: three different types
of nonlinearity f : a linear function (left), a half-wave rectified linear function (middle),
and an exponential. For each model, the true k was a 20-tap temporal filter with bipha-
sic shape similar to that found in retinal ganglion cells. The stimulus was temporal
Gaussian white noise with a frame rate of 100 Hz, and k was normalized so that filter
output had unit standard deviation. Bottom row: Plots show the convergence behavior
for each model, as a function of the amount of data collected. Error is computed as the
angle between the estimate and the true k, averaged over 100 repeats at each stimulus
length.

Figure 3.4 shows a similar analysis comparing ML to an estimator derived
from spike-triggered covariance (STC) analysis, which uses the principal eigen-
vector of the STC matrix to estimate k. Recent work has devoted much atten-
tion to fitting LNP models with STC analysis, which is relevant particularly in
cases where the f is approximately symmetric [10, 22, 26, 1, 25, 3, 23]. The left
column of figure 3.4 shows a simulation where f is a quadratic, shifted slightly
from the origin so that both the STA and the first eigenvector of the STC pro-
vide consistent (asymptotically convergent) estimates of k. Both, however, are
significantly outperformed by the ML estimator. Although it is beyond the
scope of this chapter, a derivation similar to the one above shows that there
is an f for which the ML estimator and the STC estimate are identical. The
relevant f is a quadratic in the argument of an exponential, which can also be
represented as a ratio of two Gaussians (see [20] for a complete discussion).
The right column of figure 3.4 shows results obtained with such a nonlinearity.
If we used a similar nonlinearity in which the first term of the quadratic is neg-
ative, e.g. f(x) = exp(−x2), then f produces a reduction in variance along k,
and the STC eigenvector with the smallest eigenvalue is comparable to the ML
estimate [20].
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Figure 3.4 Comparison of STA, STC, and ML estimates k in an LNP model. Top row:
Two types of nonlinearity functions used to generate responses; a quadratic function
(left), a quadratic raised to an exponential (right). Stimulus and true k as in figure 3.3.
Bottom row: Convergence behavior of the STA, first (maximum-variance) eigenvector
of the STC, and ML estimate. The STA is omitted from the right plot, as it fails to
converge under a symmetric nonlinearity.

Before closing this section, it is useful to review several other general charac-
teristics of ML estimation in LNP models. Firstly, note that the LNP model can
be generalized to include multiple linear filters and a multidimensional non-
linearity, all of which can be fit using ML. In this case, the likelihood function
is the same as in equation (3.4), only the instantaneous spike rate is now given
by:

rate(xi) = f(k1 · xi, k2 · xi, . . . , km · xi), (3.7)

where {k1, k2, . . . , km} is a collection of filters and f is an m-dimensional point
nonlinearity. Secondly, ML estimation of the LNP model enjoys the same statis-
tical advantages as several information-theoretic estimators that have been de-
rived for finding “maximally informative dimensions” or features of the stimu-
lus space [15, 24]. Specifically, the ML estimator is unbiased even when the raw
stimulus distribution lacks spherical symmetry (e.g. “naturalistic stimuli”) and
it is sensitive to higher-order statistics of the spike-triggered ensemble, making
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it somewhat more powerful and more general than STA or STC analysis. Un-
fortunately, ML also shares the disadvantages of these information-theoretic
estimators: it is computationally intensive, difficult to use for recovering mul-
tiple (e.g. > 2) filters (in part due to the difficulty of choosing an appropriate
parametrization for f ), and cannot be guaranteed to converge to the true max-
imum using gradient ascent, due to the existence of multiple local maxima in
the likelihood function.

We address this last shortcoming in the next two sections, which discuss
models constructed to have likelihood functions that are free from sub-optimal
local maxima. These models also introduce dependence of the response on
spike-train history, eliminating a second major shortcoming of the LNP model,
the assumption of Poisson spike generation.

3.2.2 Generalized Linear Model

The generalized linear model (or GLM), schematized in figure 3.5, generalizes
the LNP model to incorporate feedback from the spiking process, allowing the
model to account for history-dependent properties of neural spike trains such
as the refractory period, adaptation, and bursting [16, 27]. As shown in the
dependency diagram (right panel of figure 3.5), the responses in distinct time
bins are no longer conditionally independent given the stimulus; rather, each
bin of the response depends on some time window of the recent spiking activ-
ity. Luckily, this does not prevent us from factorizing the likelihood, which can
now be written

p(y|x, θ) =
∏

i

p(yi|xi, y[i−k : i−1], θ), (3.8)

where y[i−k : i−1] is the vector of recent spiking activity from time bin i − k to
i− 1. This factorization holds because, by Bayes’ rule, we have

p(yi, y[i−k : i−1]|x, θ) = p(yi|y[i−k : i−1],x, θ)p(y[i−k : i−1]|x, θ), (3.9)

and we can apply this formula recursively to obtain equation (3.8). (Note, how-
ever, that no such factorization is possible if we allow loopy, e.g. bidirectional,
causal dependence between time bins of the response.)

Except for the addition of a linear filter, h, operating on the neuron’s spike-
train history, the GLM is identical to the LNP model. We could therefore call it
the “recurrent LNP” model, although its output is no longer a Poisson process,
due to the history-dependence induced by h. The GLM likelihood function is
similar to that of the LNP model. If we let

ri = f(k · xi + h · y[i−k : i−1]) (3.10)

denote the instantaneous spike rate (or “conditional intensity” of the process),
then the likelihood and log-likelihood, following equation (3.4) and (3.5), are
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Figure 3.5 Diagram and dependency structure of a generalized linear model. Left:
Model schematic, showing the introduction of history-dependence in the model via
a feedback waveform from the spiking process. In order to ensure convexity of the
negative log-likelihood, we now assume that the nonlinearity f is exponential. Right:
Graphical model of the conditional dependencies in the GLM. The instantaneous spike
rate depends on both the recent stimulus and recent history of spiking.

given by:

p(y|x, θ) = ∆n
∏

i

ryi

i

yi!
e−∆ri (3.11)

log p(y|x, θ) =
∑

i

yi log ri −∆
∑

i

ri + c. (3.12)

Unfortunately, we cannot use moment-based estimators (STA and STC) to
estimate k and h for this model, because the consistency of those estimators
relies on spherical symmetry of the input (or Gaussianity, for STC), which the
spike-history input term y[i−k : i−1] fails to satisfy [15].

As mentioned above, a significant shortcoming of the ML approach to neu-
ral characterization is that it may be quite difficult in practice to find the maxi-
mum of the likelihood function. Gradient ascent fails if the likelihood function
is rife with local maxima, and more robust optimization techniques (like simu-
lated annealing) are computationally exorbitant and require delicate oversight
to ensure convergence.

One solution to this problem is to constrain the model so that we guaran-
tee that the likelihood function is free from (non-global) local maxima. If we
can show that the likelihood function is log-concave, meaning that the negative
log-likelihood function is convex, then we can be assured that the only max-
ima are global maxima. Moreover, the problem of computing the ML estimate
θ̂ is reduced to a convex optimization problem, for which there are tractable
algorithms even in very high-dimensional spaces.

As shown by [16], the GLM has a concave log-likelihood function if the non-
linearity f is itself convex and log-concave. These conditions are satisfied if
the second-derivative of f is non-negative and the second-derivative of log f
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is non-positive. Although this may seem like a restrictive set of conditions—it
rules out symmetric nonlinearities, for example—a number of suitable func-
tions seem like reasonable choices for describing the conversion of intracellular
voltage to instantaneous spike rate, for example:

• f(z) = max(z + b, 0)

• f(z) = ez+b

• f(z) = log(1 + ez+b),

where b is a single parameter that we also estimate with ML.
Thus, for appropriate choice of f , ML estimation of a GLM becomes compu-

tationally tractable. Moreover, the GLM framework is quite general, and can
easily be expanded to include additional linear filters that capture dependence
on spiking activity in nearby neurons, behavior of the organism, or additional
external covariates of spiking activity. ML estimation of a GLM has been suc-
cessfully applied to the analysis of neural spike trains in a variety of sensory,
motor, and memory-related brain areas [9, 27, 14, 19].

3.2.3 Generalized Integrate-and-Fire Model

We now turn our attention to a dynamical-systems model of the neural re-
sponse, for which the likelihood of a spike train is not so easily formulated
in terms of a conditional intensity function (i.e. the instantaneous probability
of spiking, conditional on stimulus and spike-train history). Recent work has
shown that the leaky integrate-and-fire (IF) model, a canonical but simplified
description of intracellular spiking dynamics, can reproduce the spiking statis-
tics of real neurons [21, 13] and can mimic important dynamical behaviors of
more complicated models like Hodgkin-Huxley [11, 12]. It is therefore natural
to ask whether likelihood-based methods can be applied to models of this type.

Figure 3.6 shows a schematic diagram of the generalized IF model [16, 18],
which is a close relative of the well-known spike response model [12]. The
model generalizes the classical IF model so that injected current is a linear func-
tion of the stimulus and spike-train history, plus a Gaussian noise current that
introduces a probability distribution over voltage trajectories. The model dy-
namics (written here in discrete time, for consistency) are given by

vi+1 − vi
∆

= −1
τ

(vi − vL) + (k · xi) + (h · y[i−k : i−1]) + σNi∆− 1
2 , (3.13)

where vi is the voltage at the ith time bin, which obeys the boundary condition
that whenever vi ≥ 1, a spike occurs and vi is reset instantaneously to zero.
∆ is the width of the time bin of the simulation, and Ni is a standard Gaus-
sian random variable, drawn independently on each i. The model parameters
k and h are the same as in the GLM: linear filters operating on the stimulus
and spike-train history (respectively), and the remaining parameters are: τ ,
the time constant of the membrane leak; vL, the leak current reversal potential;
and σ, the amplitude of the noise.



3.2 Model Fitting with Maximum Likelihood 63

10 1 0 00 0 0 1 00 10 10 000 000 0 0 00 0

dependency structure

0 50 100

0

0

time (ms)

p

(
s
p

i
k
e

)

v
o

l
t
a

g

e

likelihood of a single ISI

i

leaky integrator

threshold

noise

post-spike

current

linear filter

k

hN

generalized IF model

Figure 3.6 Generalized integrate-and-fire model. Top: Schematic diagram of model
components, including a stimulus filter k and a post-spike current h that is injected into
a leaky integrator following every spike, and independent Gaussian noise to account
for response variability. Bottom left: Graphical model of dependency structure, show-
ing that the likelihood of each interspike interval (ISI) is conditionally dependent on
a portion of the stimulus and spike-train history prior to the interspike interval (ISI).
Bottom right: Schematic illustrating how likelihood could be computed with Monte
Carlo sampling. Black trace shows the voltage (and spike time) from simulating the
model without noise, while gray traces show sample voltage paths (to the first spike
time) with noise. The likelihood of the ISI is shown above, as a function of the spike
time (black trace). Likelihood of an ISI is equal to the fraction of voltage paths crossing
threshold at the true spike time.

The lower left panel of figure 3.6 depicts the dependency structure of the
model as it pertains to computing the likelihood of a spike train. In this case,
we can regard the probability of an entire interspike interval (ISI) as depend-
ing on a relevant portion of the stimulus and spike-train history. The lower
right panel shows an illustration of how we might compute this likelihood for
a single ISI under the generalized GIF model using Monte Carlo sampling.
Computing the likelihood in this case is also known as the “first-passage time”
problem. Given a setting of the model parameters, we can sample voltage tra-
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jectories from the model, drawing independent noise samples for each trajec-
tory, and following each trajectory until it hits threshold. The gray traces show
show five such sample paths, while the black trace shows the voltage path ob-
tained in the absence of noise. The probability of a spike occurring at the ith bin
is simply the fraction of voltage paths crossing threshold at this bin. The black
trace (above) shows the probability distribution obtained by collecting the first
passage times of a large number of paths. Evaluated at the actual spike, this
density gives the likelihood of the relevant ISI. Because of voltage reset follow-
ing a spike, all ISIs are conditionally independent, and we can again write the
likelihood function as a product of conditionally independent terms:

p(y|x, θ) =
∏
tj

p(y[tj−1+1 : tj ]|x, y[0 : tj ], θ), (3.14)

where {tj} is the set of spike times emitted by the neuron, y[tj−1+1 : tj ] is the
response in the set of time bins in the jth ISI, and y[0 : tj ] is the response during
time bins previous to that interval.

The Monte Carlo approach to computing likelihood of a spike train can in
principle be performed for any probabilistic dynamical-systems style model.
In practice, however, such an approach would be unbearably slow and would
likely prove intractable, particularly since the likelihood function must be com-
puted many times in order find the ML estimate for θ. However, for the gen-
eralized IF model there exists a much more computationally efficient method
for computing the likelihood function using the Fokker-Planck equation. Al-
though beyond the scope of this chapter, the method works by “density prop-
agation” of a numerical representation of the probability density over sub-
threshold voltage, which can be quickly computed using sparse matrix meth-
ods. More importantly, a recent result shows that the log-likelihood function
for the generalized IF model, like that of the GLM, is concave. This means that
the likelihood function contains a unique global maximum, and that gradient
ascent can be used to find the ML estimate of the model parameters (see [17]
for a more thorough discussion). Recent work has applied the generalized IF
model to the responses of macaque retinal ganglion cells using ML, showing
that it can be used to capture stimulus dependence, spike-history dependence,
and noise statistics of neural responses recorded in vitro [18].

3.3 Model Validation

Once we have a used maximum likelihood to fit a particular model to a set of
neural data, there remains the important task of validating the quality of the
model fit. In this section, we discuss three simple methods for assessing the
goodness-of-fit of a probabilistic model using the same statistical framework
that motivated our approach to fitting.
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3.3.1 Likelihood-Based Cross-Validation

Recall that the basic goal of our approach is to find a probabilistic model such
that we can approximate the true probabilistic relationship between stimulus
and response, p(y|x), by the model-dependent p(y|x, θ). Once we have fit θ
using a set of training data, how can we tell if the model provides a good de-
scription of p(y|x)? To begin with, let us suppose that we have two competing
models, pA and pB , parametrized by θA and θB , respectively, and we wish to
decide which model provides a better description of the data. Unfortunately,
we cannot simply compare the likelihood of the data under the two models,
pA(y|x, θA) vs. pB(y|x, θB), due to the problem of overfitting. Even though
one model assigns the fitted data a higher likelihood than the other, it may not
generalize as well to new data.

As a toy example of the phenomenon of overfitting, consider a data set con-
sisting of 5 points drawn from a Gaussian distribution. Let model A be a single
Gaussian, fit with the mean and standard deviation of the sample points (i.e.
the ML estimate for this model). For model B, suppose that the data come from
a mixture of five very narrow Gaussians, and fit this model by centering one
of these narrow Gaussians at each of the 5 sample points. Clearly, the second
model assigns higher likelihood to the data (because it concentrates all proba-
bility mass near the sample points), but it fails to generalize–it will assign very
low probability to new data points drawn from the true distribution which do
not happen to lie very near the five original samples.

This suggests a general solution to the problem of comparing models, which
goes by the name cross-validation. Under this procedure, we generate a new set
of “test” stimuli, x∗ and present them to the neuron to obtain a new set of spike
responses y∗. (Alternatively, we could set aside a small portion of the data at
the beginning.) By comparing the likelihood of these new data sets under the
two models, pA(y∗|x∗, θA) vs. pB(y∗|x∗, θB), we get a fair test of the models’
generalization performance. Note that, under this comparison, we do not ac-
tually care about the number of parameters in the two models: increasing the
number of parameters in a model does not improve its ability to generalize. (In
the toy example above, model B has more parameters but generalizes much
more poorly. We can view techniques like regularization as methods for reduc-
ing the effective number of parameters in a model so that overfitting does not
occur.) Although we may prefer a model with fewer parameters for aesthetic or
computational reasons, from a statistical standpoint we care only about which
model provides a better account of the novel data.

3.3.2 Time-Rescaling

Another powerful idea for testing validity of a probabilistic model is to use
the model to convert spike times into a series of i.i.d. random variables. This
conversion will only be successful if we have accurately modeled the proba-
bility distribution of each spike time. This idea, which goes under the name
time-rescaling [5], is a specific application of the general result that we can con-
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vert any random variable into a uniform random variable using its cumulative
density function (CDF).

First, let us derive the CDF of a spike time under the LNP and GLM models.
If ri is the conditional intensity function of the ith time bin (i.e. f(k · xi) under
the LNP model), then the probability that the “next” spike tj+1 occurs on or
before bin k, given that the previous spike occurred at tj , is simply 1 minus the
probability that no spikes occur during the time bins tj + 1 to k. This gives

p(tj+1 ≤ k|tj) = 1−

 ∏

i∈[tj+1,k]

e−∆ri


 (3.15)

which we can rewrite:

p(tj+1 ≤ k|tj) = 1− exp


−∆

k∑
tj+1

ri


 (3.16)

Note that the argument of the exponential is simply the negative integral of the
intensity function since the time of the previous spike.

For the generalized IF model, computing the likelihood function involves
computing the probability density function (PDF) over each interspike interval
(as depicted in figure 3.6), which we can simply integrate to obtain the CDF
[17].

Given the CDF for a random variable, a general result from probability the-
ory holds that it provides a remapping of that variable to the one randomly
distributed unit interval [0, 1]. Even though the CDF for each spike time is dif-
ferent, if we remap the entire spike train using tj −→ CDFj(tj), where CDFj
is the cumulative density of the jth spike time, then, if the model is correct, we
should obtain a series of independent, uniform random variables. This sug-
gests we test the validity of the model by testing the remapped spike times for
independence; any correlation (or some other form of dependence) between
successive pairs of remapped spike times (for example), indicates a failure of
the model. We can also examine the marginal distribution of the remapped
times (using a K-S test, for example) to detect deviations from uniformity. The
structure of any deviations may be useful for understanding the model’s fail-
ure modes: an excess of small-valued samples, for example, indicates that the
model predicts too few short interspike intervals. If we wish to compare mul-
tiple models, we can use time-rescaling to examine which model produces the
most nearly independent and most nearly uniform remapped spike times.

3.3.3 Model-Based Decoding

A third tool for assessing the validity of a probabilistic model is to perform
stimulus decoding using the model-based likelihood function. Given the fitted
model parameters, we can derive the posterior probability distribution over the
stimulus given a spike train by inverting the likelihood function with Bayes’
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rule:

p(x|y, θ) =
p(y|x, θ)p(x)

p(y|θ) , (3.17)

where p(x) is the prior probability of the stimulus (which we assume to be
independent of θ), and the denominator is the probability of response y given
θ. We can obtain the most likely stimulus to have generated the response y by
maximizing the posterior for x, which gives the maximum a posteriori (MAP)
estimate of the stimulus, which we can denote

x̂MAP = arg max
x

p(y|x, θ)p(x) (3.18)

since the denominator term p(y|θ) does not vary with x.
For the GLM and generalized IF models, the concavity of the log-likelihood

function with respect to the model parameters also extends to the posterior
with respect to the stimulus, since the stimulus interacts linearly with model
parameters k. Concavity of the log-posterior holds so long as the prior p(x)
is itself log-concave (e.g. Gaussian, or any distribution of the form αe−(x/σ)γ

,
with γ ≥ 1). This means that, for both of these two models, we can perform
MAP decoding of the stimulus using simple gradient ascent of the posterior.

If we wish to perform decoding with a specified loss function, for example,
mean-squared error, optimal decoding can be achieved with Bayesian estima-
tion, which is given by the estimator with minimum expected loss. In the case
of mean-squared error, this estimator is given by

x̂Bayes = E[x|y, θ], (3.19)

which is the conditional expectation of x, or the mean of the posterior distribu-
tion over stimuli. Computing this estimate, however, requires sampling from
the posterior distribution, which is difficult to perform without advanced sta-
tistical sampling techniques, and is a topic of ongoing research.

Considered more generally, decoding provides an important test of model
validity, and it allows us to ask different questions about the nature of the
neural code. Even though it may not be a task carried out explicitly in the
brain, decoding allows us to measure how well a particular model preserves
the stimulus-related information in the neural response. This is a subtle point,
but one worth considering: we can imagine a model that performs worse un-
der cross-validation or time-rescaling analyses, but performs better at decod-
ing, and therefore gives a better account of the stimulus-related information
that is conveyed to the brain. For example, consider a model that fails to ac-
count for the refractory period (e.g. an LNP model), but which gives a slightly
better description of the stimulus-related probability of spiking. This model
assigns non-zero probability to spike trains that violate the refractory period,
thereby “wasting” probability mass on spike trains whose probability is actu-
ally zero, and performing poorly under cross-validation. The model also per-
forms poorly under time-rescaling, due to the fact that it over-predicts spike
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rate during the refractory period. However, when decoding a real spike train,
we do not encounter violations of the refractory period, and the “wasted” prob-
ability mass affects only the normalizing term p(y|θ). Here, the model’s im-
proved accuracy in predicting the stimulus-related spiking activity leads to a
posterior that is more reliably centered around the true stimulus. Thus, even
though the model fails to reproduce certain statistical features of the response,
it provides a valuable tool for assessing what information the spike train car-
ries about the stimulus, and gives a perhaps more valuable description of the
neural code. Decoding may therefore serve as an important tool for validat-
ing likelihood-based models, and a variety of exact or approximate likelihood-
based techniques for neural decoding have been explored [28, 4, 2, 18].

3.4 Summary

We have shown how to compute likelihood and perform ML fitting of several
types of probabilistic neural models. In simulations, we have shown that ML
outperforms traditional moment-based estimators (STA and STC) when the
nonlinear function of filter output does not have a particular exponential form.
We have also discussed models whose log-likelihood functions are provably
concave, making ML estimation possible even in high-dimensional parameter
spaces and with non-Gaussian stimuli. These models can also be extended to
incorporate dependence on spike-train history and external covariates of the
neural response, such as spiking activity in nearby neurons. We have exam-
ined several statistical approaches to validating the performance of a neural
model, which allow us to decide which models to use and to assess how well
they describe the neural code.

In addition to the insight they provide into the neural code, the models we
have described may be useful for simulating realistic input to downstream
brain regions, and in practical applications such as neural prosthetics. The
theoretical and statistical tools that we have described here, as well as the vast
computational resources that make them possible, are still a quite recent de-
velopment in the history of theoretical neuroscience. Understandably, their
achievements are still quite modest: we are some ways from a “complete”
model that predicts responses to any stimulus (e.g., incorporating the effects
of spatial and multi-scale temporal adaptation, network interactions, and feed-
back). There remains much work to be done both in building more power-
ful and accurate models of neural responses, and in extending these models
(perhaps in cascades) to the responses of neurons in brain areas more deeply
removed from the periphery.
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