
Assignment 3

Systems & Theoretical Neuroscience [Gatsby]

Due: Mon, 13th November

Note: Red text contains clarifications since the assignment was first published.

1. In many animals, the current eye position appears to be encoded by a cartesian distributed scalar
code in which the tuning curves are linear ramp functions of either the horizontal or vertical eye-
position; while the intended target of a saccadic eye movement is more often represented with radial
bump-shaped tuning curves distributed in 2D. Suggest why this might be so.

(you may consider reading the SWC assignment question for some hints)

2. A scalar stimulus that is uniformly distributed in a fixed range (say [0,1]) is encoded in the firing rate
of a neuron. Sketch a (pathological) tuning curve for which the average Fisher information conveyed
by the firing rate is very large, but the average mutual information is low. Is the reverse possible: can
the mutual information be high, whilst the Fisher information is very low? Justify both your answers.

3. Fisher information for a Gaussian distribution

Consider a conditional response distribution of the form

p(r|x) =
e−(r−f(x))·Σ−1(x)·(r−f(x))/2

Det(2πΣ(x))1/2
.

Compute the Fisher information,

I(x) =

〈
−∂

2 log p(r|x)

∂x2

〉
,

where the average is with respect to p(r|x). Note that the covariance matrix depends on x; this
complicates the expression.

4. Bias in a locally optimal linear estimator

Consider a population of neurons whose firing activity is given by the usual tuning curve plus noise
model,

r = f(x) + ξ. (1)

The noise is zero mean and has covariance matrix Σ,

〈ξξ〉 = Σ.

Consider a linear estimator, w,

x̂− x0 = w · (r− f(x0)).
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Show that if Σ is independent of x, w is chosen to be a optimal (in the sense of minimum variance)
and unbiased at x = x0, and x is close to x0, then the gradient of the bias at x0 is given, to lowest
order in x− x0, by

∂b(x)

∂x

∣∣∣∣
x=x0

=
1

2

∂ log I(x0)

∂x0
(x− x0)

where the bias is defined to be:

b(x) = 〈x̂〉 − x,

and I is the inverse of the variance of the locally optimal linear estimator at x = x0 (AKA the linear
Fisher information).

5. Differential correlations

For this question it may be helpful to read Information-limiting correlations. by Moreno-Bote, Ruben,
et al., Nature neuroscience 17.10 (2014): 1410-1417.

Consider a covariance matrix, Σ0, perturbed by a rank one matrix,

Σ = Σ0 + εu(x)u(x).

Assume a tuning curve plus noise model, as in Eq. (1). Show that the linear fisher information can be
written as:

ILINEAR(x) = I0(x) sin2 θ +
I0(x) cos2(θ)

1 + εIu(x)

where

I0(x) = f ′(x) ·Σ−10 · f ′(x)

Iu(x) = u(x) ·Σ−10 · u(x)

cos2 θ =
[f ′(x) ·Σ−10 · u(x)]2

f ′(x) ·Σ−10 · f ′(x) u(x) ·Σ−10 · u(x)
.

If both I0(x) and Iu(x) are O(n), where n is the number of neurons, then the only way to have O(1)
information is to have θ = 0, for which u(x) = f ′(x).

6. Fisher information and refractory firing

Consider a hypothetical cell, which responds to the presentation of a stimulus with a continuous feature
s by firing at a homogeneous rate f(s) in a (fixed) interval [0, T ]. Assume that the firing rate is 0
outside this interval. We will be interested in the contributions made to the Fisher information by
spike-timing, with and without a refractory period.

First, assume that the firing is Poisson.

(a) What is the probability of observing spikes at times {t1 . . . tn} ⊂ [0, T ]?

(b) What is the Fisher information Jt,Poiss(s) associated with this probability density function, as-
suming that the relevant interval [0, T ] is known? How does it compare to the Fisher information
Jn,Poiss associated with the distribution of spike counts P (n|s)?

Now consider refractory firing. Recall that one way to model a refractory period is to use a gamma-
interval renewal process in place of a Poisson process. Thus, now assume that the cell’s firing follows
a gamma-interval process with the same mean rate f(s) and with integral gamma order γ.
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(c) What is the probability of observing spikes at times {t1 . . . tn} ⊂ [0, T ] from this process?

(d) What is the Fisher information Jt,Gamma(s) associated with the new probability density function?
You may assume that T is long enough to neglect contributions due to the first spike, and due to
the silence after the last spike.

Finally, we wish to see how much of this information gain is available in the spike count.

(e) Which signal (count or spike-timing) do you expect to carry more information for this process?
Why?

(f) Find an expression for the the distribution of spike counts P (n|s) under the gamma-interval
model.

(g) Write down the expression for the corresponding Fisher information Jn,Gamma, and thus for
Jn,Gamma − Jt,Gamma. You need not necessarily evaluate the expectation. Identify the term(s)
responsible for the difference between Jn,Gamma and Jt,Gamma.

7. Estimation Theory

(a) We derived the Fisher information J(θ) as the expected value of the second derivate (curvature)
of the log-likelihood in the lecture.

i. Repeat the derivation for a vector parameter (or stimulus in our setting) θθθ, showing that the
Fisher information in this case is given by a matrix.

As mentioned in the lecture, there is an alternate definition in terms of the first derivative. For
vector parameters this is:

J(θθθ0) = Covθθθ0

(
∇ log p(n|θθθ)

∣∣∣∣
θθθ0

)
.

where Covθθθ0 means the covariance evaluated under p(n|θθθ0).

ii. Demonstrate that these two definitions are the same (or more precisely, give conditions under
which these two definitions are the same).

(b) Consider an LNP model:
p(n|xxx) = Poiss(g(www · xxx))

i. What is J(xxx) (the Fisher Information about the stimulus value available to the rest of the
brain)? How does it depend on www? Working in two dimensions (recall the picture from
lecture) show how J(xxx) varies around the vector linear projection vector www.

ii. What is J(www) (the Fisher Information about the weight vector available to an experimenter
— consider the case of multiple measurements ni, each in response to a different stimulus
xxxi)? How does it depend on the distribution of xxx? What would be a good distribution with
which to probe the cell if we knew (say) the orthant of stimulus space in which www lay?
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