
Homework 3

Systems & Theoretical Neuroscience [SWC]

Due: Mon, 13th November

1 Signal detection theory

Figure 1: Schematic illustration of stimuli used.

In the experiment illustrated above, a visual stimulus consisting of moving dots is presented to a
subject. The dots can either move coherently in a specified direction or in random directions. The
subject is required to identify the direction of movement of the coherent dots, which can be either
up (+) or down (-). The experimenter has control over the proportion of dots that move coherently,
and can thus modify the difficulty of the task.

Consider a decoder that uses the firing rate of a single neuron to determine which of the two possible
directions was presented as a stimulus. Assume the neuron has a Linear tuning curve and fires a
higher firing rate in the plus direction than the minus. A simple decoding procedure is to determine
the firing rate r during a trial and compare it to a threshold z. If r ≥ z we report plus; otherwise
we report minus.The success of our decoder in this case depends on two things, the separation of
the mean firing rates in response to each stimulus, and the variance. This quantity, known as the
discriminability is given by d′ = µ+−µ−√
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a) Simulate this random-dot discrimination experiment (using e.g. Jupyter Notebook). Denote
the stimulus by plus or minus, corresponding to the two directions of motion. On each trial,
choose the stimulus randomly with equal probability for the two cases. When the minus
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stimulus is chosen, generate the responses of the neuron as 20 Hz plus a random Gaussian
term with a standard deviation of 10 Hz (set any rates that come out negative to zero). When
the plus stimulus is chosen, generate the responses as 20 + 10d Hz plus a random Gaussian
term with a standard deviation of 10 Hz, where d is the discriminability (again, set any rates
that come out negative to zero). Generate results for 1000 trials for d=2, d=5 and d=10.
Plot a histogram of + and - responses for each.

b) Choose a threshold z = 20 + 5d, which is half-way between the means of the two response
distributions. Whenever r ≥ z guess ”plus”, otherwise guess ”minus”. Over a large number
of trials (e.g. 1000) determine how often you get the right answer for different values of d.
Plot the percent correct as a function of d over the range 0 ≤ d ≤ 10.

c) The receiver operating characteristic curve (ROC) provides a way of evaluating how test
performance depends on your choice of the threshold z. By allowing z to vary over a range,
plot ROC curves for several values of d (starting with d = 2). To do this, determine how
frequently the guess is ”plus” when the stimulus is, in fact, plus (this value is known as the
power, β), and how often the guess is ”plus” when the real stimulus is minus (this is the
false-positive rate, α). Plot β versus α for z over the range 0 ≤ z ≤ 140.

2 Tuning curves

A tuning curve describes how the firing rate of a particular neuron varies according to the stimulus
it is encoding. Typically a population of neurons will work together to encode some stimulus value,
in which case the tuning curves of all neurons in the population usually share a basic shape, but
with different parameters (for instance, shifted toward a different preferred stimulus value). The
tuning curve for a single neuron gives its average firing rate for a given stimulus; the actual firing
rate will be affected by noise.

Figure 2 gives four possible scenarios for the tuning curves of different neurons within a population
of neurons that is working together to encode the value of a single 1D stimulus. The tuning curve
for an individual example neuron is given in red; tuning curves for other neurons in the population
are given in grey.
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Figure 2: Different types of population tuning curves observed in the brain

a) Find examples from the literature of brain areas or functions that use each of the above types
of encoding. In each case, describe the encoding and draw a cartoon tuning curve, making it
clear what stimulus is being encoded.

b) Consider one or more neurons are enrolled by the brain to encode a single 1D stimulus using
scalar coding, for instance the temperature of the environment. The brain may choose between
the population tuning curves given in Figure 3. What are the advantages/disadvantages of
each option?

(a) Option A: 1 neuron (b) Option B: 4 neurons (c) Option C: 4 neurons

Figure 3: Possible population tuning curves using scalar coding

c) Consider a population of neurons that is encoding a 2 dimensional stimulus, for instance
the location of berries within your field of view. Your brain may choose to use one of the
tuning curve populations given in Figure 4. In each figure, an ellipse describes a 2-dimensional
gaussian tuning curve.
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Figure 4: Two possible sets of 2D tuning curves for a population of neurons

What are the advantages/disadvantages of each option? Which would you prefer? Does
your answer change if you consider the scenario where there are multiple berries at different
locations in your visual field? Think about how you would decode the stimulus.

d) In many animals, the current eye position appears to be encoded by a cartesian distributed
“scalar” code in which the tuning curves are linear ramp functions of either the horizontal
or vertical eye-position; while the intended target of a saccadic eye movement is more often
represented with radial “bump”-shaped tuning curves distributed in 2D. Draw a picture of
the tuning curves described above. Suggest why these different approaches might be chosen.

e) Zhang and Sejnowski [ZS99] analyse the relationship between Fisher Information and tuning
curve width. Read the paper, and write a short summary:

i) What assumptions do they make?

ii) Under these assumptions, what result do they find?

iii) What are the limitations of this analysis? How could you modify it to be more general?

References

[ZS99] Kechen Zhang and Terrence J Sejnowski. “Neuronal tuning: To sharpen or broaden?” In:
Neural Computation 11.1 (1999), pp. 75–84.

3 Optimal decoding and the Fisher information

3.1

After mapping out Jamie the barn owl’s binaural sound localisation system in the previous as-
signment, you start wondering how Jamie’s brain represents the loudness of particular tones in a
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population of auditory neurons. In an extremely cutting edge experiment, you manage to record
from the full population of neurons that respond to a specific tone, while presenting that tone
to Jamie at different loudness levels. You are interested in decoding the value of the continuous
stimulus parameter s (loudness) from the vector of firing rates ~r = {r1, r2, ...rN}. You determine
the tuning curves of all measured neurons by systematically varying the stimulus and recording the
(mean) firing rates, and you find something surprising. Across the population of N neurons, all
neurons have a Gaussian tuning curve:

fa(s) = rmax exp

(
− 1

2

(
s− sa
σa

)2)
, (1)

and their means are evenly distributed over all possible stimulus values.

a) What does this tell you about the sum of all responses at any value of your stimulus. How
does it depend on your stimulus value?

The tuning curves you found give the average firing rates of neurons over multiple trials. In
a single trial, firing rates will vary from that mean value. To decode the stimulus from these
responses, you need to model this variability, which can be described as a probability density
of responses given your stimulus, p(~r|s). Let us assume that the firing rate ra of neuron a is
determined by counting na spikes over a time interval ∆t, so that ra = na/∆t, and that the
variability follows a Poisson distribution. This means the likelihood of a stimulus s evoking
na = ra∆t spikes when the average firing rate ra = fa(s) is:

p(ra|s) =
1

(ra∆t)!
(fa(s)∆t)ra∆texp(−fa(s)∆t) (2)

b) Write down the log likelihood for the population, in which each neuron fires independently
given the stimulus.

c) Differentiate the log likelihood. Hint: you can ignore all the terms that do not depend on s.

d) Set the derivative to zero to find the maximum likelihood estimate SML for your stimulus
given the fact that the tuning curves are Gaussian.

3.2

In the last question, you derived a maximum likelihood estimator for a continuous stimulus value
given the firing rates of a population of neurons. In this question, we will explore further what
estimators really are, and what constitutes a good estimator.

The accuracy of an estimate sest for a stimulus s is described by two terms. The difference between
the average of the estimate and the actual value is called the bias: best(s) = 〈sest〉 − s. The
definition of the variance of an estimate is σ2

est(s) = 〈(sest − 〈sest〉)2〉, and it is a measure of how
much the estimate varies around its mean value. The angled brackets in these equations indicate
the average.
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a) Given the definitions of bias and variance, show that the mean squared error 〈(sest − s)2〉 is
equal to the sum of the variance and the squared bias σ2

est(s) + b2est. Explain what this means
for unbiased estimates, i.e. estimates for which best(s) = 0.

In the limit of a very large N, the maximum likelihood estimate (question 3.1) is unbiased. It
turns out that, for unbiased estimates, we can use the estimates from our decoding method to
find a limit to the accuracy with which a neural population can encode a stimulus. Through
an inequality known as the Cramér-Rao bound, the variance of an estimator is limited by a
quantity known as Fisher information:

σ2
est(s) ≥

1

J(s)
(3)

where J(s) is the Fisher information of the firing rate distribution. This can be found by
taking the negative of the expected value of the second derivative of the log likelihood:

J(s) =

〈
−∂

2 log p[~r|s]
∂s2

〉
p[~r|s]

=

〈
−
(
∂ log p[~r|s]

∂s

)2
〉
p[~r|s]

(4)

where 〈x〉p[~r|s] is the expectation of x with respect to p[~r|s], which can also be written as∫
d~r p[~r|s] (x).

b) Show that the Fisher information for the population of neurons with uniformly arrayed tuning
curves and Poisson statistics from question 3.1 can be written as:

J(s) = ∆t

N∑
a=1

(f ′a(s))2

fa(s)
, (5)

where f ′(x) is the derivative of f(x). Hint: you should remember what variable you take the
expectation with respect to, and use the fact that the mean firing rate can be read directly
off the tuning curve: 〈ra〉 = fa(s).

In the answer you found in question (b), you can see that each neuron contributes to the Fisher
information of the stimulus to a degree proportional to the square of the slope of the tuning
curve, and inversely proportional to the average firing rate for the stimulus being estimated.

c) For any particular neuron, how does the Fisher information of the stimulus relate to the
tuning curve? Draw a tuning curve from a neuron of the population in question 3.1, and plot
the shape of the Fisher information in the same graph.

d) Judging by your answer in question (b), what shape do you think the optimal Gaussian tuning
curve shape should be in order to maximise the Fisher information for a single neuron? Should
they be narrow or wide? Does your answer agree with that from Zhang and Sejnowski [ZS99]?

For biased estimators, the Cramér-Rao bound (equation 3) should be written as follows:

σ2
est(s) ≥

(1 + b′est(s))
2

J(s)
(6)
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e) Given the same variance, what happens to the Fisher information of a stimulus if a bias is
induced in the estimator?

f) Could you imagine a situation where you would actually prefer a biased estimator over an
unbiased one? Hint: think about your answer in question (a).
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