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1 Spaces

Space

A space is a set with some extra structure or conditions applied.

Vector space

A vector space (also called a linear space) is composed of three things: a set of vectors,
and two operations: vector addition and scalar multiplication. The result of addition or
multiplication must also lie in the same space.

The objects in the set are referred to as vectors precisely because they follow the
appropriate rules for vector operations, even if they aren’t what you normally call vectors
- for instance, they might be functions.

Any set of vectors can form a vector space if it satisfies two conditions:

1. If a vector x is in the set, then so is Ax for any complex scalar A.

2. If two vectors x and y are in the set, then so is their sum x+ y.

Euclidean space

The euclidean space is the vector space of all n-tuples of real numbers Rn. It also has
the associated euclidean distance metric, which makes it a metric space.

Normed vector space

A normed vector space comprises a vector space plus an associated norm, i.e. a function
that assigns a strictly positive length or size to each vector in the space (except zero).

Metric space

A metric space is a set with a global distance function (the metric) that, for every two
points in the space, gives the distance between them as a non-negative real number.
The distance function must satisfy a certain geometric constraints, such as symmetry
and the triangle inequality.

A norm induces a metric, therefore all normed spaces are metric spaces but the
reverse does not always hold.

Complete space

Banach space

A Banach space is a normed vector space which is complete.
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Inner product space

An inner product space is a metric space in which the metric is an inner product. If the
inner product defines a complete metric, then the inner product space is called a Hilbert
space.

Examples

Examples of finite-dimensional Hilbert spaces include:

1. The real numbers Rn with 〈u, v〉 the vector dot product of u and v.

2. The complex numbers Cn with 〈u, v〉 the vector dot product of u and the complex
conjugate of v.

An example of an infinite-dimensional Hilbert space is L2, the set of all functions
f : R → R such that the integral of f2 over the whole real line is finite. In this case,
the inner product is 〈f, g〉 =

∫∞
−∞ f(x)g(x)dx.

References

Much of the material above came from the following wikipedia articles, CC BY-SA:
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https://en.wikipedia.org/wiki/Banach_space

https://en.wikipedia.org/wiki/Metric_space

https://en.wikipedia.org/wiki/Hilbert_space

https://en.wikipedia.org/wiki/Vector_space

2 Vector spaces

2.1 Definition of a vector sapce

A vector space V is a set of elements that is endowed with two operations: addition
between vectors and multiplication by scalars:

• for all vectors x and y the addition x + y defines a new vector z = x + y that
belongs to V .

• for all real numbers λ and vectors x in V , λx is also a vector

The addition operation and multiplication by a scalar need to satisfy these following
properties:

• stability: for all vectors x and y in V the addition + defines a new vector z = x+y
that belongs to V .

• commutativity: for all vectors x and y in V : x + y = y + x

• associativity: for all vectors x, y and z in V : (x + y) + z = x + (y + z)

• neutral element: there exists a vector e in V such that for all x in V : x+ e = x .
(We often denote e by 0.)

• opposite element: every vector x in V has an opposite vector y such that x+y = e.
the sum of x and its opposite give the neutral element e. We denote the opposite
vector of x by −x.
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The multiplication operation by real numbers needs to satisfy the following:

• stability: for all vectors x in V and all real numbers λ the operation λx defines a
new vector z = λx.

• compatibility: for all λ and µ real number and x a vetor in V : λ(µx) = (λµ)x

• multiplication by 1: 1x = x

• Distributivity of scalar multiplication with respect to vector addition:λ(x + y) =
λx+ λy

• Distributivity of scalar multiplication with respect to scalar addition: (λ+ µ)x =
λx+ µx

These properties allow to make sure the addition and multiplication are similar to
the operation we encounter in ”real life”:

2.2 Examples

• The set of real numbers R is a vector space with the usual addition and multipli-
cation

• the set of vectors in the plane R2 is also a vector space for the following addition
and multiplication: x+ y = (x1 + y1, x2 + y2) and λx = (λx1, λx2)

• the set of sequences x = (x1, x2, ..., xn, ...)that take real values is a vector space
for the following operations: for any two sequence x = (x1, x2, ..., xn, ...) and
y = (y1, y2, ..., yn, ...)

x+ y = (x1 + y1, x2 + y2, ..., xn + yn, ...) λx = (λx1, λx2, ..., λxn, ...)

• the set of functions f defined on the real numbers R and that real values define
a vector space with the following addition and multiplication operation: for any
functions f and g the addition operation defined a new function h that satisfies:
h(x) = f(x) + g(x) for all real numbers x and the multiplication of f by a scalar
λ defines a new function F that satisfies: F (x) = λf(x) for all real numbers x

2.3 Linearly independent families and generating families

• A family F is just a fancy name for a set of vectors in V F = v1, v2, .., vp, it
could be finite of infinite. It can be countable ( can be indexed by integers ) or
uncountable (can’t be indexed by integers). For now we consider a finite family of
the form F = {v1, v2, .., vp}

• A family F is said to be linearly independent if one can’t express any vector of this
family as a linear combination of the remaining vectors in F . In other words, for
any scalars λ1, λ2 ,..., λp, if we have that λ1v1 + λ2v2 + λ3v3 + ...+ λpvp = 0 then
the only possible way to achieve this is by having all scalars λ1, λ2, ...λn equal to
0.

• Example: for V = R3 the family of vectors {x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1)}
is linearly independent, while the family {x = (1, 1, 1), y = (1, 1, 0), z = (0, 0, 1)}
is not.

• A family F is said to be generating the space V any vector x in V can be expressed
as a linear combination of elements in the family F : for all x in V we can find λ1,
λ2 ,..., λp such that x = λ1v1 + λ2v2 + λ3v3 + ...+ λpvp. Some of the scalars can
be 0
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• Example: for V = R3, the family of vectors {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =
(0, 0, 1)} is generating V : Indeed any vector x in V is of the form x = (x1, x2, x3)
which can further be written as: x = x1e1 + x2e2 + x3e3

• A basis is a family F that is linearly independent and generating the space V at
the same time. In this case any vector x has a unique decomposition as a linear
combination of elements of the family: x = λ1v1 + λ2v2 + λ3v3 + ...+ λpvp. This
decomposition exists, since the family F generates the space V and it is unique
because its elements are linearly independent (no redundancy)

Some remarks:

• When a vector space V has a basis that contains a finite number of elements we
say that V has a finite dimension and its dimension is equal to the number of
elements in the basis.

• Note that a vector space has an infinity of possible basis, but when it is of finite
dimension, all these basis have the same number of elements.

3 Normed spaces

We say that a space V is a normed space if its a vector space endowed with a norm ‖.‖.
A norm captures the notion of length of a vector or the distance between a vector and
the null O or the origin of the space V . For a norm to be valid it needs to satisfy the
following properties:

• ‖.‖ is defined from V to the set of non-negative real numbers R+.

• if ‖x‖ = 0 then x = 0

• Triangular inequality: for all x ,y we have that ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• Scaling : For any scalar λ: ‖λx‖ = |λ|‖x‖ . Where |λ| is the absolute value of λ

Example of normed spaces:

• V = R2 with the application ‖x‖ =
√
x21 + x22 is a normed space.

• more generally, any euclidien space of the form V = Rn is a normed space , if
endowed with the following norm: ‖x‖ =

√
x21 + x22 + ...+ x2n. It is called the

euclidien norm and is generally denoted by ‖x‖2 Another norm in the same space
Rn is the 1-norm: ‖x‖1 = |x1|+ |x2|+ ...+ |xn|
A third interesting norm is called the supremum norm or max-norm: ‖x‖∞ =
max(|x1|, |x2|, ..., |xn|)

• The set of continuous functions f that that are defined on the interval [0, 1] and
that takes real values is a normed space, if we endow it with the following norm:
‖f‖ = maxx∈[0,1] |f(x)| It is also called the supremum norm.

3.1 Complete spaces, also called Banach spaces

An interesting kind of normed spaces are the ones where every Cauchy sequence is
convergent . ( More on this coming soon ). Every normed space that has a finite
dimension is complete. More specifically all Euclidian spaces are complete Rn.

The notion of completeness is more tricky for spaces of infinite dimensions ( like
spaces of functions and sequences).
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4 Hilbert space

Coming soon
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5 Notation for sets

A set is a collection of distinct objects, considered as an object in its own right. For
example, the numbers 2, 4, and 6 are distinct objects when considered separately, but
when they are considered collectively they form a single set of size three, written {2, 4, 6}.

Example notation Meaning

{1, 2, 3} The set containing the numbers 1, 2 and 3

{vec(2, 3), ‘hello’, 42} The set containing the items listed

{x | x is a natural number} The set of all x such that x is a natural number

{x ∈ R : x2 = 1} The set of all real numbers such that x2 = 1

x ∈ A x is a member of set A

x /∈ A x is not a member of set A

{}, or Ø, or ∅ The null/empty set

{1, 2} ⊆ {1, 2, 3} {1, 2} is a subset of {1, 2, 3}.
The horizontal line implies ‘proper subset of,
or the same set’. A set is a subset of itself.

{1, 2} ⊂ {1, 2, 3} {1, 2} is a proper subset of {1, 2, 3}.
A set is not a proper subset of itself.

A ∪B = {x | x ∈ A or x ∈ B} The union of A and B is the set of all
items which are in set A and/or set B.
e.g. {1, 2, 3} ∪ {3, 4, 5} = {1, 2, 3, 4, 5}

A ∩B = {x | x ∈ A and x ∈ B} The intersection of A and B is the set of all
items which are in A and in B.
e.g. {1, 2, 3} ∩ {3, 4, 5} = {3}

A ∩B = ∅ The intersection of A and B is the empty set.
A and B are disjoint.

A = B Sets A and B are equal iff every element of A
is also an element of B, and every element of B

is an element of A.

{f : [0, 1]→ R} The set of functions f that map
from the range [0, 1] to a real number
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