
Linear Algebra for Dummies

Jorge A. Menendez

October 6, 2017

Contents
1 Matrices and Vectors 1

2 Matrix Multiplication 2

3 Matrix Inverse, Pseudo-inverse 4

4 Outer products 5

5 Inner Products 5

6 Example: Linear Regression 7

7 Eigenstuff 8

8 Example: Covariance Matrices 11

9 Example: PCA 12

10 Useful resources 12

1 Matrices and Vectors
An m× n matrix is simply an array of numbers:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn


where we define the indexing Aij = aij to designate the component in the ith row and jth column
of A. The transpose of a matrix is obtained by flipping the rows with the columns:

AT =


a11 a21 . . . an1
a12 a22 . . . an2
...

...
a1m a2m . . . anm


which evidently is now an n ×m matrix, with components AT

ij = Aji = aji. In other words, the
transpose is obtained by simply flipping the row and column indeces.

One particularly important matrix is called the identity matrix, which is composed of 1’s on
the diagonal and 0’s everywhere else: 

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


1

It is called the identity matrix because the product of any matrix with the identity matrix is
identical to itself:

AI = A

In other words, I is the equivalent of the number 1 for matrices.
For our purposes, a vector can simply be thought of as a matrix with one column1:

a =


a1
a2
...
an


We say that such a vector lives in n−dimensional space, since it has n components that determine
it. This is written as:

a ∈ Rn

since its components are all real (ai ∈ R, i = 1, . . . , n). The transpose of a vector yields a row
vector:

aT =
[
a1 a2 . . . an

]
A pair of vectors a1,a2 are said to be linearly independent if and only if there is no linear

combination of them that yields zero, i.e. there exists no pair of non-zero scalars c1, c2 such that

c1a1 + c2a2 = 0

where 0 is a vector of 0’s. If there were, then one would simply be a scaled version of the other:

⇔ a1 = −c2
c1

a2

meaning that a1 and a2 are parallel and linearly dependent. In other words, two linearly indepen-
dent vectors are simply two vectors pointing in different directions (i.e. not parallel). Because they
are pointing in different directions, the (infinite) set of all possible linear combinations of a1,a2

forms a two-dimensional plane in Rn. If n > 2, this plane only contains a subset of all the vectors
that exist in Rn and is thus called a subspace of Rn2 If n = 2, then the set of all linear combinations
of a1,a2 contains all the vectors in Rn. It is then said that a1,a2 span the space R2, or that they
form a basis for R2. In general, any set of n linearly independent vectors a1, . . . ,an ∈ Rn will span
Rn. Any such set is a basis for Rn: you can express any vector in Rn as a linear combination of
a1, . . . ,an.

2 Matrix Multiplication
The product of an m× n matrix A and a n× p matrix B is given by:

AB =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn



b11 b12 . . . b1p
b21 b22 . . . b2p
...

...
bn1 bn2 . . . bnp

 =


∑n
i=1 a1ibi1

∑n
i=1 a1ibi2 . . .

∑n
i=1 a1ibip∑n

i=1 a2ibi1
∑n
i=1 a2ibi2 . . .

∑n
i=1 a2ibip

...
...∑n

i=1 amibi1
∑n
i=1 amibi2 . . .

∑n
i=1 amibip


This component-wise definition of a product of matrices is actually the absolute worst way to think
about matrix multiplication, but it clearly shows that (AB)ij =

∑n
k=1 AikBkj =

∑n
k=1 aikbkj . It is

1I will always treat a vector as a column, although others are more loose with this, treating a vector as a more
general one-dimensional array of numbers. Because vectors will always be columns for me, inner and outer products
(see below) are always expressed as aTb and abT , respectively, whereas others (e.g. Peter L) would use a · b and
ab.

2Strictly, a subspace S must obey the following three properties:
• 0 ∈ S
• if u,v ∈ S then u + v ∈ S
• if u ∈ S then cu ∈ S for any scalar c

These latter two requirements are also expressed as: the set of vectors S is closed under vector addition and scalar
multiplication.

2

thus evident that two matrices can only be multiplied if their inner dimensions agree. In this case, A
has n columns and B has n rows, so they can be multiplied. Conversely, BA is not a valid product,
since B has p columns and A has m rows - their inner dimensions don’t agree! This illustrates
the important fact that matrix multiplication, unlike scalar multiplication, is not commutative:
in general, AB 6= BA. That said, matrix multiplication is associative (A(BC) = (AB)C) and
distributive (A(B + C) = AB + AC). Note as well that the dimensionality of a matrix product
is given by the outer dimensions: if A is m × n and B is n × p, then AB is m × p. These are
important facts to remember when doing matrix algebra.

Another much more useful way of thinking about matrix multiplication is illustrated by con-
sidering the product of a matrix with a vector:

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn



x1
x2
...
xn

 =


x1a11 + x2a12 + . . .+ xna1n
x1a21 + x2a22 + . . .+ xna2n

...
x1am1 + x2am2 + . . .+ xnamn



=

x1

a11
a21
...

am1

+ x2


a12
a22
...

am2

+ . . .+ xn


a1n
a2n
...

amn




=
[
x1a1 + x2a2 + . . .+ xnan

]
Noting that A is m × n and x is n × 1, we know that the product Ax must be m × 1: it is a
vector. What this example illustrates is that this m-dimensional vector Ax is a linear combination
of the columns of A, given by the m-dimensional vectors a1, . . . ,an. It is thus often useful to
think of an m × n matrix as a collection of vectors a1, . . . ,an ∈ Rm placed side by side. For any
n-dimensional vector x, Ax is then a linear combination of these vectors. Note that this implies
that Ax lives in the (sub)space spanned by a1, . . . ,an. We call this (sub)space the column space
of A. The notion of the column space of a matrix is extremely useful in linear algebra, and taking
linear combinations of the columns of A is a much easier and intuitive way of understanding what
matrix multiplication is.

Let’s extend this to multiplying two bona fide matrices together rather than a matrix with a
vector. The easiest way of looking at this now is by treating A and B as two collections of vectors:

AB =



a11
a21
...

am1



a12
a22
...

am2

 . . .


a1n
a2n
...

amn





b11
b21
...
bn1



b12
b22
...
bn2

 . . .


b1p
b2p
...
bnp


 =

[
a1 a2 . . . an

] [
b1 b2 . . . bp

]

where ai ∈ Rm,bi ∈ Rn. We then perform the full matrix multiplication by simply performing a
series of matrix-vector products: the jth column of AB is given by Abj =

∑n
k=1 akbkj :

AB =
[∑n

k=1 akbk1
∑n
k=1 akbk2 . . .

∑n
k=1 akbkp

]
In other words, the columns of AB are different linear combinations of the columns of A. It is
easy to verify that this is equivalent to our above equation ABij =

∑
k aikbkj .

In this view of matrices as collections of vectors, we can easily write the matrix transpose as a
collection of row vectors:

AT =


aT1
aT2
...

aTn


If we instead start with viewing matrices as collections of row vectors, we can reinterpret matrix

multiplication as summing rows rather than columns:

AB =


[
a11 a12 . . . a1n

][
a21 a22 . . . a2n

]
...[

am1 am2 . . . amn
]


[
b11 b12 . . . b1p

][
b21 b22 . . . b2p

]
...[

bn1 bn2 . . . bnp
]
 =


aT1
aT2
...

aTm




bT1
bT2
...

bTn


3

where ai ∈ Rn,bi ∈ Rp. The ith row of AB is now given by aTi B =
∑n
k=1 aikb

T
k :

AB =


∑n
k=1 a1kb

T
k∑n

k=1 a2kb
T
k

...∑n
k=1 amkb

T
k


Again, this is simply another equivalent way of looking at matrix multiplication.

3 Matrix Inverse, Pseudo-inverse
Consider now the equation

Ax = b

where A is m× n and, accordingly, b ∈ Rm,x ∈ Rn. As we saw above, this equation implies that
b ∈ Rm lives in the column space of A. Suppose we want to solve it for an unknown x, given some
A,b. We consider four possible cases:

1. A is square (m = n) and its columns are all linearly independent: if the n columns of A are
linearly independent, they span Rm = Rn, and the column space of A is Rm. In this case,
there is a unique set of scalars x1, . . . , xn such that x1a1 + . . . xnan = b, i.e. there is only
one linear combination of ai’s that is equal to b. b and A therefore uniquely determine x3

and we can write
x = A−1b

where A−1 is called the matrix inverse of A, defined by the identity

AA−1 = A−1A = I

Note that for this to be true, A must be square: only square matrices have inverses.

2. A is square (m = n) but only k < n of its columns are linearly independent: in this case, the
column space of A is a subspace of Rm, and the equation will only hold for b’s that live in
this k-dimensional subspace. For any such b, however, there are many x’s that can satisfy
the equation, since any set of k linearly independent vectors can be linearly combined to
produce b (so one solution would be the x that combines the first k columns and ignores the
others, xi>k = 0, another would be the x that combines the last k columns and ignores the
others, xi<(k−1) = 0, etc.). Therefore, the equation can’t be solved (the mapping through
A is not invertible), implying that A−1 doesn’t exist: A is not an invertible matrix. We
call such a matrix a singular matrix. Note that our analysis crucially involved knowing how
many columns of A are linearly independent - this is called the rank of A. When the rank of
a square matrix is equal to the number of columns, we say it is full rank. If it is not, then the
matrix will necessarily be singular. The rank of a matrix also tells you the dimensionality of
its column space. Importantly, it turns out that the number of linearly independent columns
of a matrix is always equal to the number of linearly independent rows, so the dimensionality
of the row space (the space of all vectors obtained by linear combinations of the rwos of
the matrix) is always equal to the dimensionality of the column space (even though these
respective subspaces may reside within two different vectors spaces Rn,Rm)

3. A is skinny (m > n): if m > n, then the column space of A is necessarily a subspace of Rm
and the equation only holds if b lives within this subspace. If it does, if the columns of A
are independent (i.e. A is rank n), then there is a unique linear combination of them that
yields b, so we can determine x. We can see this algebraically by multiplying both sides of
the equation by the pseudo-inverse of A:

x = (ATA)−1ATb

The pseudo-inverse is the closest thing we have to a matrix inverse for rectangular matrices.
Crucially, it exists in this case only because A is rank n, so by the property of matrix ranks

rank(A) = rank(AT) = rank(AAT) = rank(ATA)

3In other words: the mapping from x to b through A is invertible

4

we know that the square n × n matrix ATA is full rank and therefore invertible. If A
were rank k < n, then by the same argument as a above there would be many different x’s
providing linear combinations equalling b (which must now live in the k-dimensional column
space of A for the equality to hold), and ATA would be singular.

4. A is fat (m < n): in this case, the columns of A form an overcomplete basis for its column
space, since you have more vectors than necessary to linearly combine to obtain any vector
in Rm. Thus, there are many different possible linear combinations of the columns of A that
could yield b and x is impossible to recover. Another way of looking at it is like this: Ax = b
is a set of m equations of the form x1ai1 + x2ai2 + . . .+ xnain = bi, i = 1, . . . ,m with n < m
unkowns, which is an underdetermined system. Algebraically, we would again try to solve
this using the matrix psuedoinverse (ATA)−1AT , but it doesn’t exist since A has maximum
rank m < n so the n× n matrix ATA is rank m < n and therefore singular.

4 Outer products
An outer product between two vectors is just another matrix product, but between anm×1 matrix
(i.e. a vector) and a 1× n matrix (i.e. a row vector, or vector transposed):

uvT =


u1
u2
...
um

 [v1 v2 . . . vn
]

=


u1v1 u1v2 . . . u1vn
u2v1 u2v2 . . . u2vn
...

...
...

umv1 umv2 . . . umvn

 =
[
v1u v2u . . . vnu

]
=


u1v

T

u2v
T

...
umvT


where I have given the component-wise view, the column-wise view, and the row-wise view as I
did above with matrix multiplication.

Outer products are particularly useful because they give us a third way of expressing matrix
multiplication. It turns out that, for m× nA and n× pB,

AB =

n∑
k=1

akb
T
k

where ak ∈ Rm is the kth column of A and bTk ∈ Rp is the kth row of B.
Note that an outer product is a rank 1 matrix, since each column (row) is simply a scaled

version of the first (second) vector in the product. In fact, any rank k matrix can be expressed as
a sum of k rank 1 matrices or outer products.

5 Inner Products
The Euclidean inner product (also called dot product) is again another matrix product, but between
a 1× n matrix (i.e. a row vector) and an n× 1 matrix (i.e. a vector):

uTv =
[
u1 u2 . . . un

]

v1
v2
...
vn

 =

n∑
k=1

ukvk

More generally, an inner product maps two vectors to a scalar4. Other non-Euclidean abstract
spaces can be defined by defining alternative inner products that don’t directly correspond to row

4Strictly, an inner product 〈·, ·〉 must satisfy the following three porperties:
• Conjugate symmetry: 〈u,v〉 = ¯〈v,u〉
• Linearity: 〈au,v〉 = a〈u,v〉, 〈u + w,v〉 = 〈u,v〉+ 〈w,v〉
• Positive-definiteness: 〈u,u〉 ≥ 0, 〈u,u〉 = 0⇔ u = 0

It is easy to show that 〈u,v〉 = uTv satsifies these.

5

times vector matrix multiplication as I have discussed it here. The reason this particular inner
product is called “Euclidean” is because it gives you the Euclidean length, or norm, of a vector:

‖u‖2 :=
√

uTu =

√√√√ n∑
k=1

u2k

which, by Pythagoras’ theorem, is the length of vector u. The := symbol is read “is defined as”.
This norm ‖ · ‖2 is naturally called the Euclidean norm (or L2 norm), but other non-Euclidean
norms ‖ · ‖p exist which define abstract non-Euclidean spaces (e.g. the L1 norm ‖u‖1 =

∑
k uk).

The best part of the Euclidean inner product is that it can actually be interpreted in terms of
the angle between two vectors. It turns out that the following is true:

uTv =
∑
k

ukvk = ‖u‖‖v‖cosθ

where θ is the angle between u and v, and I have used the shorthand ‖ ·‖ = ‖ ·‖2 for the Euclidean
norm (I will use this shorthand henceforth). This means that when ‖u‖ = ‖v‖ = 1, we can directly
interpret the inner product as a measure of similarity: if u and v line up and are identical, θ = 0o

and uTv = cos(0) = 1. On the other hand, if u and v are orthogonal (perpendicular), θ = 90o and
uTv = cos(π/2) = 0. It follows that two vectors u,v are orthogonal if and only if uTv = 0.

The Euclidean inner product also gives us a final fourth way of viewing matrix multiplication:

AB =


∑n
i=1 a1ibi1

∑n
i=1 a1ibi2 . . .

∑n
i=1 a1ibip∑n

i=1 a2ibi1
∑n
i=1 a2ibi2 . . .

∑n
i=1 a2ibip

...
...∑n

i=1 amibi1
∑n
i=1 amibi2 . . .

∑n
i=1 amibip

 =


aT1 b1 aT1 b2 . . . aT1 bp
aT2 b1 aT2 b2 . . . aT2 bp
...

...
aTmb1 aTmb2 . . . aTmbp


where aTk ∈ Rn is the kth row of A and bk ∈ Rn is the kth column of B. Another way of writing
this is: (AB)ij = aTi bj . Viewing matrix multiplication in this way illustrates two important
concepts.

Firstly, consider an n× n square matrix A with columns a1, . . . ,an that are all orthogonal to
each other and unit length (‖ai‖ = 1). Such a matrix is called an orthogonal matrix, and it has
the following important properties:

• Since a1, . . . ,an are orthogonal, they are all linearly independent of each other so A is full
rank and therefore invertible (A(− 1) exists)

• Since a1, . . . ,an are orthogonal and unit length, aTi bj = δij
5. So, (ATA)ij = aTi bj = δij ,

meaning that ATA = I.

• It turns out that AAT = I as well

• By the definition of the matrix inverse, the above two points imply that A−1 = AT

Second, consider the equation
Ax = 0

We can now write this as:

Ax =


aT1 x
aT2 x
...

aTmx

 =


0
0
...
0


where A is m×n and x ∈ Rn, aTk ∈ Rn giving the kth row of A. As we saw above, aTk x = 0 implies
that x is orthogonal to ak, meaning that this equation tells us that x is orthogonal to all the rows
of A: it is orthogonal to the entire subspace spanned by the rows of A (the row space of A). The
space of all such vectors x orthogonal to the row sapce of A is called the nullspace of A. Note that

5This is called the Kronecker delta:

δij =

{
1 if i = j

0 else

6

Figure 1: p is the projection of u onto v, the scalar projection is ‖p‖

the above equation implies the columns of A are not linearly independent, since it directly tells
us there is a linear combination of them that equals 0. This also means that A is not full rank.
Indeed, the dimensionality of the nullspace is given by n− k, where n is the dimensionality of the
rows of A and k is its rank, which is equal to the dimensionality of the subspace spanned by the
rows (or columns) of A. There are a lot of deep connections here...

Inner products are also useful for computing the projection of a vector onto another vector,
illustrated in figure 1. In this case, p is the projection of u onto v. Importantly, p is the vector in
the subspace spanned by v (i.e. the one-dimensional subspace consisting of all scaled versions of
v) closest to u. It is easy to prove this formally, but the intuition is evident in figure 1: if I make
p longer or shorter along v (i.e. move it along the subspace spanned by v), the distance between
u and p (the length of the dotted line) will only get longer. By definition, p and u form a right
triangle, so we can use our standard trigonometric rules to show that

‖p‖ = ‖u‖cosθ =
uTv

‖v‖

This quantity is called the scalar projection of u onto v. To find the actual projection vector p we
first note that, since p lies in the subspace spanned by v, p = av for some real scalar a. We then
solve for a by equating the norm of p = av to the scalar projection uT v

‖v‖ :

‖p‖ =
√

pTp =
√
a2vTv = a‖v‖ =

uTv

‖v‖
⇔ a =

uTv

‖v‖2
=

uTv

vTv

We thus have that the projection of u onto v is given by

p =
uTv

vTv
v

Because p is the vector along v closest to u, projections will turn out to be an extremely useful
quantity for solving least-squares problems where you want to minimize the distance between a
vector and a subspace. One such problem is linear regression.

6 Example: Linear Regression
In linear regression, we want to estimate the linear relationship between a dependent variable y (e.g.
IQ) and a set of independent features x1, . . . , xk (e.g. height, weight, income). Mathematically, we
translate this to finding the set of weights w1, . . . , wk such that

y = w1x1 + w2x2 + . . .+ wkxk

But the relationship will rarely be exactly linear, so we want to find the weights that make the
right hand side as close as possible to the left hand side of the equation. To do so, we obtain a
set of observations yi with corresponding features xi1, . . . , xik to get the best possible estimate of
w1, . . . , wk. Arranging all n observations into a vector y and the corresponding features into a
matrix X, applying the above equation to each of the n data points gives us the following system

7

Figure 2: x1,x2 are the two n-dimensional columns of X, providing the basis of the two-
dimensional column space S (assuming x1,x2 are linearly independent). p is the projection of
y onto S.

of equations, naturally expressed as a matrix equation:

y =


y1
y2
...
yn

 =


w1x11 + w2x12 + . . .+ wkx1k
w1x21 + w2x22 + . . .+ wkx2k

...
w1xn1 + w2xn2 + . . .+ wkxnk

 =


x11 x12 . . . x1k
x21 x22 . . . x2k
...

...
...

xn1 xn2 . . . xnk



w1

w2

...
wk

 = Xw

Seen now as a matrix equation, the goal of linear regression is to find the linear combination
of columns of X (i.e. n-dimensional vectors containing a set of measurements of a single feature)
that is closest to y. In other words, if S is the column space of X, we want to find the vector in S
that is closest to y. As in our one-dimensional example above (i.e. figure 1), this is given by the
projection of y onto S. The case of k = 2 is illustrated in figure 2.

As long as the columns of X are linearly independent, we can compute this projection by simply
projecting y onto each of the columns of X, i.e. each of the vectors in the basis of S. This can be
done simply using our projection formula from above. The solution is:

p =

k∑
i=1

xTi y

xTi xi
xi

In other words, the set of weights w that make Xw as close as possible to y are given by

wi =
xTi y

xTi xi
, i = 1, . . . , k

An algebraically simpler but less intuitive way to approach this problem is to simply solve for
w using the pseudo-inverse of X:

y = Xw⇔ (XTX)−1XTy = w

which exists only if the columns of k are linearly independent. This will generally be true if the k
features are uncorrelated. This is in fact equivalent to our earlier solution.

7 Eigenstuff
I start by first defining eigenvectors and eigenvalues, and then show why they are useful and
important.

The best way to think about an eigenvector of a square n × n matrix A is by thinking about
A as defining a mapping T :

T : x 7→ Ax

In English, A maps the vector x to the new vector Ax. An eigenvector of A is a vector that
maintains its direction through this mapping:

Av = λv

where λ is just a scalar. In other words, when passed through the mapping A, an eigenvector of
A is simply rescaled, keeping its same orientation as before. The rescaling factor λ is called the

8

eigenvalue associated with that particular eigenvector v, which we always assume to have unit
length (‖v‖ = 1). Note that for this to be possible, Av has to have the same dimensions as v -
in other words, A must be square. Only square matrices have eigenvectors and eigenvalues6. It
turns out an n × n matrix of rank k will always have n eigenvectors with k non-zero associated
eigenvalues.

One of the most useful applications of eigenvectors and eigenvalues is for decomposing a matrix
into a form that is often easier to work with. Let V =

[
v1 v2 . . . vn

]
be a matrix containing

all n eigenvectors v1, . . . ,vn ∈ Rn of an n× n matrix A as columns. Using our summing columns
view of matrix multiplication, we first note that

AV =
[
Av1 Av2 . . . Avn

]
=
[
λ1v1 λ2v2 . . . λnvn

]
which (again using our summing columns view) can be rewritten as:

AV =
[
λ1v1 λ2v2 . . . λnvn

]
=
[
v1 v2 . . . vn

]

λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

0 0 . . . λn

 = VΛ

where we call Λ the diagonal matrix with the eigenvalues on the diagonal and 0’s everywhere else.
Now if the eigenvectors of A are linearly independent (which necessitates that A be full rank),
V is invertible and we can write two crucial properties of matrices with linearly independent
eigenvectors:

AV = VΛ

⇔ A = VΛV−1

⇔ V−1AV = Λ

The first one yields the eigendecomposition of A. Using the sum of outer products view of matrix
multiplication, it also gives us

A =

n∑
k=1

λnvkv
†
k

where v†k is the kth row of V−1. This is famously allegedly the only linear algebra fact that
Peter Latham knows (which is obviously not true - but it does mean he will use this all the time),
so we cll it PEL’s rule. The second property is called diagonalization: any matrix with linearly
independent eigenvectors can be transformed into a diagonal matrix in this way. In other words,
a matrix is diagonalizable if and only if it has linearly inedependent eigenvectors (i.e. these two
statements are equivalent).

Why is this useful? Consider computing the powers of a square matrix:

Ak = AAA . . .A = VΛV−1VΛV−1VΛV−1V . . .V−1VΛV−1

By definition of the inverse, V−1V = I, so

Ak = VΛIΛIΛ . . . IΛV−1 = VΛkV−1

since by definition of the identity matrix (above) ΛI = Λ. It turns out this makes the computation
of powers of A efficient on a computer since multiplying diagonal matrices is computationally cheap,
but more importantly it can give us some intuitions in other settings. Consider, for example, a
discrete-time linear dynamical system:

xt = Axt−1

where the state at time t is linear transformation of the previous state at time t− 1. Assuming A
is diagonalizable (i.e. its eigenvectors are all linearly independent), we can write:

xt = Axt−1 = AAxt−2 = . . . = Atx0 = VΛtV−1x =

n∑
k=1

λtvkv
†
kx

6There are analogs for rectangular matrices but they are not discussed here, cf. singular value decomposition

9

where in the last equality we used the fact that Λt is a diagonal matrix just like Λ but with λtk’s
on the diagonal. Letting ck = v†x, we note that the state at time t is just a linear combination of
the eigenvectors of A, weighted by their associated eigenvalues to the power of t:

xt =
∑
k

ckλ
t
kvk

So if the largest eigenvalue λ1 is greater than 1, λt1 will quickly diverge over time and dominate all
the other terms in the sum so that, as t gets big, xt approaches λt1v1. On the other hand, if all the
eigenvalues are between 0 and 1, λtk will quickly decay to 0 for all k, so that the system eventually
settles at xt = 0 for large t. This illulstrates how important and meaningful the eigenvectors of a
matrix are: if you repeat the transformation implied by the matrix over and over again, the limit
over repetitions is determined by the eigenvectors and values.

This happens to be true for a continuous time dynamical system as well. Consider first the
matrix exponential, defined just as your vanilla scalar exponential by the power series7

eA = I + A +
1

2!
A2 +

1

3!
A3 + . . .

= VV−1 + VΛV−1 +
1

2!
VΛ2V−1 +

1

3!
VΛ3V−1 + . . .

= V(I + Λ +
1

2!
Λ2 +

1

3!
Λ3 + . . .)V−1

= VeΛV−1

which is an easy expression to work with since taking the matrix exponential of a diagonal matrix
is the same as exponentiating each of its diagonal components:

(eΛ)ii = eλi

Just like in the scalar case, it also holds that

d
dt
eAt =

d
dt

[
I + At+

1

2!
A2t2 +

1

3!
A3t3 + . . .

]
= 0 + A + A2t+

1

2!
A3t2 + . . .

= A

(
I + At+

1

2!
A2t2 + . . .

)
= AeAt

We can use this to solve a system of linear differential equations:

dx

dt
=


dx1

dt
dx2

dt
...

dxn

dt

 = Ax⇔ x(t) = eAtx(0)

Using the eigendecomposition and outer product view of matrix multiplication (i.e. using PEL’s
rule), as well as the fact that the matrix exponential of a diagonal matrix yields the exponentials
of its diagonal components, we have

x(t) =

n∑
k=1

eλktvkv
†
kx(0)

Again, the long run behavior of x(t) is determined by its eigenvalues and eigenvectors: if the largest
eigenvalue λ1 > 0, eλ1t will grow faster than any of the other terms in the sum and eventually
dominate them, aligning x(t) with its associated eigenvector v1 as it grows to infinity. If λ1 < 0,
on the other hand, eλ1t will go to zero as t gets big and x(t) will go to 0 in the long run.

7https://en.wikipedia.org/wiki/Exponential_function#Formal_definition

10

8 Example: Covariance Matrices
The covariance between two random variables Xi, Xj is defined as

cov[Xi, Xj] = E [(Xi − E[Xi])(Xj − E[Xj])]

where E[Xi] is the expectated value of random variable Xi. A multivariate n-dimensional random
variable is simply a vector composed of a collection of n random variables X1, . . . , Xn:

x =


X1

X2

...
Xn


The variance of this vector over n-dimensional space is described by its covariance matrix :

Σ =


cov[X1, X1] cov[X1, X2] . . . cov[X1, Xn]
cov[X2, X1] cov[X2, X2] . . . cov[X2, Xn]

...
...

...
cov[Xn, X1] cov[Xn, X2] . . . cov[Xn, Xn]


where cov[Xi, Xi] = E

[
(Xi − E[Xi])

2
]

= var[Xi].
Note that since cov[Xi, Xj] = cov[Xj , Xi], Σij = Σji and therefore Σ = ΣT . This is a very

special property, and we such matrices symmetric matrices. Symmetric matrices all inherit the
following properties:

• The eigenvalues of Σ are all real

• The eigenvectors of Σ are orthogonal

This latter point implies that when we eigendecompose a symmetric matrix A = VΛVT , V is an
orthonormal matrix since its columns are unit length (all eigenvectors always are) and orthogonal
(since A is symmetric). This means that V−1 = VT , so that A = VΛVT .

Covariance matrices in particular hold the additional property that they are positive semi-
definite, meaning that their eigenvalues are all greater than or equal to 0. Using PEL’s rule, we
note that this implies that for any vector u and n × n covariance matrix Σ with eigenvectors
v1, . . . ,vn and associated eigenvalues λ1, . . . , λn ≥ 0,

uTΣu =
∑
k

uTλkvvTu =
∑
k

λk(uTv)2 ≥ 0

This is in fact the defining statement of a positive semi-definite symmetric matrix, and it holds if
and only if the matrix has eigenvalues greater than or equal to 0.

The covariance of a sample of n d-dimensional data points x(1), . . . ,x(n) ∈ Rd with mean x̄ can
be computed as a sum of outer products:

Σ =


1
n

∑n
i=1(x

(i)
1 − x̄1)(x

(i)
1 − x̄1) 1

n

∑n
i=1(x

(i)
1 − x̄1)(x

(i)
2 − x̄2) . . . 1

n

∑n
i=1(x

(i)
1 − x̄1)(x

(i)
d − x̄d)

1
n

∑n
i=1(x

(i)
2 − x̄2)(x

(i)
1 − x̄1) 1

n

∑n
i=1(x

(i)
2 − x̄2)(x

(i)
2 − x̄2) . . . 1

n

∑n
i=1(x

(i)
2 − x̄2)(x

(i)
d − x̄d)

...
...

...
1
n

∑n
i=1(x

(i)
d − x̄d)(x

(i)
1 − x̄1) 1

n

∑n
i=1(x

(i)
d − x̄d)(x

(i)
2 − x̄2) . . . 1

n

∑n
i=1(x

(i)
d − x̄d)(x

(i)
d − x̄d)


=

1

n

n∑
i=1

(x(i) − x̄)(x(i) − x̄)T

In many cases, we are interested in knowing how much such multivariate data varies along
a particular direction v. Rather than averaging data points’ squared deviations from the mean,
in this case we take the squared scalar projections of the deviations onto v. Since we are only
interested in the direction of v, we set it to be a unit vector with length ‖v‖ = 1, which means
the scalar projection of any vector u onto v is given by their inner product uTv (since vTv = 1).

11

Taking the average over all data points then gives us the following expression for the variance along
direction v:

1

n

n∑
i=1

((x(i) − x̄)Tv)2 =
1

n

n∑
i=1

(x(i) − x̄)Tv(x(i) − x̄)Tv

=
1

n

n∑
i=1

vT (x(i) − x̄)(x(i) − x̄)Tv

= vT

(
1

n

n∑
i=1

(x(i) − x̄)(x(i) − x̄)T

)
v

= vTΣv

where in the second line we used the fact that for any two vectors u,v, uTv = vTu, and in the
third line we used the fact that matrix multiplication is distributive (AB + AC = A(B + C))

9 Example: PCA
The point of Principal Components Analysis (PCA), is to find the directions in data space along
which a given data sample x1, . . . ,xn varies the most. In other words, we want to find the direction
v along which the data has most variance. As we saw above, this translates to the following
optimization problem:

max
v

vTΣv

subject to ‖v‖ = 1

where Σ = 1
n

∑
i(xi − x̄)(xi − x̄)T is the sample covariance matrix. The second line gives us the

constraint that the length of v be 1, since this is necessary for the expression vTΣv to be equal to
the variance of the data along the direction of v (see the derivation of this expression in the end
of last section).

We proceed to solve this optimization problem by using a Lagrange multiplier λ to implement
the constraint vTv − 1 = 0, which is equivalent to our constraint ‖v‖ = 1 (doing it this way just
makes the algebra easier). The solution is then given by the equation

d
dv

[
vTΣv − λ(vTv − 1)

]
= 0

Using the fact that d
dvvTΣv = 2Σv and d

dvvTv = 2v, we have:

2Σv − 2λv = 0

⇔ Σv = λv

In other words, the optimal direction v is an eigenvector of the covariance matrix Σ! Plugging this
back into our objective function we want to maximize, we have that the variance along v is given
by

vTΣv = λvTv = λ

So the direction along which the data has most variance is given by the eigenvector of Σ with
largest eigenvalue. And the k < n-dimensional subspace that contains the most variance of the
data is given by the subspace spanned by the k eigenvectors of Σ with the k largest eigenvalues.

10 Useful resources
• MIT OpenCourseWare “Linear Algebra” course by Gilbert Strang (https://ocw.mit.edu/
courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/)

• 3Blue1Brown channel on YouTube (https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_
ab)

12

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

	Matrices and Vectors
	Matrix Multiplication
	Matrix Inverse, Pseudo-inverse
	Outer products
	Inner Products
	Example: Linear Regression
	Eigenstuff
	Example: Covariance Matrices
	Example: PCA
	Useful resources

