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1 Biology primer - neurons

This section introduces the biology of a neuron and the models we will use throughout the course.

1.1 Idealised model of a neuron

The typical model of a neuron comprises a cell body (soma), dendrites and a single axon. Action
potentials travel from incoming connections at dendrites to outgoing connections at axon terminals. The
junction between one neuron’s axon and the next neuron’s dendrite is called a synapse.

Dendrites are short and heavily branched, with lengths not exceeding ∼1mm. Axons can be much
longer (from several mm up to ∼1m).

In this course we will view the neuron with a few different models:

• To consider general electrical properties and action potentials, we ignore the structure shown above
and imagine the neuron to be a leaky bag of charged ions. Ion channels and ion pumps regulate
the voltage gradients and we analyse the time dynamics of cell voltage.

• To consider the propagation of incoming action potentials, we consider dendrites as long thin cables
and apply standard cable theory analysis.

• To consider the propagation of outgoing action potentials, we add myelinated sections to the cable
model and combine the cable electrical properties with the behaviour of ion channels.

1.2 Leaky bag model

The cell membrane holds a bunch of charged ions inside the neuron, which is what gives a neuron its
voltage (often called ’membrane potential’). Outside the cell membrane there is also a solution of ions,
with different concentrations. The membrane itself is impermeable to these ions. Voltage is regulated
by the action of ion channels and ion pumps which are embedded in the cell membrane and allow ions
to move in and out of the cell.

The main ions we consider are sodium (Na+), chlorine (Cl−), potassium (K+) and calcium (Ca++).
Of these, calcium isn’t heavily involved in action potentials, so we often ignore it.

Ion channels passively allow the flow of ions between the inside and outside of the cell, as determined
by ion concentrations and voltage gradients. The flow is limited, with the channels acting like resistors
impeding ion flow. Channels can be opened or closed in response to voltage or the binding of a particular
molecule. Ion channels tend to be very selective - they will only allow a specific ion to pass through.

Ion pumps actively move ions between the inside and outside of the cell, to maintain ionic gradients.
This requires energy and allows ions to be moved against their concentration gradient.
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Figure 1: Typical concentration of ions

Sodium and chlorine are much higher outside
the cell than inside (∼100mM vs. 5-10mM). Chlo-
rine is the reverse.

Ionic pumps maintain a resting potential of -70
mV difference by expelling Na+ out and allowing
K+ ions in.

When an ion channel is open, it selectively al-
lows a particular type of ion to move in the direc-
tion specified by both (a) the potential gradient
and (b) the concentration gradient.

Each type of ion has a reversal potential which
is the potential at which ions are at an overall

equilibrium (and hence would not flow through an open ion channel). For example, Na+ is higher
concentration outside the cell membrane, so the concentration gradient would push it inside. For the
voltage to counteract this, we need a positive voltage inside (to repel the positive ions).

The reversal potentials we care about are:

• K+: −77 mV

• Na+: +50 mV

The reversal potential may also be referred to as the ”equilibrium potential” or the ”Nernst potential”.

2



2 Electrical analysis

This section describes the electrical equations describing the time-varying voltage behaviour of neurons.

2.1 Equations governing voltage

All we need to start to analyse voltage in the cell is two well-known equations from physics:

Q = CV ; V = IR (1)

The first governs the flow of charge across a capacitor. The capacitor in question is the membrane
of the cell - a layer of high resistance between two conductors (ionic solutions on either side). The
capacitance of a neuron’s cell membrane is of the order of 10nF/mm2.

Before using this equation we will differentiate both sides, to give:

Q = CV =⇒ dQ

dt
(= −I) = C

dV

dt
=⇒ dV

dt
= − I

C
(2)

In the above equation I is the outward current.
The second equation describes the current flow across ion channels, but needs adjusting slightly for

our model of the neuron. In normal circumstances, zero potential difference would imply zero current.
In our case, however, there is always a concentration gradient acting as well as a voltage gradient. We
define the reversal potential ε as the potential difference required to perfectly offset the concentration
gradients and result in zero current. Our equation becomes the following:

I =
V − ε
R

= g(V − ε) =
∑

all channels

gchannel(V − εchannel) (3)

In the above equation, V describes voltage inside the cell, and g is the conductance of a channel.

2.2 Passive neuron, no external input

Let us assume that the conductance of each channel is constant (this is what we mean by passive). We
can combine equations 2 and 3 to give a full differential equation describing the time-varying voltage:

dV

dt
= −

∑
x gx(V − εx)

C
(4)

We can simplify this with regard to the sum over different channels, by splitting up the V − εx term

and dividing everything by
∑
x gx
C :

dV

dt
= −

∑
x gxV

C
+

∑
x gxεx
C

(5)

C∑
x gx

dV

dt
= −V +

∑
x gxεx∑
x gx

(6)

Now let us define τm = C∑
x gx

is the membrane time constant (∼ 10ms in practise) and εL =
∑
x gxεx∑
x gx

is the combined leak potential:

τ
dV

dt
= −(V − εL) (7)

This is an easy first order ODE which has the following solution: (see Appendix for derivation)

V (t) = εL + (V (0)− εL)e−t/τ (8)

This can be seen to be an exponential decay toward the steady state value εL.

3



2.3 Passive neuron, with generic external input

In practise, we wish to know how a neuron responds to external inputs, which can come either from
synaptic inputs (voltage spikes from preceding neurons) or from an experimenter injecting current. Let’s
add the external input to the last equation, and re-arrange with the same substitutions as before:

dV

dt
= −

∑
x gx(V − εx)

C
+
Iext(t)

C
(9)

τ
dV

dt
= −(V − εL) +

Iext(t)∑
x gx

(10)

= −(V − εL) + Vext(t) (11)

To solve this ODE (for a general input Vext), we rearrange one more time to make it look like a
classical linear ODE with a forcing function, to which we can apply the integrating factor approach. We
solve for u = (V − εL) rather than V directly, and take an integrating factor of et/τ (see appendix for a
more detailed derivation)

du

dt
+

1

τm
u =

1

τm
Vext(t) (12)

d

dt

(
et/τu(t)

)
= et/τ

1

τm
Vext(t) (13)

et/τu(t) =

∫ t

t0

et
′/τ 1

τm
Vext(t

′)dt′ (14)

u(t) =
1

τm

∫ t

t0

e−
(t−t′)
τ Vext(t

′)dt′ (15)

This can be seen to just be an exponential filter applied to the external input. Conclusion: passive
neurons integrate external inputs with a quickly-forgetting (τm ∼ 10ms) filter.

2.4 Passive neuron, with specific external input

If you know the form of the time-varying external input, then you can get a closed-form solution to the
membrane potential by evaluating the integral above.

An example of the response is given in Figure 2.

Figure 2: Time course of membrane potential for step input

3 Active channels

So far we have assumed the channel conductances each remain fixed. In reality, there are some passive
channels with fixed conductance, but the really interesting dynamics occur because of the presence of
channels whose conductance varies with respect to external voltage or chemical binding.

We think of active ion channels as passageways connecting the inside and outside of a neuron, with
gates that are controlled via biomolecular mechanics. Gates may be opened in response to changes in
voltage, to the binding of a particular biomolecule (neurotransmitter) or ion (typically calcium). They
can also be opened by mechanical forces, but we do not consider this in this course.

While we’re just considering the neuron as a leaky bag of ions, the gates that control conductance of
ion channels tend to be controlled by voltage. Later when we look at what happens at the synapse we’ll
see other forms of gating.
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3.1 Biology - gating

The simplest model of an ion channel is a ’ball-on-stick’ analogy. Imagine a charged particle on the
end of a stick - this may be positively or negatively charged. This forms a gate, which can be open or
closed when the ’ball’ (ion) is attracted or repelled by the potential difference. When it is open, ions can
flow through. Opening and closing of the gate is a stochastic process which depends on voltage. The
probability of transitioning from a closed to an open state (and vice versa) is a function of voltage, and
we consider it independent of past history (in reality it has a small refractory period). We can therefore
model its behaviour as a Markov model:

Figure 3: Markov model for gating

This model is only valid as δt→ 0 since for longer timesteps it would be possible to transition multiple
times.

In a more general case, there may be many more states, where a state represents a certain conforma-
tion of biomolecules.

To derive the dynamics of the system, let us fix voltage so that α and β are constants. Let m(t) be
the probability that channel is already open at time t. What is the probability that the channel is open
at time t+ δt?

m(t+ δt) = Popen ∗ P (o→ o) + Pclosed ∗ P (c→ o) (16)

= m(t)(1− βδt) + (1−m(t))αδt (17)

= m(t)− βδtm(t) + αδt−m(t)αδt (18)

= m(t) + [α− (α+ β)m(t)] δt (19)

m(t+ δt)−m(t)

δt
=

dm

dt
= α− (α+ β)m(t) (20)

Adding back in the voltage dependence of α, β we rearrange to look like a simple differential equation:

1

α(V ) + β(V )

dm

dt
=

α(V )

α(V ) + β(V )
−m(t) (21)

τm(V )
dm

dt
= m∞(V )−m(t) (22)

The above gives the chance of an individual channel being open. To figure out overall channel
conductance, we need to consider the number of open channels. For N >> 1, we have:

• Expected number of channels open = Nm

• Standard deviation ∝
√
N

The overall conductance is therefore proportional to m.

3.2 Channels with multiple sub-units

In reality, the ’ball-on-stick’ analogy is pretty reasonable, but real ion channels have subunits which each
act like individual balls on sticks - and the channel is only open if all subunits are open.

5



Figure 4: Gating for sodium and potassium channels

For sodium the state of the positive subunits are represented with a gating variable m(V ) and the
negative subunit has the gating variable h(V ) (which has the opposite relationship to voltage since it
has a negative ion). Luckily the time constants for h and m are different, so we get interesting dynamics
rather than the opposite subunits working just against each other. In order for the ion channel to be
open, all 4 subunits must be open. This means that conductance is proportional to m3h. For potassium
we have four equal balls, so conductance is proportional to n4.

We are now in a position to add these dynamic ion channels to the equation governing voltage that
we derived in Equation 10. Note that the passive channels are still present (represented by gp), but we’re
adding extra terms for dynamic potassium and sodium channels:

τm
dV

dt
= −(V − εL)− gNa∑

p gp
m3h(V − εNa)− gK∑

p gp
n4(V − εK) + Vext(t) (23)

= −(V − εL)− ρNam3h(V − εNa)− ρKn4(V − εK) + Vext(t) (24)

We also have three more differential equations describing the gating dynamics:

τx(V )
dx

dt
= x∞ − x for x := [m, h, n] (25)

Overall we now have a set of ODEs in four dimensions. Let’s take a look in more detail at the different
gate dynamics. The steady-state gating variables are shown in Figure 5, along with the corresponding
time constants which tell you how quickly the steady state values are reached upon a change in voltage
(low time constant = fast).

Note in particular that m is ”very fast” (we often consider it instantaneous) and also that m is much
faster than h. This means when voltage increases, the (positive) m subunits open (increasing the voltage
and therefore opening more), and then the h subunits close after a delay. This gives an initial runaway
increase in voltage, shortly followed by a rapid drop. Let’s take a look at the time course for a spike,
and see what happens to the different gating units.

(a) Gating during action potential (b) Steady-state gating (c) Gating time constants

Figure 5: Gating behaviour
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4 Analysis of dendrites

When we analyse dendrites, we treat them as a long homogeneous cable into which current may be
injected somewhere in the middle (by an experimenter, or an incoming synapse). For this we use
standard cable theory.

4.1 The setup

We split the cable into infinitesimal slices, and analyse one slice in the context of it’s neighbours. In
particular, we look at the currents flowing in and out of this slice.

• Iext is the current injected into the neuron at position x.

• IM is the leakage current crossing the membrane (through intrinsic channels).

• IL and IR are axial currents coming from/going to neighbouring slices.

4.2 Filling in some maths

We begin with the classic C dV
dt = −I, where C is the membrane capacitance, and I is comprised of the

4 components identified above.

Cm
dV

dt
= IL − IR − im + Iext

=
V (x− dx)− V (x)

Raxial
− V (x)− V (x+ dx)

Raxial
− im + Iext

The two voltages V (x± dx) can be replaced by second order Taylor series expansions.

Cm
dV

dt
=

[V (x)− dx∂V∂x + 1
2dx

2 ∂2V
∂x2 ]− V (x)

Raxial
−
V (x)− [V (x) + dx∂V∂x + 1

2dx
2 ∂2V
∂x2 ]

Raxial
− im + Iext

=
dx2 ∂

2V
∂x2

Raxial
− im + Iext

4.3 Filling in material properties

We now need to know how capacitance and resistance scale with dx. This requires some basic physics.
The axial resistance of a cable goes up with length, and down with (cross-sectional) area. This gives us
our first equation. We denote the diameter of the dendrite by a.

Raxial =
ρl

A
=
rLl

A
=
rLdx

πa2
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The capacitance of the membrane goes up with the area of membrane involved, which is the circumfer-
ential area of the slice, dx ∗ (2πa).

Cm = cmA = 2cmπadx

Let’s substitute these into our differential equation:

dV

dt
=
dx2 ∂

2V
∂x2

Raxial
− im + Iext

2cmπadx
dV

dt
= dx2

∂2V

∂x2
πa2

rLdx
− im + Iext

cm
dV

dt
=

dx2

2πadx

∂2V

∂x2
πa2

rLdx
− im

2πadx
+

Iext
2πadx

cm
dV

dt
=

a

2rL

∂2V

∂x2
− im + iext

where im and iext are current densities.
We now multiply both sides by the membrane’s intrinsic resistance, rm.

rmcm
dV

dt
=
rma

2rL

∂2V

∂x2
− rmim + rmiext

τm
dV

dt
= λ2

∂2V

∂x2
− rmim + rmiext

In the last step we define the electrotonic length λ, which we will later see sets the scale of spatial variation
in membrane potential. Finally, we note that the leak current density is given by im = (R − EL)/rm
and thus rmim = (V − EL).

4.3.1 The passive cable equation

τm
dV

dt
= λ2

∂2V

∂x2
− (V − EL) + rmiext

If we wanted to include the behaviour of active channels, we’d need to add the Hodgkin-Huxley model
to the rmim term.

4.4 Analysis - steady state voltage with constant input

4.5 Input summation in dendrites

In general we might assume that inputs sum linearly, but there are also situation in which we might
observe sub- or supra-linear summation. Here we discuss some possible causes...

4.5.1 Sub-linear behaviour

• The voltage change at one synapse reduces the driving force across the membrane at a nearby
synapse, reducing the current.

• The opening of synaptic channels decreases the neuron’s input resistance, leading to shunting of
synaptic current.

4.5.2 Supra-linear behaviour

• Dendritic (NMDA-mediated) action potentials can occur if the PSP is high enough.

4.5.3 Either sub- or supra-linear

• The opening/closing of voltage-dependent gates may change local dynamics.
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5 Synapses and plasticity

5.1 Synaptic transmission

Synaptic transmission consists in a cascade of effects initiated by an incoming action potential:
presynaptically:

• Action potential arrives at pre-synaptic terminal

• Voltage-gated Ca2+ channels are opened

• Internal [Ca2+] goes up

• With probability Prelease, vesicles fuse with the cell membrane and release their neurotransmitters

post-synaptically:

• With probability pj , neurotransmitter binds to receptors on the post-synaptic cell membrane,
opening type-j channels

• If resulting current is sufficiently high, an action potential may occur

This gives the following expression for synaptic current, in which we assume that no more than one
vesicle is involved, which is often a reasonable assumption according to PEL.

isyn = −ξsyn
∑
j

pj ḡj(V − Ej)

where ξsyn = 1 with probability Prel, otherwise 0; ḡj gives the conductance of the j-channels, and Ej is
the reversal potential of the type-j ion channels.

There’s a bunch of maths to do with this, but ultimately we end up with a complete model for a
neuron, where pij has it’s own time dynamics:

τm
dVi
dt

= −(Vi − EL)−H-H currents−
∑
j

pij ḡij(Vi − Ej)

This is pretty much everything you need to describe what happens in the brain at a given point in
time, but the more interesting question is how are the parameters regulated? This is where plasticity
comes in. The two parameters we consider are Prelease and synaptic conductances ḡij . Prelease can be
modified on a short (and long) timescale; where ḡij is only modified on a longer timescale.

5.2 Short term plasticity - modulating release probability

The probability of the release of a vesicle is dependent on two factors:

• Recent incoming action potentials: a release is more likely if there is still spare calcium hanging
around from recent incoming spikes.

• Recent releases of vesicles: a new release is less likely if a vesicle has just been released (in response
to an incoming spike) - this is because there are a limited number of vesicles, they take time to
replenish themselves, and some vesicles are just less likely to release their contents.

These two things obviously interact: a recent incoming action potential increases the likelihood of a
recent vesicle release.

We analyse these dynamics with two versions of a differential equation, with different time constants
for LTP vs LTD. In both cases we see a exponential return to steady state release probabilities.

τ
dPrel

dt
= P0 − Prel +

∑
spikes j

δ(t− tj)

{
−ξj(1− fD)Prel LTD

fF (1− Prel) LTP

where fD and fP are experimentally-determined constants ∈ [0, 1].
This gives the following exponential behaviour where incoming spikes or outgoing vesicle release

triggers deviations from the baseline followed by exponential decay. Green vertical lines show spikes
with vesicle release; red lines shown spikes without vesicle release.
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5.3 Long term plasticity - modulating conductances

We have many computational models for long-term plasticity but few biological explanations. One of the
few postulated mechanisms is the unblocking of NMDA receptors via back-propagating action potentials.
To understand this story, we need to piece together a few biological facts.

• Glutamate is a very common excitatory neurotransmitter

• Glutamate quickly opens AMPA channels which are permeable to sodium and potassium (some-
times calcium but we ignore that).

• Glutamate more slowly opens NMDA channels, which are permeable to calcium (as well as sodium
and potassium, but they are less important to our story)

• Once calcium ions have been let into the post-synaptic neuron, they can trigger the insertion or
deletion of AMPA channels.

• Magnesium ions (Mg2+) block NMDA channels, preventing them from opening.

The combination of these behaviours means that:

• AMPA channels are responsible for the quick transmission of action potentials; having more or
fewer AMPA channels changes the strength of the synaptic connection.

• NMDA channels are responsible for changing the weights of the synaptic connection.

• NMDA channels can only be opened when (a) there is glutamate within the synaptic cleft following
a pre-synaptic action potential; and the post-synaptic neuron is depolarised enough to remove the
blocking Mg2+ ions from the NMDA channels.

• Depolarisation in the post-synaptic neuron occur via back-propagating action potentials travelling
back along the dendrite.

This is great, since it explains Hebbian LTP and LTD - changes are only made when inputs (pre-
synaptic spikes) and outputs (post-synaptic spikes) co-occur.

5.4 Some experimental results

5.4.1 Experimental setup

To inspect potentiation and depression in vitro (in brain slices), you find two neurons which are connected,
and inject current into both the pre-synaptic and post-synaptic neurons. You can then pair up spiking
at each end. Typically spikes are sent simultaneously for brief bursts around 100Hz for about a second
at a time. In gaps between the bursts, a single spike is sent to the pre-synaptic neuron and the resulting
potential of the post-synaptic neuron (PSP) is measured.
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Early and late LTP: If the correlated input bursts are high frequency then potentiation occurs
rapidly, and is maintained for days. If protein synthesis is blocked, then after a few hours the potentials
return to their previous levels. We refer to the first stage (which is independent of protein synthesis) as
early LTP and the later stage (which requires protein synthesis) as late LTP.

LTD: Long-term depression occurs when pre- and post-synaptic spikes are coincident, but with a
lower frequency. The relationship between calcium influx (which is higher when high frequency pulses
are sent) and weight changes are given in the following graph.

This looks suspiciously like a threshold rule for Hebbian plasticity. If the second intersection can slide
left and right, we get something like the BCM rule.

5.5 Spike Timing Dependent Plasticity

If instead of sending coincident spike bursts you send carefully-timed individual spikes, you can see that
depression and potentiation depend on the exact timing of incoming and outgoing spikes. If the post-
synaptic neuron spikes shortly after the pre-synaptic spike, potentiation occurs. If the post-synaptic
spike happens first, then depression occurs. The classic experiment was originally carried out in cultured
cells, but has also been replicated in (young) animals. The following figure is from Dayan and Abbott.
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Appendix

ODEs

Separable ODES

For the simple first-order linear ODE:

τ
dv

dt
= v∞ − v(t)

Let z = v − v∞, our equation becomes:

τ
dz

dt
= −z(t)

Rearrange to separate dz, dt:
1

z
dz = −1

τ
dt

Integrate both sides for t = [0, t]: ∫ z(t)

z(0)

1

z
dz =

∫ T

0

−1

τ
dt

log(
z(t)

z(0)
) = − t

τ

Rearrange to get z(t):

z(t) = z(0)e−
t
τ (26)

And substitute back in z = v − v∞:

v(t) = v∞ + (v(0)− v∞)e−
t
τ (27)

First order ODEs with forcing function

[integrating factor]
For a simple example, we use the ODE for a passive neuron that is used in Dayan and Abbott’s

integrate-and-fire model. Note that this example could (with the right substitution) be turned into a
separable ODE, but we consider it to have a constant forcing function RmIe. If the method is unclear,
revise integrating factors.

The original ODE is as follows:

τm
∂V

∂t
= EL − V0 −RmIe
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We make a substitution, u(t) = V (t)−EL and rearrange to look like the standard integrating factor
ODE:

∂V

∂t
+

1

τm
u(t) =

RmIe
τm

compare to:
∂y

∂x
+ p(x)y(x) = q(x)

Now we multiply both sides by the integrating factor v(x) = e
∫
p(x)dx or v(t) = e

∫
1/τmdt = et/τm ,

and note that the left-hand side looks like (as we expect) the product rule.

∂V

∂t
et/τm +

1

τm
u(t)et/τm =

RmIe
τm

et/τm

∂

∂t

[
u(t)et/τm

]
=
RmIe
τm

et/τm

Now we can re-arrange and integrate the RHS, not forgetting the constant of integration:

∂

∂t

[
u(t)et/τm

]
=
RmIe
τm

et/τm

=
RmIe
τm

∫
et/τmdt

=
RmIe
τm

[
τme

t/τm + C1

]
u(t) = e−t/τm

RmIe
τm

[
τme

t/τm + C1

]
= RmIe + C2e

−t/τm

We solve for the constant C2 by considering the initial condition, u(0) = V (0)− EL:

u(0) = V (0)− EL = RmIe + C2 =⇒ C2 = V (0)− EL −RmIe
=⇒ u(t) = RmIe + [V (0)− EL −RmIe] e−t/τm

V (t) = EL +RmIe + [V (0)− EL −RmIe] e−t/τm

If the forcing function is a function of time rather than a constant, then the integral will be more
complicated, but the process is the same.

Second order ODE

λ2
∂u

∂x
− u = rmiextδ(x)

u(x) = c1e
− xλ + c2e

x
λ
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