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Cauchy-Schwarz Inequality

|〈u, v〉|2 ≤ 〈u, u〉.〈v, v〉

|〈u, v〉| ≤ ‖u‖‖v‖

where
‖u‖ =

√
〈u, u〉

Covariance stuff

Covariance in different spaces

The usual sample covariance is written:

C =
1

N

N∑
i

(xi − x̄)(xi − x̄)T

The (finite) feature space equivalent is:

C =
1

N

N∑
i

(φ(xi)− φ(x))(φ(xi)− φ(x))T

To extend this to an infinite dimensional feature space, we use the Kronecker product
which is a generalization of the outer product from vectors to matrices.

C =
1

N

N∑
i

(φ(xi)− φ(x))⊗ (φ(xi)− φ(x))

=
1

N

N∑
i

φ̃(xi)⊗ φ̃(xi)

From outer to inner products

With finite vectors, it is easy to see that

(abT )c = (bT c)a

The infinite-dimensional analog is:

(a⊗ b)c = 〈b, c〉Ha

This identity will come in handy in lots of derivations!
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Centering using matrix multiplication

To compute covariance we have to centre our data. To make the algebra simpler, this
is often done using a matrix operation, using the centering matrix H = Inxn − 1

n1nxn.
This allows us to compute:

• Row centred matrix Xr = HX

• Column centred matrix Xc = XH

• Row and column centred matrix Xrc = HXH

It’s also important to note that HH = H and HT = H.
This allows us to write covariance (for example in the data space case) as:

C =
1

N

N∑
i

(xi − x̄)(xi − x̄)T

=
1

N

N∑
i

(XH)(XH)T

=
1

N

N∑
i

XHHTXT

=
1

N

N∑
i

XHXT

Miscellanea

Project a point onto a component f , assuming ‖f‖ = 1:

Pfφ(x∗) = 〈φ(x∗), f〉Hf

Bounded operators and Riesz representation theorem

A linear operator A : F → R is bounded when (for some λA):

|Af | ≤ λA‖f‖F ∀f ∈ F (1)

In a Hilbert space F , all bounded linear operators can be written 〈·, gA〉 for some gA ∈ F :

Af = 〈f(·), gA(·)〉 (2)

Mean embeddings

The mean embedding is defined as µP ∈ F such that:

EP (f(X)) = 〈f, µP 〉F (3)

These things are all true:

EP,Q (k(X,Y )) = 〈µP , µQ〉F (4)

EP,P ′ (k(X,X ′)) = 〈µP , µP 〉F (5)
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µP = [...,
√
λiEP [ei(X)], ...] (6)

µP (x) = 〈µP , φ(x)〉F (7)

= 〈µP , k(·, x)〉F (8)

= EP k(·, x) (9)

Maximum mean discrepancy

MMD(P,Q;F) = sup
f∈F

[EP f(X)− EQf(Y )] (10)

= sup
f∈F

[〈f, µP 〉 − 〈f, µQ〉] (11)

= sup
f∈F
〈f, µP − µQ〉F (12)

= ‖µP − µQ‖F (13)

MMD2(P,Q;F) = 〈µP − µQ, µP − µQ〉 (14)

= 〈µP , µP 〉+ 〈µQ, µQ〉 − 2〈µP , µQ〉 (15)

= EPEP ′k(x, x′) + EQEQ′k(y, y′)− 2EPEQk(x, y) (16)

= KP,P +KQ,Q − 2KP,Q (17)

HSIC

HSIC is nothing more than the MMD2 between PXY and PXPY . Simples. The only
tricky thing is keeping up with inconsistent notation over stacked expectations.

Let’s start with a reminder of MMD:

MMD2 = EPEP ′k(x, x′) + EQEQ′k(y, y′)− 2EPEQk(x, y) (18)

This means we can write out HSIC as:

HSIC(PXY , PXPY ) = MMD2(PXY , PXPY ) (19)

= ‖µPXY
− µPXPY

‖2 (20)

= EXY EX′Y ′k(x, x′)l(y, y′) + EXEY EX′EY ′k(x, x′)l(y, y′)− (21)

2EXY EX′EY ′k(x, x′)l(y, y′) (22)

Now we can separate expectations as much as possible:

HSIC(PXY , PXPY ) = EXY EX′Y ′k(x, x′)l(y, y′) + EXEX′k(x, x′)EY EY ′ l(y, y′)− (23)

2EXY EX′k(x, x′)EY ′ l(y, y′) (24)

Characteristic kernels

Characteristic kernels

A kernel is characteristic if there is a one-to-one (‘injective’ ) mapping from probability
distribution P to µP ∈ H. A characteristic kernel is a good choice for computing MMD,
since it ensures that the result is a metric - that is, MMD = 0 iff P = Q.
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Universal kernels

An kernel in an RKHS is universal if:
“k(x, x’) is continuous, X is compact, and F dense in C(X) with respect to L∞”

Some translation:

• A compact set is closed (containing all its limit points), and bounded (having all its points

lie within some fixed distance of each other).

• C(X ) is the set of continuous functions on X .

• F dense in C(X ) implies that we can find different fs which are arbitrarily close
to each other.

Universality implies that, for any given ε > 0 and f ∈ C(X ), there exists g ∈ F :

‖f − g‖∞ ≤ ε (25)

Showing characteristicness via FFT

Using a fourier decomposition, the mean embedding becomes a product of fourier series:

µP (x) = EXk(X − x) =

∫ ∞
−∞

k(x− t)dP (t) (26)

µP,l = k̂lφP,l (27)

where φP is the fourier series for P.
The MMD becomes:

MMD(P,Q;F) =

∥∥∥∥∥
∞∑

l=−∞

[(φP,l − φQ,l)k̂l]e
ilx

∥∥∥∥∥
F

(28)

It isn’t too hard to see that if any f̂l are zero, we might be able to get an MMD of
zero without P = Q. In fact, we can state that a kernel is characteristic if the FFT is
either

• non-zero everywhere; or

• zero only at countably many points

This means that if the FFT of the kernel has limited support, it will not be charac-
teristic, and MMD(P,Q;F) may be zero for non-equal P,Q (for example if P and Q
differ only in the regions of frequency space where the kernel has no support).

The allowance for countably many zero-points only holds because P and Q are pdfs,
therefore they must integrate to one. This means you can’t get delta functions in their
FFTs, since cosines do not decay.

Primal, dual, KKT

The primal function

Given a general optimisation problem:

min
x∈Rn

f0(x); subject to fi(x) ≤ 0 i = 1, ...,m (29)

hi(x) = 0 i = 1, ...,m (30)
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If we want to put the constraints directly into the optimisation, it would look like this:

min
x∈Rn

f0(x) +

m∑
i

l−(fi(x)) +

p∑
i

l0(hi(x)) (31)

where l−(u) is zero for u ≤ 0 and∞ otherwise, and l0 is zero for u = 0 and∞ otherwise.
This isn’t an easy thing to solve, since it’s non-differentiable and not even continous.
Instead let’s solve something simple - the Lagrangian, which gives us an lower bound
for the original problem.

L(x, λ, ν) = f0(x) +

m∑
i

λifi(x) +

p∑
i

νihi(x) (32)

where all λi > 0 (but νi are allowed to be negative).

The dual function

The Lagrange dual function is given by:

g(λ, ν) := inf
x∈D

L(x, λ, ν)

A dual feasible pair (λ, ν) is a pair for which all λi ≥ 0 and (λ, ν) ∈ dom(g).
For any λ ≥ 0 and ν, the dual is a lower bound wherever the original constraints are

met:

g(λ, ν) ≤ f0(x); wherever (33)

fi(x) ≤ 0 (34)

hi(x) = 0 (35)

Since the optimum p∗ obeys the above constraints, we have:

g(λ, ν) ≤ f0(x∗) [= p∗] (36)

So, the Lagrangian function gives us a lower bound on the thing we’re trying to
minimise. So, we maximise the dual, and try to set things up so that the bound is
strict.

maximise: g(λ, ν) (37)

subject to: all λi ≥ 0 (38)

Strong duality

It’s only worth doing this if strong duality holds - that is, g(λ∗, ν∗) = f(x∗). The best
known sufficient condition for duality is:

• Primal problem is convex, i.e. all fi are convex and hi are affine.

• Slater’s condition holds: there exists some strictly feasible point x̃ ∈ relint(D)
for which all inequality constraints are strictly satisfied:

fi(x̃) < 0 i = 1, ...,m Ax̃ = b
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Complementary slackness

A consequence of strong duality is complementary slackness:

m∑
i

λ∗i fi(x
∗) = 0 (39)

If we remember that all λi ≥ 0 and all fi(x∗) ≤ 0, then:

λ∗i > 0 =⇒ fi(x
∗) = 0 (40)

fi(x
∗) < 0 =⇒ λ∗i = 0 (41)

Every inequality constraint becomes either strict (equality) or it doesn’t contribute at
all (corresponding λ = 0).

KKT conditions

For an unconstrained convex optimization problem, we know we are at the global mini-
mum if the gradient is zero. The KKT conditions are the equivalent conditions for the
global minimum of a constrained convex optimization problem.
Lagrangian stationarity

∇f0(x∗) +

m∑
i

∇fi(x∗) +

p∑
i

∇hi(x∗) = 0 (42)

Primal feasibility
fi(x∗) ≤ 0, hi(x∗) = 0 for all i (43)

Dual feasibility
λi ≥ 0 for all i (44)

Complementary slackness

λifi(x∗) = 0 for all i (45)
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