Learning

Kirsty McNaught
March 2017

1 Synaptic Plasticity Rules
1.1 Basic Hebb Rule

“Neurons that fire together, wire together!”

For a single input:
dw

;oo

Ydt
We assume that synaptic weights change slowly enough that we can average the weight changes for a
larger set of input patterns:

=7u

dw
Tw i (vu)

1.1.1 Comments:
v" Simultaneous pre- and postsynaptic firing increases synaptic strength.
x Assuming that inputs are positive (i.e. spike count), the weights only ever increase.
x The weights are unstable and grow without bound (see later proof)

x There is no competition between different synapses

1.2 Correlation rules

In supervised learning, v = w’u and we can express the averaged Hebb rule using the input correlations:

dw

Y o) = (W) = (W) = () w = Qw

1.2.1 Comments:

e Same remarks as for Hebb rule; just reformulation for supervised learning.

1.3 Covariance rule

The basic Hebb rule and the correlation rule only allow weight increases (LTP) and not weight decreases
(LTD). To allow for negative weight updates, we can subtract a threshold from either the inputs or the
outputs.

dw

dt

Tw = (v—v")u; or
=v(u—u"); or

— (v —v)(u—u)

The last option is a terrible idea, since it implies a weight increase when both inputs and outputs are
negative. The other two give the same averaged rule (though they have subtle differences for a single
input), if the thresholds are taken as the mean values of v or u. For example,

1.3.1 Comments:
v" Weights can increase and decrease
x Weights are still unstable (see later)

x Both forms have undesirable behaviour. If the right-hand side is (v — v*)u, then weights will
decrease when the output v is zero. If the right-hand side is v(u — u*), then weights will be
decreased when inputs are zero. In reality, weights should only change when there is (some) pre-
and post-synaptic activity

x For the version with (v — v)u, the threshold v depends on weights and therefore needs updating

during training.

X Still non-competitive, but can be made competitive with sliding thresholds (see BCM).

1.4 The BCM rule

To prevent changes to weights when either v or u are zero, the BCM rule adds an initial multiplicative
factor:

o
“odt

This is still unstable if v* is fixed, but can be made stable by allowing the threshold to adapt. So long as
the threshold grows more rapidly than the output, the updates will be stable. One possible rule allows
the threshold to evolve according to v2 :

=v(v—v")u

dv*
Ty— = v? —v*

dt

Having a sliding threshold also enables competition - if some synapses are strengthened, the post-
synaptic firing rate will increase, which will increase the threshold and push down less active synapses.

v" Weights can increase and decrease
v' Weights are stable

v" Competition occurs between synapses

1.5 Stability of different rules

To analyse the stability of a weight update rule, we consider the time-evolution of the weights. This

can usually be done by pre-multiplying both sides of the differential equation by w” and noting that
dw| _ 9, Td
S =2wlew,

For example, in the case of the basic Hebb rule:

dw
T»LUE =7vu
d
Twad—v: = owlu = v?
d
|dzv | = 20? (always positive unless v = 0)

2 Normalisation rules

The BCM rule stabilises Hebbian learning using a sliding threshold based on post-synaptic activity. This
is equivalent to indirectly using the post-synaptic activity as a proxy for the size of the weights. We can
instead apply normalisation directly to the weights themselves.

We will discuss two widely used schemes:

e Subtractive normalisation

e Multiplicative normalisation (Oja rule)

2.1 Subtractive normalisation
2.2 Multiplicative normalisation (Oja rule)

2.3

3 Reinforcement learning

3.1 Rescorla-Wagner rule

The R-W rule combines a linear predictor of reward v = wu with a least-squares delta update. There is
no time component; it just models Pavlovian conditioning.

Prediction:
v=wlu (1)
Square error:
1
E= 5(7‘ —v)?
1 T
I —
dE 1 T
2.9 — (=
2w ()
=—(r—v)u
Update rule:
W W + edu; 0= (r—vo)

Comments: The R-W rule only allows updates to weights associated with stimuli which are present.
This does not, for example, explain backward blocking. It also cannot explain secondary conditioning,
wherein an unconditioned stimulus is presented just before a conditioned stimulus (but no reward),
leading to an expectation of a reward (since a predictor of a predictor of a reward is itself a predictor of

a reward).
The R-W rule uses the prediction error 6 = (r — v) which has biological analogues in the activity of

dopaminergic cells in the VTA.
The following figure from Dayan and Abbott shows (black circle) acquisition and extinction in pavlo-

vian conditioning. A reward of 1 was given for the first 100 trials; zero reward for trials 100-200. In open
circles, partial reinforcement is demonstrated - a reward of 1 was given 50% of the time, and a reward

of 0 otherwise.

1.0
0.8
0.6
0.4

0.2

Otsw,,

100 200

trial number

3.1.1 RW as a filter
We can use recursion to analyse the behaviour of the R-W rule over many trials. Let the initial weight
be wp for a single-stimulus trial, i.e. w < w + ¢(r — w). The weights evolve as follows:
w1 :w0+e(r1 —’wo) = €r] =+ (1 —E)UJO
we = wy + €(rg — wy)
=er; 4+ (1 — €wo + €[ra — (ery + (1 — €)wo)]
= (1—€)wy +ery +e(1 —e)r

wy, = (1 —e)"wy + Z e(1—e)" iry

The first term can be seen as an exponential decay of the initial weight (i.e. we slowly forget our
starting value); the second term is an exponential filter (convolution) over recent rewards.

3.2 Temporal difference learning

TD learning accounts for time between stimuli and rewards. The goal is to predict the expected value

of future rewards from any point in time.
T—t
v = <Z r(t+ T)>

7=0

Our predictor for v(t) takes the form of a linear filter over previous stimuli. For a single time-
dependent stimulus u(t), this would be:

o(t) =Y w(r)ult —7)
7=0

We'd like to use a delta rule to update this, of the form:
w(T) < w(r) + €d(t)u(t — 7)

The tricky bit here is how to compute §(¢). In theory this should represent the difference between
‘current expected future reward’ and ’true future reward’, but we do not have knowledge of the latter.
Instead we do some sneaky recursion as an approximation.

T—t
v(t) = <Z r(t + T)> =(r(t))+ovt+1)

7=0
= (r(t)) =v(t) —v(t+1)

Our prediction error can now be estimated by comparing the expected reward at time t #(t) =
v(t) — v(t + 1) with the actual reward r(t).

3.2.1 Results, comments

The following figure from Dayan and Abbott shows the predictions given by temporal difference learning
when a reward is given a fixed period of time after the presentation of a stimulus. In particular, the
prediction error moves backwards in time from the presentation of the reward (before conditioning has
occurred) to the presentation of the stimulus (after conditioning). This is consistent with the activity of
dopaminergic cells in the VTA.

Unlike Rescorla-Wagner, the TD rule provides an account of secondary conditioning.

3.3 Choosing actions

- Static action choice: the reward immediately follows the action (e.g. 2-armed bandit) - Sequential
action choice: the reward may be delayed until several sequential actions have been performed (e.g.
maze).

3.3.1 Static action choice: bandits

Consider a scenario in which the actor must choose between two (or more) actions at each timestep, and
will receive a reward immediately. This is an example of a static action choice.
In both the following examples, we use a stochastic softmax policy.

exp(Bm;)
Zj exp(Bm;)

The m; values are known as action values or action propensities. The [parameter allows the policy
to be tuned to allow for exploration (small 3, only slightly takes into account beliefs of action values) or
exploitation (large S, almost always chooses ’best’ action).

We now need an algorithm to allow us to update our action values m;.

Indirect actor: In an indirect scheme, the policy is mediated indirectly by the expected volumes.
We aim to make m; — (r;) using a delta rule.

P[ai} =

mi<—mi+e(5; (5:7"7;—77%

Direct actor: Instead of basing choice on average rewards, we might choose our action values to
directly maximise the expected average reward. We can do this with stochastic gradient descent.

(r) = Pla] (ra) + P[b] (rs)
d(r) _ d(r) dPla] d{(r) dP[b]
dm, dPla] dm, dP[b] dm,
d(r) _ d(r) dPld] n d(r) dP[b|
dmy dP[a] dmy — dP[b] dmy

Where our probabilities Pla], P[b] are defined by softmax:

exp(fmq)
exp(Bmg) + exp(Bmy)
dPla] wvdu— udv

= 2

Pla) =

dmy v
_ Bexp(Bmy) [exp(Bma) + exp(Bmsp) — exp(Bma)]
N (exp(Bmg) + exp(Bmy))?
 epBmad explfmy)
exp(Bmg) + exp(Bmy,) exp(Bmy) + exp(Bmy)
= BPla]P[b] or BPlal(1— Pla])

The same can be derived for dP[a]/my, dP[b]/m, and dP[b]/my, giving the final derivative:

j%:j = BPla)(L — Pla]) (ra) — BP[b]Pla]ry

We now note that we can split the derivative up into two parts, weighted by the likelihood of the
respective actions: the first term associated with trials in which action a is selected; the second term
with trials in which action b is selected. We also note that the averages are invariant to an arbitrary
offset r*, giving the final updates:

Mg < Mg + €6(1 — Pla])(rq — 1) when a selected;
Mg < Mg — €fP[a)(ry — r™) when b selected

Or more generally, where a is the action taken and i the value being updated:
m; < m; + €f(da—; — P[i])(ra — ")

This learning rule performs stochastic gradient descent regardless of the value of r*. The only thing
that changes with the choice of r* is the variance of the stochastic updates, and hence the learning rate.
Typically we’'d choose r* = (r) (or some estimate of it).

3.3.2 Indirect vs direct

In the indirect case, the scale of m, are fixed (with units of reward), and the exploration parameter
(units 1/reward) can be scaled when the scale of rewards change. Even in an unchanging world it allows
more explicit control over exploration vs exploitation, since the m, values in a direct actor setup are
unbounded and can scale arbitrarily to offset 3.

3.4 Actor-critic
3.5 Q learning

3.6 SARSA
3.6.1 Q vs SARSA

3.7 Perceptron

