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Dendrites and axons

1 Dendrites

Our goal is to write down an equation describing the membrane potential in a dendrite,
and then solve it. The derivation is mainly physics and the solution is mainly math. The
solution is important: it will give us intuition about how dendrites work; combined with some
experimental facts, it explains the size of dendritic trees. We’ll initially consider a dendrite
to be an infinitely long cylinder. At the end we’ll talk about more realistic geometries.

1.1 The cable equation

A short section of a dendrite is shown in Fig. 1 (see the figure caption for details). We’re
going to use only two equations: V = IR and Q = CV , the latter implying CdV/dt = I.
Here V and I are voltage and current, and C and R are resistance and capacitance. We’ll
start with CdV/dt = I. Treating each section as equipotential, we have

Cm
∂V (x, t)

∂t
= IL(x− dx/2, t)− IL(x+ dx/2, t)− Im(x, t) + Ie(x, t) (1)

where IL is the longitudinal current, Im is the current due to membrane channels, Ie is the
injected current, Cm is the membrane capacitance and RL is the longitudinal resistance. And
now we use V = IR,

I(x− dx/2, t) =
V (x− dx, t)− V (x)

RL

(2)

where RL is the longitudinal resistance; a similar equation applies to I(x+dx/2, t). Inserting
Eq. (2) into (1), we have

Cm
∂V (x, t)

∂t
=
V (x− dx, t)− V (x, t)

RL

− V (x, t)− V (x+ dx, t)

RL

− Im(x, t) + Ie(x, t). (3)

Taylor expanding membrane potential to second order in dx gives us

Cm
∂V (x, t)

∂t
=
dx2

RL

∂2V (x, t)

∂x2
− Im(x, t) + Ie(x, t). (4)

That’s the easy part. The hard(er) part is taking the limit dx → 0. Basically, we have
to figure out how Cm and RL scale with dx. We’ll start with RL. It’s a physics fact that
resistance scales linearly with the length of a material and inversely with its area, with a
scale factor that’s an intrinsic property of the material. For the longitudinal resistance, we’ll
use rL for that intrinsic property, giving us

RL = rL
dx

πa2
. (5)
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Figure 1: A short section of a cylindrical dendrite with radius a. The vertical bars are spaced
by dx, which we’ll eventually take to zero, so the drawing is slightly misleading: the bars
should be very close together (think stacks of pancakes), but then there would be no room to
show the currents. There are three kinds of currents: longitudinal current, IL, which flows
along the dendrite; current due to membrane channels, Im (which is outward by convention);
and injected current, Ie (which is inward by convention).

Here dx is the length and πa2 is the area (remember the dendrite is cylindrical).
Capacitance also depends on area. To see how, we need a physics fact about membrane

potential: inside the dendrite, at any particular value of x, the membrane potential is con-
stant. That means V (x) is the change in potential across the membrane, and that change is
caused by charge building up on the inside and outside of the membrane. It follows (with a
little thinking) that for fixed membrane potential the total charge scales linearly with area,
with a scale factor the depends on the membrane. We’ll use cm for that scale factor, giving
us

Cm = cm2πadx. (6)

Inserting Eqs. (5) and (6) into Eq. (4), and performing a small amount of algebra, we
arrive at

cm
∂V (x, t)

∂t
=

a

2rL

∂2V (x, t)

∂x2
− im(x, t) + ie(x, t) (7)

where im and ie are current densities,

im(x, t) ≡ Im(x, t)

2πadx
(8a)

ie(x, t) ≡
Ie(x, t)

2πadx
. (8b)
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Equation (7) is independent of dx, as desired.
For dendrites (but, as we’ll see in the next section, not for axons), it’s convenient to do

one more thing. Equation (5) is a general expression that relates total resistance to geometry
and intrinsic properties. For something with fixed thickness – like the membrane of a neuron
or dendrite – we can think of rL×thickness as the intrinsic membrane property, which we’ll
called rm. This gives us

Rm =
rm

Area
(9)

where Rm is the actual resistance. We’re going to multiply both sides of Eq. (7) by rm. This
gives us a factor of rmcm on the left hand side. To interpret this factor, we note, as discussed
above, that capacitance is proportional to area. And so we may write

RmCm =
( rm

Area

) (
cmArea

)
= rmcm (10)

where Cm is the total capacitance. In general, RmCm is the membrane time constant; thus,
so is rmcm. If dendrites have similar properties to cell somas, which, it turns out, they do,
then rmcm is on the order of 10 ms.

Multiplying both sides of Eq. (7) by rm, and defining

τm ≡ rmcm, (11)

we have

τm
∂V (x, t)

∂t
= λ2

∂2V (x, t)

∂x2
− rmim(x, t) + rmie(x, t) (12)

where λ, which is known as the electrotonic length, is given by

λ2 ≡ arm
2rL

. (13)

Equation (12) is the cable equation. In real dendrites, the current density, im, consists
of both passive and active channels (the active channels are just like the ones we saw in the
Hodgkin Huxley equations). Here, however, we’ll consider only passive channels,

Im =
V − E
Rm

=
2πadx

rm
(V − E); (14)

comparing this to Eq. (8a), we see that

rmim = V − E , (15)

yielding

τm
∂V (x, t)

∂t
= λ2

∂2V (x, t)

∂x2
− (V (x, t)− E) + rmie(x, t). (16)

This is the famous passive cable equation. We’re going to solve it first in steady state
(V (x, t) is independent of time); then we’ll tackle the time-dependent case. In either case,
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we can simplify our equations by working with voltage relative to E ; we do that by defining
a new variable,

u ≡ V − E , (17)

giving us the equation

τm
∂u(x, t)

∂t
= λ2

∂2u(x, t)

∂x2
− u(x, t) + rmie(x, t). (18)

1.2 The response of a dendrite to steady injected current

To compute the membrane potential in steady state, we need to specify the current density,
ie(x, t). We’ll assume that the current is injected at one point, so it’s something like I0/2πadx
for x within dx/2 of zero and zero otherwise. In the limit that dx → 0, the factor of 1/dx
turns into a delta-function, leading to the equation

τm
∂u(x, t)

∂t
= λ2

∂2u(x, t)

∂x2
− u+

rmI0
2πa

δ(x) (19)

where δ(x) is the Dirac delta-function; it has the property that it is zero when x 6= 0 and it
integrates to 1: so long as a and b are positive, then∫ b

−a
dxδ(x) = 1. (20)

The delta-function is one of the most useful functions in the world; it’s a good idea to know
about it.

If we let the cable equation evolve for a long time, eventually we’ll reach steady state –
meaning ∂u(x, t)/∂t = 0. Thus, in the limit t→∞, our cable equation becomes

λ2
∂2u(x, t)

∂x2
− u = −RλI0λδ(x) (21)

where

Rλ ≡
rm

2πaλ
=
rLλ

πa2
. (22)

As an aside, Rλ has a very natural interpretation: Recall that total resistance of a material
is equal to resistivity, rL times the length of the material divided by its area. Thus, Rλ is the
resistance of a dendrite with radius a and length λ. Which, in hind sight, is not especially
surprising. But it’s kind of cool.

Solving equations with delta-functions is often kind of easy, and that’s the case here.
That’s because when x 6= 0, we have a simple linear ODE. The only problem is to figure out
what happens at x = 0. For that we just have to take derivatives of discontinuous functions.
If you know that, or you don’t know it and don’t care, you can skip the next couple of
paragraphs. However, you’ll need it to understand the solution to Eq. (21).

Consider a function g(x) that’s continuous everywhere except at x = x0. For instance,
we might have g(x) = x2 if x < x0 and g(x) = x2 + 4 if x > x0. We’ll define g0 and g1 to be



Peter Latham, February 6, 2018 5

the values of g(x) when approached from the below and above x0, respectively. In the above
example, g0 = x20 and g1 = x20 + 4. To compute a derivative, we’ll use the usual expression,

dg(x)

dx
= lim

ε→0

g(x+ ε/2)− g(x− ε/2)

ε
. (23)

Most of the time this just gives us the derivative. However, if x = x0, things are slightly
more complicated,

dg(x)

dx
= lim

ε→0

g1 − g0
ε

, (24)

which goes to ∞. To figure out how big the infinity is, we note that

g(x+ a) = g(x− b) +

∫ x+a

x−b
dy

dg(y)

dy
. (25)

If we take x = x0 and both a and b infinitesimally small, the integral should equal g1 − g0.
This is achieved if dg(y)/dy = (g1 − g0)δ(x). Thus, the infinity is equal to the infinity
associated with the Dirac delta-function. Derivatives at discontinuities, then, yield delta-
functions times the size of the discontinuity,

dg

dx
=
dg

dx

∣∣∣∣
continuous

+ (g1 − g0)δ(x− x0) (26)

where the subscript “continuous” means the continuous part of the derivative.
Given the above discussion, and the fact that u(x)→ 0 when x→ ±∞, it’s not hard to

figure out, or at least verify, that Eq. (21) has the solution

u(x) =
I0Rλ

2
e−|x|/λ . (27)

Thus, λ – the electrotonic length – determines the spread of voltage in response to steady
injected current.

So how big is λ? Using its definition (Eq. (13)) and the values of rL and rm given in
Table 1, we have

λ = 0.5 mm ×
√
a (µm) . (28)

Given that a is on the order of one µm, the electrotonic length is on the order of 1 mm. This
places a fundamental limit on the length of dendrites: if they’re much longer than 1 mm,
steady input at the distal ends of the dendrites will not be seen by the soma.

Before going to the time dependent case, we want to do one more thing: find u(x)
when the input current density, ie(x), is a smooth function of x (rather than the δ-function
considered above). The method for doing that is general, but I’ll be honest: I don’t use it
very much. Still, if you’re planning on doing math for a living, it’s worth knowing about.

Let’s consider a slight modification to Eq. (21): we’ll center the delta-function around
x = x′, and we won’t include the multiplicative constants. The resulting equation is

λ2
∂2G(x− x′)

∂x2
−G(x− x′) = −δ(x− x′). (29)
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Parameter Value Relation to variables in our derivation

rL 1 kΩ-mm RL = rLdx/πa
2

rm 1 MΩ-mm2 Rm = rm/Area
cm 10 nF/mm2 Cm = cm×Area

λ
√
rma/2rL electrotonic length

Table 1. Dendritic parameters. All numbers are approximate.

The function G(x − x′) is called the Green function, presumably named after Green. It’s
easy to solve this equation: using our previous solution (Eq. (27)), but shifted by x′, we have

G(x− x′) =
1

2λ
e−|x−x

′|/λ . (30)

Now consider the function

u(x) =

∫
dx′G(x− x′)rmie(x′) . (31)

Using Eq. (29) for the Green function, we see that

λ2
∂2u(x, t)

∂x2
− u = −

∫
dx′ δ(x− x′)rmie(x′) = −rmie(x). (32)

Thus, if we can compute the Green function, we can find the solution to Eq. (18) for any
time independent current density ie(x) just by performing a convolution! That’s often very
convenient, and it’s used extensively in quantum field theory.

1.3 The response of a dendrite to a time-dependent injected cur-
rent

Given our experience with the Green function above, it’s enough to know the solution for a
delta-function current – so long as it’s a delta-function over time as well as space. We thus
consider the equation

τm
∂u(x, t)

∂t
= λ2

∂2u(x, t)

∂x2
− u(x, y) + I0Rλλτmδ(x)δ(t). (33)

The constants in front of the delta-functions are there to make the units work out. Once we
solve this equation, it will be easy to solve the equation with the delta-functions at arbitrary
points in space and time, δ(x)δ(t) → δ(x − x′)δ(t − t′), and then easy to fund u(x, t) in
response to an arbitrary current density ie(x, t).

There are several ways to solve Eq. (33), probably the easiest of which is to Fourier
transform with respect to x, solve the resulting ordinary differential equation in t, and then
Fourier transform back. But I won’t go into detail; instead I’ll just write down the solution,

u(x, t) =
I0Rλ√

4π(t/τm)
exp

[
− (x/λ)2

4(t/τm)

]
e−(t/τm) Θ(t) (34)
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where Θ(t) is the Heaviside step function: Θ(t) = 1 if t > 0 and 0 otherwise. You should
verify this is the solution to Eq. (33). That’s easy to do for t > 0; it’s much harder to do
when t = 0. There’s also the problem of verifying the overall normalization, but there’s a
trick for that: integrate over all x,

τm
d

dt

∫ ∞
−∞

dx u(x, t) = λ2
∫ ∞
−∞

dx
∂2u(x, t)

∂x2
−
∫ ∞
−∞

dx u(x, t) + I0Rλλτmδ(t) . (35)

Assuming du(x, t)/dx vanishes at ±∞ (an assumption we can make on physical grounds),
the first term on the right hand side is zero. consequently,∫ ∞

−∞
dx u(x, t) = I0RλλΘ(t)e−t/τm . (36)

This is consistent with the overall normalization in Eq. (34).
Equation (34) tells us that at any point in time, u(x, t) is Gaussian with width propor-

tional to λ
√
t/τm. The fact that the width is proportional to λ is consistent with what we

found in the steady state case. However, because of the factor of
√
t/τm, it might seem

that the membrane potential could spread much farther in the time-dependent case than
in the time-independent case. However, this isn’t really true: if t is large compared to τm,
it’s true that the Gaussian will be wide compared to λ. But because of the factor e−(t/τm),
its amplitude will be exponentially small. Thus, again the spread of voltage can’t be much
more than λ.

While the x-dependence is easy to understand, it’s not all that relevant to the soma.
We’ll ignore for the moment the fact that dendrites branch, and think of a dendrite as being
infinitely long, and place the soma a distance L from the point where the current is injected.
In that case, the time dependence of the voltage at the soma is given by

u(L, t) ∝ exp

[
− (L/λ)2

4(t/τm)
− (t/τm)− 1

2
log(t/τm)

]
(37)

At small times the voltage is suppressed by the first term in brackets; at large times it’s
suppressed by the second, and, to a lesser extent, the third term. In between is a maximum,
which we can find by differentiating the term in brackets with respect to t and setting the
resulting expression to zero. That maximum, which we’ll denote t∗(L), is given by

t∗(L)

τm
=

√
(L/λ)2 + 1− 1

4
. (38)

We can define the “speed” of propagation, denoted v, as the ratio of L to t∗(L),

v =
L

t∗(L)
=

λ

τm

4L/λ√
(L/λ)2 + 1− 1

. (39)

When L is small compared to λ, v ∝ λ2/Lτm. Thus, for very short distances the speed
is high; that’s because the cable equation is a diffusion equation, for which the width grows
as
√
t. When L is large, on the other hand, things are much better behaved: v → 4λ/τm.

Given the definition of λ (Eq. (13)), this implies that the speed scales with the square root
of the radius. That’s a fact that many people seem to know, but the truth of the matter is
that it simply doesn’t come up that often.
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1.4 Beyond cylinders: branching

Dendrites are not, of course, simply cylinders. A reasonable approximation is to treat them
as cylinders that occasionally branch. If we wanted to solve the cable equations at a branch
point, we just need to know the boundary conditions. Those are relatively simple: both the
current and voltage are continuous. The current needs to be continuous because otherwise
there would be a buildup of charge; the voltage needs to be continuous because the current is
proportional to ∂V (x, t)/∂x (see Eq. (2) and note that RL ∝ dx); if there were discontinuities,
the current would go to infinity. (We saw this in the above analysis: when the current was
proportional to a delta-function (Eq. (21)), there was a discontinuity in the voltage (Eq. (27)).

We’ll consider a typical branch point, as shown in Fig. 2, with constant current, I0,
injected a distance y from the branch point. The red arrows indicate both the direction of
the current and the direction of the three coordinates, x1, x2 and x3. We’ll start by writing
down an expression for the voltage in the three branches. For branches 2 and 3 we just have
exponential decay away from 0, but for branch 1 we also have the term associated with the
injected current. Using the steady state solution given in Eq. (27), we see that

V (x1) =
Rλ1I0

2
e−|x1−y|/λ1 + A1e

−x1/λ1 (40a)

V (x2) = A2e
−x2/λ2 (40b)

V (x3) = A3e
−x3/λ3 (40c)

where A1, A2 and A3 are constants that we will determine shortly. For the currents, use
take the dx→ 0 limit of Eq. (2) and use Eq. (5) for RLi, which together imply that I(x) =
(πa2/rL)∂V (x)/∂x; resulting in

I(x1) = −Rλ1I0
2

πa21
rLλ1

e−|x1−y|/λ1sign(x1 − y)− πa21
rLλ1

A1e
−x1/λ1 (41a)

I(x2) = − πa22
rLλ2

A2e
−x2/λ2 (41b)

I(x3) = − πa23
rLλ3

A3e
−x3/λ3 . (41c)

To find the values of A1, A2 and A3, we use our boundary conditions on voltage and
current. The first is that the voltage is continuous at 0, giving us

Rλ1I0
2

e−y/λ1 + A1 = A2 = A3. (42)

The second is that the total current, I1 + I2 + I3, is zero. Using the fact that λ ∝ a1/2 (see
Eq. (13)), zero total current implies that

Rλ1I0
2

a
3/2
1 e−y/λ1 − a3/21 A1 − a3/22 A2 − a3/23 A3 = 0. (43)
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I0

y

2a1

2a3

2a2

x1 x3

x2

Figure 2: Dendritic branch point. Each branch has a different radius. We adopt a convention
in which current is outward for all branches, and distance increases in the outward direction.
Constant current is injected a distance y from the branch point in branch 1. Our goal is to
find the membrane potential in each branch.

Solving the above two equations gives us

A1 =
Rλ1I0

2
e−y/λ1

a
3/2
1 − a

3/2
2 − a

3/2
3

a
3/2
1 + a

3/2
2 + a

3/2
3

(44a)

A2 = A3 = Rλ1I0e
−y/λ1 a

3/2
1

a
3/2
1 + a

3/2
2 + a

3/2
3

. (44b)

If a
3/2
1 = a

3/2
2 + a

3/2
2 , then A1 = 0. This is the famous “three halves power law“. When

the radii satisfy this relationship, there is no “reflected” voltage from the branch point. More
interestingly, if all the branch points on a dendritic tree satisfy this relationship, a branching
dendrite can be replaced by a single “equivalent” cylinder. For details on how to do that,
see Dayan and Abbott.

2 Axons

The fact that information can’t propagate very far in dendrites means we need a different
structure to support the long range propagation that’s necessary in animals larger than
about 1 mm. That brings us to axons. Axons have two properties that increase the range of
signal propagation. First, they have a myelin sheath wrapped around them. That sheath has
effectively infinite resistance, so no current flows in or out. Consequently, the time dependent
solution that we found in Eq. (34) is missing the decay term, e−t/τm . That helps, but not
much; the solution is still a spreading Gaussian, the spread is slow at large times, and the
amplitude falls off with time.

The second, and more important, property of axons is that they have active channels.
These are situated at the nodes of Ranvier – locations along the axon where the myelin sheath
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Figure 3: Propagation along axons. a. A section of an axon. The dark regions indicate
the myelin sheath; the notches are the nodes of Ranvier, which contain active sodium and
(usually) potassium channels. b. Membrane potential relative to the leak reversal potential
versus x at various times. c. Membrane potential relative to the leak reversal potential
versus t at various locations. For both a and b the diffusion constant, D, was 1.

is missing (Fig. 3a). Nodes of Ranvier contain active sodium channels – like the Hodgkin
neuron, so when the voltage is high enough an action potential occurs. When that happens,
there is a very brief, very large, inward current, which causes the membrane potential to
quickly climb to about 0 mV.

Propagation of an axon, then, proceeds as follows. Let’s start at the soma, and assume
it spikes. (It turns out that spike initiation is often in the axon, a few tens of microns from
the soma, but that’s a detail). When a spike occurs, a large, fast current is injected into the
end of the axon. That causes the voltage to quickly spread into the axon – just as it did
in the dendrites (see Fig. 3b). Eventually the voltage at the next node of Ranvier is high
enough to produce an action potential (see Fig. 3c), and the process repeats.

This is called saltatory conductance; the name comes from the fact that at the microscopic
level, signal propagation is not smooth. Note that the signal can go in either direction.
However, because sodium channels de-inactivate slowly (it takes a few ms for the h-current
to decay to zero) and potassium channels inactivate slowly (it takes several ms for the n-
current to decay), once saltatory conductance starts in one direction, it can’t suddenly go in
the other. And under normal conditions propagation is almost always away from the soma.
However, electrophysiologist often deliberately cause propagation to go toward the soma;
such propagation is referred to as antidromic.

The intuitive picture is the main thing we need to understand. However, as usual, we’re
going to do some math. We’re going to solve the cable equation with a delta-function current,
as in Eq. (33). The idea is that the nodes of Ranvier supply the delta-function, and voltage
then diffuses along the myelinated part of the axon. However, we can’t quite use Eq. (33)
because it involves rm, which is infinite for the myelinated part. We thus have to go back to
Eq. (7). Because of the myelin there’s no leak term (so im = 0). We’ll divide both sides by
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cm, put a delta-function on the right hand side, and not worry too much about units. The
equation we want to solve is, then,

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ δ(x)δ(t) (45)

where the diffusion constant, D, is given by

D ≡ a

2rLcm
. (46)

Note that rL has units of resistance times length (Eq. (5)) and cm has units of capacitance
per area (Eq. (6)), so D has units of length2/time. Here u is membrane potential relative to
the resting membrane potential at the nodes of Ranvier.

We’ll use L to denote the spacing between the nodes of Ranvier. Given our above
discussion of saltatory conductance, the relevant quantity is the membrane potential at the
next node, at x = L. That’s given by.

u(L, t) =
e−L

2/4Dt

√
4πDt

Θ(t) . (47)

The form of this equation follows from Eq. (34) and two observations: D = λ2/τm, a quantity
that is independent of rm, and when rm →∞, τm also goes to∞. To see that the amplitude
is correct, note that

d

dt

∫ ∞
−∞

u(x, t) = δ(t), (48)

which implies that when t > 0, u(x, t) must integrate to 1 – as it does in Eq. (47).
We’re interested in the maximum value of u(L, t) as a function of t, which we denote

u(L, t∗). This we can find by setting the derivative of the right hand side of Eq. (47) with
respect to t to zero. After a small amount of algebra, we find that t∗ = L2/2D, yielding

u(L, t∗) =
1√
2πe

1

L
. (49)

This indicates that the maximum membrane potential at the next node of Ranvier – which
needs to be above threshold for the generation of an action potential – falls off rather slowly
with distance. This slow falloff is also apparent in plots of u(L, t) versus t for various values
of L (see Fig. 3c). The slow falloff of the maximum voltage doesn’t put a strong constraint
on L. For those who are interested, there’s a good discussion of the actual constraints –
which involve propagation speed – in Dayan and Abbott.


