
Information Theory

Maneesh Sahani

Gatsby Computational Neuroscience Unit
University College London

October 2017

Quantifying a Code

I How much information does a neural response carry about a stimulus?
I How efficient is a hypothetical code, given the statistical behaviour of the components?
I How much better could another code do, given the same components?
I Is the information carried by different neurons complementary, synergistic (whole is

greater than sum of parts), or redundant?
I Can further processing extract more information about a stimulus?

Information theory is the mathematical framework within which questions such as these can
be framed and answered.

Information theory does not directly address:

I estimation (but there are some relevant bounds)
I computation (but “information bottleneck” might provide a motivating framework)
I representation (but redundancy reduction has obvious information theoretic connections)

Quantifying a Code

I How much information does a neural response carry about a stimulus?
I How efficient is a hypothetical code, given the statistical behaviour of the components?
I How much better could another code do, given the same components?
I Is the information carried by different neurons complementary, synergistic (whole is

greater than sum of parts), or redundant?
I Can further processing extract more information about a stimulus?

Information theory is the mathematical framework within which questions such as these can
be framed and answered.

Information theory does not directly address:

I estimation (but there are some relevant bounds)
I computation (but “information bottleneck” might provide a motivating framework)
I representation (but redundancy reduction has obvious information theoretic connections)

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

P(S|R) =
[
0, 0, 1, 0, . . . , 0

]
⇒ high information?

P(S|R) =
[1

M
,

1
M
, . . . ,

1
M

]
⇒ low information?

But also depends on P(S).

We need to start by considering the uncertainty in a probability distribution→ called the
entropy

Let S ∼ P(S). The entropy is the minimum number of bits needed, on average, to specify the
value S takes, assuming P(S) is known.

Equivalently, the minimum average number of yes/no questions needed to guess S.

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

P(S|R) =
[
0, 0, 1, 0, . . . , 0

]
⇒ high information?

P(S|R) =
[1

M
,

1
M
, . . . ,

1
M

]
⇒ low information?

But also depends on P(S).

We need to start by considering the uncertainty in a probability distribution→ called the
entropy

Let S ∼ P(S). The entropy is the minimum number of bits needed, on average, to specify the
value S takes, assuming P(S) is known.

Equivalently, the minimum average number of yes/no questions needed to guess S.

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

P(S|R) =
[
0, 0, 1, 0, . . . , 0

]
⇒ high information?

P(S|R) =
[1

M
,

1
M
, . . . ,

1
M

]
⇒ low information?

But also depends on P(S).

We need to start by considering the uncertainty in a probability distribution→ called the
entropy

Let S ∼ P(S). The entropy is the minimum number of bits needed, on average, to specify the
value S takes, assuming P(S) is known.

Equivalently, the minimum average number of yes/no questions needed to guess S.

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

P(S|R) =
[
0, 0, 1, 0, . . . , 0

]
⇒ high information?

P(S|R) =
[1

M
,

1
M
, . . . ,

1
M

]
⇒ low information?

But also depends on P(S).

We need to start by considering the uncertainty in a probability distribution→ called the
entropy

Let S ∼ P(S). The entropy is the minimum number of bits needed, on average, to specify the
value S takes, assuming P(S) is known.

Equivalently, the minimum average number of yes/no questions needed to guess S.

Uncertainty and Information

Information is related to the removal of uncertainty.

S → R → P(S|R)

How informative is R about S?

P(S|R) =
[
0, 0, 1, 0, . . . , 0

]
⇒ high information?

P(S|R) =
[1

M
,

1
M
, . . . ,

1
M

]
⇒ low information?

But also depends on P(S).

We need to start by considering the uncertainty in a probability distribution→ called the
entropy

Let S ∼ P(S). The entropy is the minimum number of bits needed, on average, to specify the
value S takes, assuming P(S) is known.

Equivalently, the minimum average number of yes/no questions needed to guess S.

Entropy

I Suppose there are M equiprobable stimuli: P(sm) = 1/M.

To specify which stimulus appears on a given trial, we would need assign each a
(binary) number. This would take,

Bs ≤ log2 M + 1 [2B ≥ M]

= − log2
1
M

+ 1 bits

I Now suppose we code N such stimuli, drawn iid, at once.

BN ≤ log2 MN + 1

→ −N log2
1
M

as N →∞

⇒ Bs → − log2 p bits

This is called block coding. It is useful for extracting theoretical limits. The nervous
system is unlikely to use block codes in time, but may in space.

Entropy

I Suppose there are M equiprobable stimuli: P(sm) = 1/M.

To specify which stimulus appears on a given trial, we would need assign each a
(binary) number. This would take,

Bs ≤ log2 M + 1 [2B ≥ M]

= − log2
1
M

+ 1 bits

I Now suppose we code N such stimuli, drawn iid, at once.

BN ≤ log2 MN + 1

→ −N log2
1
M

as N →∞

⇒ Bs → − log2 p bits

This is called block coding. It is useful for extracting theoretical limits. The nervous
system is unlikely to use block codes in time, but may in space.

Entropy

I Suppose there are M equiprobable stimuli: P(sm) = 1/M.

To specify which stimulus appears on a given trial, we would need assign each a
(binary) number. This would take,

Bs ≤ log2 M + 1 [2B ≥ M]

= − log2
1
M

+ 1 bits

I Now suppose we code N such stimuli, drawn iid, at once.

BN ≤ log2 MN + 1

→ −N log2
1
M

as N →∞

⇒ Bs → − log2 p bits

This is called block coding. It is useful for extracting theoretical limits. The nervous
system is unlikely to use block codes in time, but may in space.

Entropy

I Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
∏

m

pnm
m [where nm = (# of Si = sm)].

As N →∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).
Thus,

BN → − log2

∏
m pnm

m = −
∑

m nm log2 pm

= −
∑

m pmN log2 pm = −N
∑

m

pm log2 pm︸ ︷︷ ︸
−H[s]

H[S] = E [− log2 P(S)], also written H[P(S)], is the entropy of the stimulus distribution.

Rather than appealing to typicality, we could instead have used the law of large numbers directly:

1

N
log2 P(S1,S2, . . .SN) =

1

N
log2

∏
i

P(Si) =
1

N

∑
i

log2 P(Si)
N→∞→ E[log2 P(Si)]

Entropy

I Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
∏

m

pnm
m [where nm = (# of Si = sm)].

As N →∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).

Thus,
BN → − log2

∏
m pnm

m = −
∑

m nm log2 pm

= −
∑

m pmN log2 pm = −N
∑

m

pm log2 pm︸ ︷︷ ︸
−H[s]

H[S] = E [− log2 P(S)], also written H[P(S)], is the entropy of the stimulus distribution.

Rather than appealing to typicality, we could instead have used the law of large numbers directly:

1

N
log2 P(S1,S2, . . .SN) =

1

N
log2

∏
i

P(Si) =
1

N

∑
i

log2 P(Si)
N→∞→ E[log2 P(Si)]

Entropy

I Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
∏

m

pnm
m [where nm = (# of Si = sm)].

As N →∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).
Thus,

BN → − log2

∏
m pnm

m = −
∑

m nm log2 pm

= −
∑

m pmN log2 pm = −N
∑

m

pm log2 pm︸ ︷︷ ︸
−H[s]

H[S] = E [− log2 P(S)], also written H[P(S)], is the entropy of the stimulus distribution.

Rather than appealing to typicality, we could instead have used the law of large numbers directly:

1

N
log2 P(S1,S2, . . .SN) =

1

N
log2

∏
i

P(Si) =
1

N

∑
i

log2 P(Si)
N→∞→ E[log2 P(Si)]

Entropy

I Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
∏

m

pnm
m [where nm = (# of Si = sm)].

As N →∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).
Thus,

BN → − log2

∏
m pnm

m = −
∑

m nm log2 pm

= −
∑

m pmN log2 pm = −N
∑

m

pm log2 pm︸ ︷︷ ︸
−H[s]

H[S] = E [− log2 P(S)], also written H[P(S)], is the entropy of the stimulus distribution.

Rather than appealing to typicality, we could instead have used the law of large numbers directly:

1

N
log2 P(S1,S2, . . .SN) =

1

N
log2

∏
i

P(Si) =
1

N

∑
i

log2 P(Si)
N→∞→ E[log2 P(Si)]

Entropy

I Now suppose stimuli are not equiprobable. Write P(sm) = pm. Then

P(S1,S2, . . . ,SN) =
∏

m

pnm
m [where nm = (# of Si = sm)].

As N →∞ only “typical” sequences, with nm = pmN, have non-zero probability of
occuring; and they are all equally likely. This is called the Asymptotic Equipartition
Property (or AEP).
Thus,

BN → − log2

∏
m pnm

m = −
∑

m nm log2 pm

= −
∑

m pmN log2 pm = −N
∑

m

pm log2 pm︸ ︷︷ ︸
−H[s]

H[S] = E [− log2 P(S)], also written H[P(S)], is the entropy of the stimulus distribution.

Rather than appealing to typicality, we could instead have used the law of large numbers directly:

1

N
log2 P(S1,S2, . . .SN) =

1

N
log2

∏
i

P(Si) =
1

N

∑
i

log2 P(Si)
N→∞→ E[log2 P(Si)]

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble.

Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us

P(S|r) =
P(r |S)P(S)∑

s P(r |s)P(s)

so we can write
H[S|r] = −

∑
s

P(s|r) log2 P(s|r)

The average uncertainty in S for r ∼ P(R) =
∑

s P(R|s)p(s) is then

H[S|R] =
∑

r

P(r)

[
−
∑

s

P(s|r) log2 P(s|r)

]
= −

∑
s,r

P(s, r) log2 P(s|r)

It is easy to show that:

1. H[S|R] ≤ H[S]

2. H[S|R] = H[S,R]− H[R]

3. H[S|R] = H[S] iff S ⊥⊥ R

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r?

Bayes rule gives us

P(S|r) =
P(r |S)P(S)∑

s P(r |s)P(s)

so we can write
H[S|r] = −

∑
s

P(s|r) log2 P(s|r)

The average uncertainty in S for r ∼ P(R) =
∑

s P(R|s)p(s) is then

H[S|R] =
∑

r

P(r)

[
−
∑

s

P(s|r) log2 P(s|r)

]
= −

∑
s,r

P(s, r) log2 P(s|r)

It is easy to show that:

1. H[S|R] ≤ H[S]

2. H[S|R] = H[S,R]− H[R]

3. H[S|R] = H[S] iff S ⊥⊥ R

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us

P(S|r) =
P(r |S)P(S)∑

s P(r |s)P(s)

so we can write
H[S|r] = −

∑
s

P(s|r) log2 P(s|r)

The average uncertainty in S for r ∼ P(R) =
∑

s P(R|s)p(s) is then

H[S|R] =
∑

r

P(r)

[
−
∑

s

P(s|r) log2 P(s|r)

]
= −

∑
s,r

P(s, r) log2 P(s|r)

It is easy to show that:

1. H[S|R] ≤ H[S]

2. H[S|R] = H[S,R]− H[R]

3. H[S|R] = H[S] iff S ⊥⊥ R

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us

P(S|r) =
P(r |S)P(S)∑

s P(r |s)P(s)

so we can write
H[S|r] = −

∑
s

P(s|r) log2 P(s|r)

The average uncertainty in S for r ∼ P(R) =
∑

s P(R|s)p(s) is then

H[S|R] =
∑

r

P(r)

[
−
∑

s

P(s|r) log2 P(s|r)

]
= −

∑
s,r

P(s, r) log2 P(s|r)

It is easy to show that:

1. H[S|R] ≤ H[S]

2. H[S|R] = H[S,R]− H[R]

3. H[S|R] = H[S] iff S ⊥⊥ R

Conditional Entropy
Entropy is a measure of “available information” in the stimulus ensemble. Now suppose we
measure a particular response r which depends on the stimulus according to P(R|S).

How uncertain is the stimulus once we know r? Bayes rule gives us

P(S|r) =
P(r |S)P(S)∑

s P(r |s)P(s)

so we can write
H[S|r] = −

∑
s

P(s|r) log2 P(s|r)

The average uncertainty in S for r ∼ P(R) =
∑

s P(R|s)p(s) is then

H[S|R] =
∑

r

P(r)

[
−
∑

s

P(s|r) log2 P(s|r)

]
= −

∑
s,r

P(s, r) log2 P(s|r)

It is easy to show that:

1. H[S|R] ≤ H[S]

2. H[S|R] = H[S,R]− H[R]

3. H[S|R] = H[S] iff S ⊥⊥ R

Average Mutual Information

A natural definition of the average information gained about S from R is

I[S; R] = H[S]− H[S|R]

Measures reduction in uncertainty due to R.

It follows from the definition that

I[S; R] =
∑

s

P(s) log
1

P(s)
−
∑
s,r

P(s, r) log
1

P(s|r)

=
∑
s,r

P(s, r) log
1

P(s)
+
∑
s,r

P(s, r) log P(s|r)

=
∑
s,r

P(s, r) log
P(s|r)

P(s)

=
∑
s,r

P(s, r) log
P(s, r)

P(s)P(r)

= I[R; S]

Average Mutual Information

A natural definition of the average information gained about S from R is

I[S; R] = H[S]− H[S|R]

Measures reduction in uncertainty due to R.

It follows from the definition that

I[S; R] =
∑

s

P(s) log
1

P(s)
−
∑
s,r

P(s, r) log
1

P(s|r)

=
∑
s,r

P(s, r) log
1

P(s)
+
∑
s,r

P(s, r) log P(s|r)

=
∑
s,r

P(s, r) log
P(s|r)

P(s)

=
∑
s,r

P(s, r) log
P(s, r)

P(s)P(r)

= I[R; S]

Average Mutual Information

The symmetry suggests a Venn-like diagram.

H[S|R]
I[S; R]

I[R; S]
H[R|S]

H[S,R]

H[S] H[R]

All of the additive and equality relationships implied by this picture hold for two variables.
Unfortunately, we will see that this does not generalise to any more than two.

Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two
distributions.

KL[P(S)‖Q(S)] =
∑

s

P(s) log
P(s)

Q(s)

=
∑

s

P(s) log
1

Q(s)︸ ︷︷ ︸
cross entropy

−H[P]

Excess cost in bits paid by encoding according to Q instead of P.

−KL[P‖Q] =
∑

s

P(s) log
Q(s)

P(s)

≤ log
∑

s

P(s)
Q(s)

P(s)
by Jensen

= log
∑

s

Q(s) = log 1 = 0

So KL[P‖Q] ≥ 0. Equality iff P = Q

Kullback-Leibler Divergence

Another useful information theoretic quantity measures the difference between two
distributions.

KL[P(S)‖Q(S)] =
∑

s

P(s) log
P(s)

Q(s)

=
∑

s

P(s) log
1

Q(s)︸ ︷︷ ︸
cross entropy

−H[P]

Excess cost in bits paid by encoding according to Q instead of P.

−KL[P‖Q] =
∑

s

P(s) log
Q(s)

P(s)

≤ log
∑

s

P(s)
Q(s)

P(s)
by Jensen

= log
∑

s

Q(s) = log 1 = 0

So KL[P‖Q] ≥ 0. Equality iff P = Q

Mutual Information and KL

I[S; R] =
∑
s,r

P(s, r) log
P(s, r)

P(s)P(r)
= KL[P(S,R)‖P(S)P(R)]

Thus:

1. Mutual information is always non-negative

I[S; R] ≥ 0

2. Conditioning never increases entropy

H[S|R] ≤ H[S]

Mutual Information and KL

I[S; R] =
∑
s,r

P(s, r) log
P(s, r)

P(s)P(r)
= KL[P(S,R)‖P(S)P(R)]

Thus:

1. Mutual information is always non-negative

I[S; R] ≥ 0

2. Conditioning never increases entropy

H[S|R] ≤ H[S]

Mutual Information and KL

I[S; R] =
∑
s,r

P(s, r) log
P(s, r)

P(s)P(r)
= KL[P(S,R)‖P(S)P(R)]

Thus:

1. Mutual information is always non-negative

I[S; R] ≥ 0

2. Conditioning never increases entropy

H[S|R] ≤ H[S]

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S; R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S; R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S; R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant

yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S; R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent

yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S; R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic

no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S; R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S; R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Multiple Responses

Two responses to the same stimulus, R1 and R2, may provide either more or less information
jointly than independently.

I12 = I[S; R1,R2] = H[R1,R2]− H[R1,R2|S]

R1 ⊥⊥ R2 ⇒ H[R1,R2] = H[R1] + H[R2]

R1 ⊥⊥ R2|S ⇒ H[R1,R2|S] = H[R1|S] + H[R2|S]

R1 ⊥⊥ R2 R1 ⊥⊥ R2|S
no yes I12 < I1 + I2 redundant
yes yes I12 = I1 + I2 independent
yes no I12 > I1 + I2 synergistic
no no ? any of the above

I12 > max(I1, I2): the second response cannot destroy information.

Thus, the Venn-like diagram with three variables is misleading.

Data Processing Inequality

Suppose S → R1 → R2 form a Markov chain; that is, R2 ⊥⊥ S | R1.

Then,

P(R2,S|R1) = P(R2|R1)P(S|R1)

⇒ P(S|R1,R2) = P(S|R1)

Thus,

H[S|R2] ≥ H[S|R1,R2] = H[S|R1]

⇒ I[S; R2] ≤ I[S; R1]

So any computation based on R1 that does not have separate access to S cannot add
information (in the Shannon sense) about the world.

Equality holds iff S → R2 → R1 as well. In this case R2 is called a sufficient statistic for S.

Data Processing Inequality

Suppose S → R1 → R2 form a Markov chain; that is, R2 ⊥⊥ S | R1.

Then,

P(R2,S|R1) = P(R2|R1)P(S|R1)

⇒ P(S|R1,R2) = P(S|R1)

Thus,

H[S|R2] ≥ H[S|R1,R2] = H[S|R1]

⇒ I[S; R2] ≤ I[S; R1]

So any computation based on R1 that does not have separate access to S cannot add
information (in the Shannon sense) about the world.

Equality holds iff S → R2 → R1 as well. In this case R2 is called a sufficient statistic for S.

Data Processing Inequality

Suppose S → R1 → R2 form a Markov chain; that is, R2 ⊥⊥ S | R1.

Then,

P(R2,S|R1) = P(R2|R1)P(S|R1)

⇒ P(S|R1,R2) = P(S|R1)

Thus,

H[S|R2] ≥ H[S|R1,R2] = H[S|R1]

⇒ I[S; R2] ≤ I[S; R1]

So any computation based on R1 that does not have separate access to S cannot add
information (in the Shannon sense) about the world.

Equality holds iff S → R2 → R1 as well. In this case R2 is called a sufficient statistic for S.

Data Processing Inequality

Suppose S → R1 → R2 form a Markov chain; that is, R2 ⊥⊥ S | R1.

Then,

P(R2,S|R1) = P(R2|R1)P(S|R1)

⇒ P(S|R1,R2) = P(S|R1)

Thus,

H[S|R2] ≥ H[S|R1,R2] = H[S|R1]

⇒ I[S; R2] ≤ I[S; R1]

So any computation based on R1 that does not have separate access to S cannot add
information (in the Shannon sense) about the world.

Equality holds iff S → R2 → R1 as well. In this case R2 is called a sufficient statistic for S.

Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli and
responses form a time series.

Let S = {S1,S2,S3 . . .} form a stochastic process.

H[S1,S2, . . . ,Sn] = H[Sn|S1,S2, . . . ,Sn−1] + H[S1,S2, . . . ,Sn−1]

= H[Sn|S1,S2, . . . ,Sn−1] + H[Sn−1|S1,S2, . . . ,Sn−2] + . . .+ H[S1]

The entropy rate of S is defined as

H[S] = lim
n→∞

H[S1,S2, . . . ,Sn]

N

or alternatively as
H[S] = lim

n→∞
H[Sn|S1,S2, . . . ,Sn−1]

If Si
iid∼ P(S) then H[S] = H[S].

If S is Markov (and stationary) then H[S] = H[Sn|Sn−1].

Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli and
responses form a time series.

Let S = {S1,S2,S3 . . .} form a stochastic process.

H[S1,S2, . . . ,Sn] = H[Sn|S1,S2, . . . ,Sn−1] + H[S1,S2, . . . ,Sn−1]

= H[Sn|S1,S2, . . . ,Sn−1] + H[Sn−1|S1,S2, . . . ,Sn−2] + . . .+ H[S1]

The entropy rate of S is defined as

H[S] = lim
n→∞

H[S1,S2, . . . ,Sn]

N

or alternatively as
H[S] = lim

n→∞
H[Sn|S1,S2, . . . ,Sn−1]

If Si
iid∼ P(S) then H[S] = H[S].

If S is Markov (and stationary) then H[S] = H[Sn|Sn−1].

Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli and
responses form a time series.

Let S = {S1,S2,S3 . . .} form a stochastic process.

H[S1,S2, . . . ,Sn] = H[Sn|S1,S2, . . . ,Sn−1] + H[S1,S2, . . . ,Sn−1]

= H[Sn|S1,S2, . . . ,Sn−1] + H[Sn−1|S1,S2, . . . ,Sn−2] + . . .+ H[S1]

The entropy rate of S is defined as

H[S] = lim
n→∞

H[S1,S2, . . . ,Sn]

N

or alternatively as
H[S] = lim

n→∞
H[Sn|S1,S2, . . . ,Sn−1]

If Si
iid∼ P(S) then H[S] = H[S].

If S is Markov (and stationary) then H[S] = H[Sn|Sn−1].

Entropy Rate

So far we have discussed S and R as single (or iid) random variables. But real stimuli and
responses form a time series.

Let S = {S1,S2,S3 . . .} form a stochastic process.

H[S1,S2, . . . ,Sn] = H[Sn|S1,S2, . . . ,Sn−1] + H[S1,S2, . . . ,Sn−1]

= H[Sn|S1,S2, . . . ,Sn−1] + H[Sn−1|S1,S2, . . . ,Sn−2] + . . .+ H[S1]

The entropy rate of S is defined as

H[S] = lim
n→∞

H[S1,S2, . . . ,Sn]

N

or alternatively as
H[S] = lim

n→∞
H[Sn|S1,S2, . . . ,Sn−1]

If Si
iid∼ P(S) then H[S] = H[S].

If S is Markov (and stationary) then H[S] = H[Sn|Sn−1].

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length ∆s:

H∆[S] = −
∑

i

p(si)∆s log p(si)∆s

= −
∑

i

p(si)∆s(log p(si) + log ∆s)

= −
∑

i

p(si)∆s log p(si)− log ∆s
∑

i

p(si)∆s

= −
∑

i

∆s p(si) log p(si)− log ∆s

→ −
∫

ds p(s) log p(s) +∞

We define the differential entropy:

h(S) = −
∫

ds p(s) log p(s).

Note that h(S) can be < 0, and can be ±∞.

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length ∆s:

H∆[S] = −
∑

i

p(si)∆s log p(si)∆s

= −
∑

i

p(si)∆s(log p(si) + log ∆s)

= −
∑

i

p(si)∆s log p(si)− log ∆s
∑

i

p(si)∆s

= −
∑

i

∆s p(si) log p(si)− log ∆s

→ −
∫

ds p(s) log p(s) +∞

We define the differential entropy:

h(S) = −
∫

ds p(s) log p(s).

Note that h(S) can be < 0, and can be ±∞.

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length ∆s:

H∆[S] = −
∑

i

p(si)∆s log p(si)∆s

= −
∑

i

p(si)∆s(log p(si) + log ∆s)

= −
∑

i

p(si)∆s log p(si)− log ∆s
∑

i

p(si)∆s

= −
∑

i

∆s p(si) log p(si)− log ∆s

→ −
∫

ds p(s) log p(s) +∞

We define the differential entropy:

h(S) = −
∫

ds p(s) log p(s).

Note that h(S) can be < 0, and can be ±∞.

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length ∆s:

H∆[S] = −
∑

i

p(si)∆s log p(si)∆s

= −
∑

i

p(si)∆s(log p(si) + log ∆s)

= −
∑

i

p(si)∆s log p(si)− log ∆s
∑

i

p(si)∆s

= −
∑

i

∆s p(si) log p(si)− log ∆s

→ −
∫

ds p(s) log p(s) +∞

We define the differential entropy:

h(S) = −
∫

ds p(s) log p(s).

Note that h(S) can be < 0, and can be ±∞.

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length ∆s:

H∆[S] = −
∑

i

p(si)∆s log p(si)∆s

= −
∑

i

p(si)∆s(log p(si) + log ∆s)

= −
∑

i

p(si)∆s log p(si)− log ∆s
∑

i

p(si)∆s

= −
∑

i

∆s p(si) log p(si)− log ∆s

→ −
∫

ds p(s) log p(s) +∞

We define the differential entropy:

h(S) = −
∫

ds p(s) log p(s).

Note that h(S) can be < 0, and can be ±∞.

Continuous Random Variables

The discussion so far has involved discrete S and R. Now, let S ∈ R with density p(s). What
is its entropy?

Suppose we discretise with length ∆s:

H∆[S] = −
∑

i

p(si)∆s log p(si)∆s

= −
∑

i

p(si)∆s(log p(si) + log ∆s)

= −
∑

i

p(si)∆s log p(si)− log ∆s
∑

i

p(si)∆s

= −
∑

i

∆s p(si) log p(si)− log ∆s

→ −
∫

ds p(s) log p(s) +∞

We define the differential entropy:

h(S) = −
∫

ds p(s) log p(s).

Note that h(S) can be < 0, and can be ±∞.

Continuous Random Variables

We can define other information theoretic quantities similarly.

The conditional differential entropy is

h(S|R) = −
∫

ds dr p(s, r) log p(s|r)

and, like the differential entropy itself, may be poorly behaved.

The mutual information, however, is well-defined

I∆[S; R] = H∆[S]− H∆[S|R]

= −
∑

i

∆s p(si) log p(si)− log ∆s

−
∫

dr p(r)

(
−
∑

i

∆s p(si |r) log p(si |r)− log ∆s

)
→ h(S)− h(S|R)

as are other KL divergences.

Continuous Random Variables

We can define other information theoretic quantities similarly.

The conditional differential entropy is

h(S|R) = −
∫

ds dr p(s, r) log p(s|r)

and, like the differential entropy itself, may be poorly behaved.

The mutual information, however, is well-defined

I∆[S; R] = H∆[S]− H∆[S|R]

= −
∑

i

∆s p(si) log p(si)− log ∆s

−
∫

dr p(r)

(
−
∑

i

∆s p(si |r) log p(si |r)− log ∆s

)
→ h(S)− h(S|R)

as are other KL divergences.

Continuous Random Variables

We can define other information theoretic quantities similarly.

The conditional differential entropy is

h(S|R) = −
∫

ds dr p(s, r) log p(s|r)

and, like the differential entropy itself, may be poorly behaved.

The mutual information, however, is well-defined

I∆[S; R] = H∆[S]− H∆[S|R]

= −
∑

i

∆s p(si) log p(si)− log ∆s

−
∫

dr p(r)

(
−
∑

i

∆s p(si |r) log p(si |r)− log ∆s

)
→ h(S)− h(S|R)

as are other KL divergences.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
∫

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?
Use Lagrange multipliers:

L =

∫
ds p(s) log p(s)− λ0

[∫
ds p(s)− 1

]
− λ1

[∫
ds p(s)f (s)− a

]
δL
δp(s)

= 1 + log p(s)− λ0 − λ1f (s) = 0

⇒ log p(s) = λ0 + λ1f (s)− 1

⇒ p(s) =
1
Z

eλ1 f (s)

The constants λ0 and λ1 can be found by solving the constraint equations.
Thus,

f (s) = s ⇒ p(s) = 1
Z eλ1s. Exponential (need p(s) = 0 for s < T).

f (s) = s2 ⇒ p(s) = 1
Z eλ1s2

. Gaussian.

Both results together⇒ maximum entropy point process (for fixed mean arrival rate) is
homogeneous Poisson – independent, exponentially distributed ISIs.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
∫

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?

Use Lagrange multipliers:

L =

∫
ds p(s) log p(s)− λ0

[∫
ds p(s)− 1

]
− λ1

[∫
ds p(s)f (s)− a

]
δL
δp(s)

= 1 + log p(s)− λ0 − λ1f (s) = 0

⇒ log p(s) = λ0 + λ1f (s)− 1

⇒ p(s) =
1
Z

eλ1 f (s)

The constants λ0 and λ1 can be found by solving the constraint equations.
Thus,

f (s) = s ⇒ p(s) = 1
Z eλ1s. Exponential (need p(s) = 0 for s < T).

f (s) = s2 ⇒ p(s) = 1
Z eλ1s2

. Gaussian.

Both results together⇒ maximum entropy point process (for fixed mean arrival rate) is
homogeneous Poisson – independent, exponentially distributed ISIs.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
∫

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?
Use Lagrange multipliers:

L =

∫
ds p(s) log p(s)− λ0

[∫
ds p(s)− 1

]
− λ1

[∫
ds p(s)f (s)− a

]
δL
δp(s)

= 1 + log p(s)− λ0 − λ1f (s) = 0

⇒ log p(s) = λ0 + λ1f (s)− 1

⇒ p(s) =
1
Z

eλ1 f (s)

The constants λ0 and λ1 can be found by solving the constraint equations.

Thus,

f (s) = s ⇒ p(s) = 1
Z eλ1s. Exponential (need p(s) = 0 for s < T).

f (s) = s2 ⇒ p(s) = 1
Z eλ1s2

. Gaussian.

Both results together⇒ maximum entropy point process (for fixed mean arrival rate) is
homogeneous Poisson – independent, exponentially distributed ISIs.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
∫

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?
Use Lagrange multipliers:

L =

∫
ds p(s) log p(s)− λ0

[∫
ds p(s)− 1

]
− λ1

[∫
ds p(s)f (s)− a

]
δL
δp(s)

= 1 + log p(s)− λ0 − λ1f (s) = 0

⇒ log p(s) = λ0 + λ1f (s)− 1

⇒ p(s) =
1
Z

eλ1 f (s)

The constants λ0 and λ1 can be found by solving the constraint equations.
Thus,

f (s) = s ⇒ p(s) = 1
Z eλ1s. Exponential (need p(s) = 0 for s < T).

f (s) = s2 ⇒ p(s) = 1
Z eλ1s2

. Gaussian.

Both results together⇒ maximum entropy point process (for fixed mean arrival rate) is
homogeneous Poisson – independent, exponentially distributed ISIs.

Maximum Entropy Distributions

1. H[R1,R2] = H[R1] + H[R2] with equality iff R1 ⊥⊥ R2.

2. Let
∫

ds p(s)f (s) = a for some function f . What distribution has maximum entropy?
Use Lagrange multipliers:

L =

∫
ds p(s) log p(s)− λ0

[∫
ds p(s)− 1

]
− λ1

[∫
ds p(s)f (s)− a

]
δL
δp(s)

= 1 + log p(s)− λ0 − λ1f (s) = 0

⇒ log p(s) = λ0 + λ1f (s)− 1

⇒ p(s) =
1
Z

eλ1 f (s)

The constants λ0 and λ1 can be found by solving the constraint equations.
Thus,

f (s) = s ⇒ p(s) = 1
Z eλ1s. Exponential (need p(s) = 0 for s < T).

f (s) = s2 ⇒ p(s) = 1
Z eλ1s2

. Gaussian.

Both results together⇒ maximum entropy point process (for fixed mean arrival rate) is
homogeneous Poisson – independent, exponentially distributed ISIs.

Channels

We now direct our focus to the conditional P(R|S) which defines the channel linking S to R.

S
P(R|S)−→ R

The mutual information

I[S; R] =
∑
s,r

P(s, r) log
P(s, r)

P(s)P(r)
=
∑
s,r

P(s)P(r |s) log
P(r |s)

P(r)

depends on marginals P(s) and P(r) =
∑

s P(r |s)P(s) as well and thus is unsuitable to
characterise the conditional alone.

Instead, we characterise the channel by its capacity

CR|S = sup
P(s)

I[S; R]

Thus the capacity gives the theoretical limit on the amount of information that can be
transmitted over a channel. Clearly, this is limited by the properties of the noise.

Channels

We now direct our focus to the conditional P(R|S) which defines the channel linking S to R.

S
P(R|S)−→ R

The mutual information

I[S; R] =
∑
s,r

P(s, r) log
P(s, r)

P(s)P(r)
=
∑
s,r

P(s)P(r |s) log
P(r |s)

P(r)

depends on marginals P(s) and P(r) =
∑

s P(r |s)P(s) as well and thus is unsuitable to
characterise the conditional alone.

Instead, we characterise the channel by its capacity

CR|S = sup
P(s)

I[S; R]

Thus the capacity gives the theoretical limit on the amount of information that can be
transmitted over a channel. Clearly, this is limited by the properties of the noise.

Channels

We now direct our focus to the conditional P(R|S) which defines the channel linking S to R.

S
P(R|S)−→ R

The mutual information

I[S; R] =
∑
s,r

P(s, r) log
P(s, r)

P(s)P(r)
=
∑
s,r

P(s)P(r |s) log
P(r |s)

P(r)

depends on marginals P(s) and P(r) =
∑

s P(r |s)P(s) as well and thus is unsuitable to
characterise the conditional alone.

Instead, we characterise the channel by its capacity

CR|S = sup
P(s)

I[S; R]

Thus the capacity gives the theoretical limit on the amount of information that can be
transmitted over a channel. Clearly, this is limited by the properties of the noise.

Joint source-channel coding theorem

The remarkable central result of information theory.

S
encoder−−−−−−−−−−−→ S̃

channel−−−−−−−−−−−→
CR|S̃

R
decoder−−−−−−−−−−−→ T̂

Any source ensemble S with entropy H[S] < CR|S̃ can be transmitted (in sufficiently long
blocks) with Perror → 0.

The proof is beyond our scope.

Some of the key ideas that appear in the proof are:

I block coding
I error correction
I joint typicality
I random codes

The channel coding problem

S
encoder−−−−−−−−−−−→ S̃

channel−−−−−−−−−−−→
CR|S̃

R
decoder−−−−−−−−−−−→ T̂

Given channel P(R|S̃) and source P(S), find encoding P(S̃|S) (may be deterministic) to
maximise I[S; R].

By data processing inequality, and defn of capacity:

I[S; R] ≤ I[S̃; R] ≤ CR|S̃

By JSCT, equality can be achieved (in the limit of increasing block size).

Thus I[S̃; R] should saturate CR|S̃ .

See homework for an algorithm (Blahut-Arimoto) to find P(S̃) that saturates CR|S̃ for a
general discrete channel.

Entropy maximisation

I[S̃; R] = H[R]︸ ︷︷ ︸
marginal entropy

− H
[
R|S̃

]
︸ ︷︷ ︸

noise entropy

If noise is small and “constant”⇒ maximise marginal entropy⇒ maximise H
[
S̃
]

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
∫ rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

[
h(r)− µ

∫ rmax

0
p(r)

]
=

{
− log p(r)− 1− µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]
i.e.

p(r) =

{ 1
rmax

r ∈ [0, rmax]

0 otherwise

Entropy maximisation

I[S̃; R] = H[R]︸ ︷︷ ︸
marginal entropy

− H
[
R|S̃

]
︸ ︷︷ ︸

noise entropy

If noise is small and “constant”⇒ maximise marginal entropy⇒ maximise H
[
S̃
]

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
∫ rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

[
h(r)− µ

∫ rmax

0
p(r)

]
=

{
− log p(r)− 1− µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]
i.e.

p(r) =

{ 1
rmax

r ∈ [0, rmax]

0 otherwise

Entropy maximisation

I[S̃; R] = H[R]︸ ︷︷ ︸
marginal entropy

− H
[
R|S̃

]
︸ ︷︷ ︸

noise entropy

If noise is small and “constant”⇒ maximise marginal entropy⇒ maximise H
[
S̃
]

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
∫ rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

[
h(r)− µ

∫ rmax

0
p(r)

]
=

{
− log p(r)− 1− µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]
i.e.

p(r) =

{ 1
rmax

r ∈ [0, rmax]

0 otherwise

Entropy maximisation

I[S̃; R] = H[R]︸ ︷︷ ︸
marginal entropy

− H
[
R|S̃

]
︸ ︷︷ ︸

noise entropy

If noise is small and “constant”⇒ maximise marginal entropy⇒ maximise H
[
S̃
]

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
∫ rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

[
h(r)− µ

∫ rmax

0
p(r)

]
=

{
− log p(r)− 1− µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]
i.e.

p(r) =

{ 1
rmax

r ∈ [0, rmax]

0 otherwise

Entropy maximisation

I[S̃; R] = H[R]︸ ︷︷ ︸
marginal entropy

− H
[
R|S̃

]
︸ ︷︷ ︸

noise entropy

If noise is small and “constant”⇒ maximise marginal entropy⇒ maximise H
[
S̃
]

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
∫ rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

[
h(r)− µ

∫ rmax

0
p(r)

]
=

{
− log p(r)− 1− µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]

i.e.

p(r) =

{ 1
rmax

r ∈ [0, rmax]

0 otherwise

Entropy maximisation

I[S̃; R] = H[R]︸ ︷︷ ︸
marginal entropy

− H
[
R|S̃

]
︸ ︷︷ ︸

noise entropy

If noise is small and “constant”⇒ maximise marginal entropy⇒ maximise H
[
S̃
]

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
∫ rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

[
h(r)− µ

∫ rmax

0
p(r)

]
=

{
− log p(r)− 1− µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]
i.e.

p(r) =

{ 1
rmax

r ∈ [0, rmax]

0 otherwise

Histogram Equalisation
Suppose r = s̃ + η where η represents a (relatively small) source of noise. Consider
deterministic encoding s̃ = f (s). How do we ensure that p(r) = 1/rmax?

1
rmax

= p(r) ≈ p(s̃) =
p(s)

f ′(s)
⇒ f ′(s) = rmax p(s)

⇒ f (s) = rmax

∫ s

−∞
ds′ p(s′)

s̃

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s

Histogram Equalisation

Laughlin (1981)

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

[
−1

2
(Z− µ)TΣ−1(Z− µ)

]
,

then,

h(Z) = −
∫

dZ p(Z)

[
−1

2
log |2πΣ| − 1

2
(Z− µ)TΣ−1(Z− µ)

]
=

1
2

log |2πΣ|+ 1
2

∫
dZ p(Z)Tr

[
Σ−1(Z− µ)(Z− µ)T

]
=

1
2

log |2πΣ|+ 1
2

Tr
[
Σ−1Σ

]
=

1
2

log |2πΣ|+ 1
2

d (log e)

=
1
2

log |2πeΣ|

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

[
−1

2
(Z− µ)TΣ−1(Z− µ)

]
,

then,

h(Z) = −
∫

dZ p(Z)

[
−1

2
log |2πΣ| − 1

2
(Z− µ)TΣ−1(Z− µ)

]
=

1
2

log |2πΣ|+ 1
2

∫
dZ p(Z)Tr

[
Σ−1(Z− µ)(Z− µ)T

]
=

1
2

log |2πΣ|+ 1
2

Tr
[
Σ−1Σ

]
=

1
2

log |2πΣ|+ 1
2

d (log e)

=
1
2

log |2πeΣ|

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

[
−1

2
(Z− µ)TΣ−1(Z− µ)

]
,

then,

h(Z) = −
∫

dZ p(Z)

[
−1

2
log |2πΣ| − 1

2
(Z− µ)TΣ−1(Z− µ)

]

=
1
2

log |2πΣ|+ 1
2

∫
dZ p(Z)Tr

[
Σ−1(Z− µ)(Z− µ)T

]
=

1
2

log |2πΣ|+ 1
2

Tr
[
Σ−1Σ

]
=

1
2

log |2πΣ|+ 1
2

d (log e)

=
1
2

log |2πeΣ|

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

[
−1

2
(Z− µ)TΣ−1(Z− µ)

]
,

then,

h(Z) = −
∫

dZ p(Z)

[
−1

2
log |2πΣ| − 1

2
(Z− µ)TΣ−1(Z− µ)

]
=

1
2

log |2πΣ|+ 1
2

∫
dZ p(Z)Tr

[
Σ−1(Z− µ)(Z− µ)T

]

=
1
2

log |2πΣ|+ 1
2

Tr
[
Σ−1Σ

]
=

1
2

log |2πΣ|+ 1
2

d (log e)

=
1
2

log |2πeΣ|

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

[
−1

2
(Z− µ)TΣ−1(Z− µ)

]
,

then,

h(Z) = −
∫

dZ p(Z)

[
−1

2
log |2πΣ| − 1

2
(Z− µ)TΣ−1(Z− µ)

]
=

1
2

log |2πΣ|+ 1
2

∫
dZ p(Z)Tr

[
Σ−1(Z− µ)(Z− µ)T

]
=

1
2

log |2πΣ|+ 1
2

Tr
[
Σ−1Σ

]

=
1
2

log |2πΣ|+ 1
2

d (log e)

=
1
2

log |2πeΣ|

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

[
−1

2
(Z− µ)TΣ−1(Z− µ)

]
,

then,

h(Z) = −
∫

dZ p(Z)

[
−1

2
log |2πΣ| − 1

2
(Z− µ)TΣ−1(Z− µ)

]
=

1
2

log |2πΣ|+ 1
2

∫
dZ p(Z)Tr

[
Σ−1(Z− µ)(Z− µ)T

]
=

1
2

log |2πΣ|+ 1
2

Tr
[
Σ−1Σ

]
=

1
2

log |2πΣ|+ 1
2

d (log e)

=
1
2

log |2πeΣ|

Gaussian channel

A similar idea of output-entropy maximisation appears in the theory of Gaussian channel
coding, where it is called the water filling algorithm.

We will need the differential entropy of a (multivariate) Gaussian distribution:

Let
p(Z) = |2πΣ|−1/2 exp

[
−1

2
(Z− µ)TΣ−1(Z− µ)

]
,

then,

h(Z) = −
∫

dZ p(Z)

[
−1

2
log |2πΣ| − 1

2
(Z− µ)TΣ−1(Z− µ)

]
=

1
2

log |2πΣ|+ 1
2

∫
dZ p(Z)Tr

[
Σ−1(Z− µ)(Z− µ)T

]
=

1
2

log |2πΣ|+ 1
2

Tr
[
Σ−1Σ

]
=

1
2

log |2πΣ|+ 1
2

d (log e)

=
1
2

log |2πeΣ|

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉

≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz))

=
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz

=
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – white noise

+S̃ R

Z ∼ N (0, kz)

〈
S̃2
〉
≤ P

I[S̃; R] = h(R)− h(R|S̃)

= h(R)− h(S̃ + Z |S̃)

= h(R)− h(Z)

⇒ I[S̃; R] = h(R)− 1
2

log 2πekz .

Without constraint, h(R)→∞ and CR|S̃ =∞.

Therefore, constrain
1
n

n∑
i=1

s̃2
i ≤ P.

Then, 〈
R2〉 =

〈
(S̃ + Z)2

〉
=
〈

S̃2 + Z 2 + 2S̃Z
〉
≤ P + kz + 0

⇒ h(R) ≤ h(N (0,P + kz)) =
1
2

log 2πe(P + kz)

⇒ I[S̃; R] ≤ 1
2

log 2πe(P + kz)− 1
2

log 2πekz =
1
2

log 2πe
(

1 +
P
kz

)

CR|S̃ =
1
2

log 2πe
(

1 +
P
kz

)
The capacity is achieved iff R ∼ N (0,P + kz) ⇒ S̃ ∼ N (0,P).

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+S̃ = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
[
S̃S̃

T
]
≤ P

Following the same approach as before:

I[S̃; R] = h(R)− h(Z) ≤ 1
2

log
[
(2πe)n |Ks̃ + Kz |

]
− 1

2
log
[
(2πe)n |Kz |

]
,

⇒ CR|S achieved when S̃ (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform⇒ index diagonal elements by ω.

k∗s̃ (ω) = argmax
∏
ω

(ks̃(ω) + kz(ω)) such that
1
d

∑
ks̃(ω) ≤ P

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+S̃ = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
[
S̃S̃

T
]
≤ P

Following the same approach as before:

I[S̃; R] = h(R)− h(Z) ≤ 1
2

log
[
(2πe)n |Ks̃ + Kz |

]
− 1

2
log
[
(2πe)n |Kz |

]
,

⇒ CR|S achieved when S̃ (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform⇒ index diagonal elements by ω.

k∗s̃ (ω) = argmax
∏
ω

(ks̃(ω) + kz(ω)) such that
1
d

∑
ks̃(ω) ≤ P

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+S̃ = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
[
S̃S̃

T
]
≤ P

Following the same approach as before:

I[S̃; R] = h(R)− h(Z) ≤ 1
2

log
[
(2πe)n |Ks̃ + Kz |

]
− 1

2
log
[
(2πe)n |Kz |

]
,

⇒ CR|S achieved when S̃ (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform⇒ index diagonal elements by ω.

k∗s̃ (ω) = argmax
∏
ω

(ks̃(ω) + kz(ω)) such that
1
d

∑
ks̃(ω) ≤ P

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+S̃ = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
[
S̃S̃

T
]
≤ P

Following the same approach as before:

I[S̃; R] = h(R)− h(Z) ≤ 1
2

log
[
(2πe)n |Ks̃ + Kz |

]
− 1

2
log
[
(2πe)n |Kz |

]
,

⇒ CR|S achieved when S̃ (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform⇒ index diagonal elements by ω.

k∗s̃ (ω) = argmax
∏
ω

(ks̃(ω) + kz(ω)) such that
1
d

∑
ks̃(ω) ≤ P

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+S̃ = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
[
S̃S̃

T
]
≤ P

Following the same approach as before:

I[S̃; R] = h(R)− h(Z) ≤ 1
2

log
[
(2πe)n |Ks̃ + Kz |

]
− 1

2
log
[
(2πe)n |Kz |

]
,

⇒ CR|S achieved when S̃ (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform⇒ index diagonal elements by ω.

k∗s̃ (ω) = argmax
∏
ω

(ks̃(ω) + kz(ω)) such that
1
d

∑
ks̃(ω) ≤ P

Gaussian channel – correlated noise
Now consider a vector Gaussian channel:

+S̃ = (S1, . . . ,Sd) R = (R1, . . . ,Rd)

Z = (Z1, . . . , Zd) ∼ N (0,Kz)

1
d Tr
[
S̃S̃

T
]
≤ P

Following the same approach as before:

I[S̃; R] = h(R)− h(Z) ≤ 1
2

log
[
(2πe)n |Ks̃ + Kz |

]
− 1

2
log
[
(2πe)n |Kz |

]
,

⇒ CR|S achieved when S̃ (and thus R) ∼ N , with |Ks̃ + Kz | max given 1
d Tr [Ks̃] ≤ P.

Diagonalise Kz ⇒Ks̃ is diagonal in same basis.

For stationary noise (wrt dimension indexed by d) this can be achieved by a Fourier
transform⇒ index diagonal elements by ω.

k∗s̃ (ω) = argmax
∏
ω

(ks̃(ω) + kz(ω)) such that
1
d

∑
ks̃(ω) ≤ P

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

[∑
ω

log (ks̃(ω) + kz(ω))− λ

(
1
d

∑
ω

ks̃(ω)− P

)]

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

⇒ k∗s̃ (ω) + kz(ω) = ν (const.)

(ks̃ ≥ 0)⇒ k∗s̃ (ω) = [ν − kz(ω)]+

Waterfilling: choose ν so∑
ω

ks̃(ω) = d · P

ν

k
z
(ω)

k
s
(ω)

ω

 k
(ω

)

R is white or decorrelated (within power budget)⇒variance equalisation.

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

[∑
ω

log (ks̃(ω) + kz(ω))− λ

(
1
d

∑
ω

ks̃(ω)− P

)]

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

⇒ k∗s̃ (ω) + kz(ω) = ν (const.)

(ks̃ ≥ 0)⇒ k∗s̃ (ω) = [ν − kz(ω)]+

Waterfilling: choose ν so∑
ω

ks̃(ω) = d · P

ν

k
z
(ω)

k
s
(ω)

ω

 k
(ω

)

R is white or decorrelated (within power budget)⇒variance equalisation.

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

[∑
ω

log (ks̃(ω) + kz(ω))− λ

(
1
d

∑
ω

ks̃(ω)− P

)]

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

⇒ k∗s̃ (ω) + kz(ω) = ν (const.)

(ks̃ ≥ 0)⇒ k∗s̃ (ω) = [ν − kz(ω)]+

Waterfilling: choose ν so∑
ω

ks̃(ω) = d · P

ν

k
z
(ω)

k
s
(ω)

ω

 k
(ω

)

R is white or decorrelated (within power budget)⇒variance equalisation.

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

[∑
ω

log (ks̃(ω) + kz(ω))− λ

(
1
d

∑
ω

ks̃(ω)− P

)]

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

⇒ k∗s̃ (ω) + kz(ω) = ν (const.)

(ks̃ ≥ 0)⇒ k∗s̃ (ω) = [ν − kz(ω)]+

Waterfilling: choose ν so∑
ω

ks̃(ω) = d · P

ν

k
z
(ω)

k
s
(ω)

ω

 k
(ω

)

R is white or decorrelated (within power budget)⇒variance equalisation.

Water filling
Assume that optimum is achieved for max. input power.

k∗s̃ (ω) = argmax

[∑
ω

log (ks̃(ω) + kz(ω))− λ

(
1
d

∑
ω

ks̃(ω)− P

)]

⇒ 1
k∗s̃ (ω) + kz(ω)

− λ

d
= 0

⇒ k∗s̃ (ω) + kz(ω) = ν (const.)

(ks̃ ≥ 0)⇒ k∗s̃ (ω) = [ν − kz(ω)]+

Waterfilling: choose ν so∑
ω

ks̃(ω) = d · P

ν

k
z
(ω)

k
s
(ω)

ω

 k
(ω

)

R is white or decorrelated (within power budget)⇒variance equalisation.

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − 〈ra〉 =

∫
dx Ds(x− a)︸ ︷︷ ︸

filter

s(x)︸︷︷︸
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =

〈∫
dx dy Ds(x− a)Ds(y− b)s(x)s(y)

〉
=

∫
dx dy Ds(x− a)Ds(y− b) 〈s(x)s(y)〉︸ ︷︷ ︸

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:

Q̃r (k) = |D̃s(k)|2Q̃s(k)

and thus output decorrelation requires

|D̃s(k)|2 ∝ 1

Q̃s(k)

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − 〈ra〉 =

∫
dx Ds(x− a)︸ ︷︷ ︸

filter

s(x)︸︷︷︸
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =

〈∫
dx dy Ds(x− a)Ds(y− b)s(x)s(y)

〉
=

∫
dx dy Ds(x− a)Ds(y− b) 〈s(x)s(y)〉︸ ︷︷ ︸

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:

Q̃r (k) = |D̃s(k)|2Q̃s(k)

and thus output decorrelation requires

|D̃s(k)|2 ∝ 1

Q̃s(k)

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − 〈ra〉 =

∫
dx Ds(x− a)︸ ︷︷ ︸

filter

s(x)︸︷︷︸
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =

〈∫
dx dy Ds(x− a)Ds(y− b)s(x)s(y)

〉
=

∫
dx dy Ds(x− a)Ds(y− b) 〈s(x)s(y)〉︸ ︷︷ ︸

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:

Q̃r (k) = |D̃s(k)|2Q̃s(k)

and thus output decorrelation requires

|D̃s(k)|2 ∝ 1

Q̃s(k)

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − 〈ra〉 =

∫
dx Ds(x− a)︸ ︷︷ ︸

filter

s(x)︸︷︷︸
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =

〈∫
dx dy Ds(x− a)Ds(y− b)s(x)s(y)

〉
=

∫
dx dy Ds(x− a)Ds(y− b) 〈s(x)s(y)〉︸ ︷︷ ︸

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:

Q̃r (k) = |D̃s(k)|2Q̃s(k)

and thus output decorrelation requires

|D̃s(k)|2 ∝ 1

Q̃s(k)

Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − 〈ra〉 =

∫
dx Ds(x− a)︸ ︷︷ ︸

filter

s(x)︸︷︷︸
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =

〈∫
dx dy Ds(x− a)Ds(y− b)s(x)s(y)

〉
=

∫
dx dy Ds(x− a)Ds(y− b) 〈s(x)s(y)〉︸ ︷︷ ︸

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:

Q̃r (k) = |D̃s(k)|2Q̃s(k)

and thus output decorrelation requires

|D̃s(k)|2 ∝ 1

Q̃s(k)

Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

Q̃s(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|D̃s(k)|2 ∝ |k|
2 + k2

0

e−α|k|

But: not all input is signal.
Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη

ŝ −−−−−→
Ds

r

with

D̃η(k) =
Q̃s(k)

Q̃s(k) + Q̃η(k)
(Wiener filter)

Thus the combined RGC filter is predicted to be:

|D̃s(k)|D̃η(k) ∝

√
Q̃s(k)

Q̃s(k) + Q̃η(k)

Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

Q̃s(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|D̃s(k)|2 ∝ |k|
2 + k2

0

e−α|k|

But: not all input is signal.

Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη

ŝ −−−−−→
Ds

r

with

D̃η(k) =
Q̃s(k)

Q̃s(k) + Q̃η(k)
(Wiener filter)

Thus the combined RGC filter is predicted to be:

|D̃s(k)|D̃η(k) ∝

√
Q̃s(k)

Q̃s(k) + Q̃η(k)

Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

Q̃s(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|D̃s(k)|2 ∝ |k|
2 + k2

0

e−α|k|

But: not all input is signal.
Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη

ŝ −−−−−→
Ds

r

with

D̃η(k) =
Q̃s(k)

Q̃s(k) + Q̃η(k)
(Wiener filter)

Thus the combined RGC filter is predicted to be:

|D̃s(k)|D̃η(k) ∝

√
Q̃s(k)

Q̃s(k) + Q̃η(k)

Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

Q̃s(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|D̃s(k)|2 ∝ |k|
2 + k2

0

e−α|k|

But: not all input is signal.
Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη

ŝ −−−−−→
Ds

r

with

D̃η(k) =
Q̃s(k)

Q̃s(k) + Q̃η(k)
(Wiener filter)

Thus the combined RGC filter is predicted to be:

|D̃s(k)|D̃η(k) ∝

√
Q̃s(k)

Q̃s(k) + Q̃η(k)

Decorrelation at the retina

Decorrelation at the retina

Related ideas

I efficient channel utilisation
I output entropy maximisation
I variance equalisation
I redundancy reduction
I decorrelation
I discovery of independent projections or components

	Information Theory
	Quantifying a Code
	Uncertainty and Information
	Entropy
	Entropy
	Conditional Entropy
	Average Mutual Information
	Average Mutual Information
	Kullback-Leibler Divergence
	Mutual Information and KL
	Multiple Responses
	Data Processing Inequality
	Entropy Rate
	Continuous Random Variables
	Continuous Random Variables
	Maximum Entropy Distributions
	Channels
	Joint source-channel coding theorem
	The channel coding problem
	Entropy maximisation
	Histogram Equalisation
	Histogram Equalisation
	Gaussian channel
	Gaussian channel – white noise
	Gaussian channel – correlated noise
	Water filling
	Decorrelation at the retina
	Decorrelation at the retina
	Decorrelation at the retina
	Decorrelation at the retina
	Related ideas

