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Helmholtz

What information, then, can the qualities of such sensations give us about the characteristics
of the external causes and influences which produce them? Only this: our sensations are
signs, not images, of such characteristics.

What is Perception for

@ Control? (After all, the only point of having a brain is to move. ..)
@ Forecasting and planning?
@ Finding prey, mates, forage ...

Presumably all of the above, but there is useful intermediate abstraction.

@ work out what'’s “out there”.

lllusions

Gregory 1968



lllusions

Edward H. Adelson

Cue combination

Probability

Proportion ‘taller’

o=

o
I3
=]

o

=]
=}

of/o%=1

Probability
densities

Combined

2, 2_
o5/ oy=4

Probability
densities

Estimated
Sy Sv Sy S‘v height
| 05 | 05 | \ 08 02
|e—>le«—>| " <->k|
wyA | wyA | ! Wy A WA
! | \ \
‘ Psychometric 400 | | Psychometric
— Tun | function 084 T - Tuu ‘ function
PSE. PSE
.V bso__| \‘/ |
\ \ \ \
0
S, Sp=5.5cm S S, S,=5.5cm S Physical
n e oY e >V height
A A

Ernst & Banks 2002

Perception and Generative Models
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@ Sensor activations reflect the state of the world through a (usually
non-invertible and noisy) physical transformation.

@ The goal of perception is to invert this transformation as best as
possible: to infer the state of the world from the sensor signals.

@ To do this, we need to know something about the forward (generative)
process: both the transformation and the statistics of the world

@ ...and to use every available source of information.
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Incorporating priors — long-term priors

https://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

Bayesian inference under a ’slow’ prior
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No simple rule
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Incorporating priors — short-term adaptation
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https://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

Frequency discrimination — contraction bias
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Structured inference
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Structured inference
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Some neural consequences (in theory)
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@ Sensory systems (possibly for low-level control) should feed into Perceptual systems.
e See Goodale & Milner on (visual) ventral and dorsal streams.

@ Response properties and receptive fields in the perceptual pathway reflect properties of

elements within an inferential system.

o We should be able to predict those properties by fitting generative models to data.
o Representations should to represent and manipulate uncertainties, priors and other

elements of inference.

Structured inference

1]
N OD O ®
S O o o

Report of unity [%]

80

40
0

Bias [%]

—_—

p——

Common cause

Independent causes
-40 \\ /
-80

-15-10 -5 0 5

10 15

Spatial Disparity [deg]

Physical vs. Generic Models

-15-10 -5 0 5 10 15
Spatial Disparity [deg]

Perceived Perceived

® visual o auditory

stimulus  stimulus
mean

5 Gain<0 O Gain>0 >

Position [deg]

Kordig, Beierholm, et al. 2007

@ If the physics is known and simple (or if evolution is lucky), it may be possible
to invert the exact physical model. This will give the most accurate results.

o Often difficult, particularly from an evolutionary standpoint.

o Not flexible (e.g. if the statistics of the world change).

o May be difficult to invert.
o Neocortex appears to be generic.

@ We consider the case where a generic generative model, with only some
elements of physicality, is adapted through learning to describe the generative
process in the world.



Inference and Learning

Latent variable model:
Po () = [ ox Pu(y: )P0 (4

Inference (find x; given y; and 6):

Po (yi | xi) Po (%))
Po (vi)

Learning (find 6 given {y})
P(01{y}) x HPe (vi) P (6)

Po (xi [ y1) =

usually by ML approximation

0" = argmax | | Po (yi
9" HG(V)

The Wake-Sleep Algorithm

@ Wake phase: use recognition model for inference. Train generative
weights by online gradient descent.

@ Sleep phase: use generative model to create pseudo-data
(“dreams”). Train recognition weights by online gradient descent.

Unsupervised Learning

@ Even if the ultimate goal is supervised or reinforcement learning,
unsupervised learning can serve as a useful “front end” for finding
good representations.

@ Generative models provide an extremely successful framework for
unsupervised learning.

@ Other viewpoints, such as redundancy reduction, can be viewed as
special cases of the generative modelling approach.

Learning in Boltzmann Machines
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Po (s) is the data distribution. P« (s | W) is the usually the distribution of a Gibbs sampler.



Constrastive Divergence
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P, (s | W) is the distribution obtained by running a limited number, n, of Gibbs sampler

iterations, starting at the observed data.

@ Intuitively, try to avoid having the Markov chain leave the data distribution.

@ Can be shown that this update is zero if(f) gradient is zero.

@ Convergence does not seem to be guaranteed, but many experiments have shown good

results.

@ Useful in situations where energy can be easily calculated; e.g. product models where
P (y|x) o< [],P (y | xi) (such as the Boltzmann Machine).

Sparse Coding
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Linear Image Codes

Infomax
E=-Hl|g (Z Wf(X,y)/(XJ))]
9(a) = 5 +1e_a

filters

image patch, |

adapted from Bell and Sejnowski (1997)

Bell & Sejnowski (1997)



Overcompleteness
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(Integral is approximated by saddle-point
method.)

Lewicki & Sejnowski (2000); Lewicki & Olshausen (1999)

Dynamic constancy
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@ Dynamic images and latent variables
1(x,y,1) = a(t).
@ Impose prior limiting change in a;(t).
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@ With suitably constrained models,
results in phase insensitivity
(complex cells).
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Recognition models
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Feedback cancellation
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