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What is Perception for

Control? (After all, the only point of having a brain is to move. . . )

Forecasting and planning?

Finding prey, mates, forage . . .

Presumably all of the above, but there is useful intermediate abstraction.

work out what’s “out there”.



What is Perception for

Control? (After all, the only point of having a brain is to move. . . )

Forecasting and planning?

Finding prey, mates, forage . . .

Presumably all of the above, but there is useful intermediate abstraction.

work out what’s “out there”.



What is Perception for

Control? (After all, the only point of having a brain is to move. . . )

Forecasting and planning?

Finding prey, mates, forage . . .

Presumably all of the above, but there is useful intermediate abstraction.

work out what’s “out there”.



What is Perception for

Control? (After all, the only point of having a brain is to move. . . )

Forecasting and planning?

Finding prey, mates, forage . . .

Presumably all of the above, but there is useful intermediate abstraction.

work out what’s “out there”.



What is Perception for

Control? (After all, the only point of having a brain is to move. . . )

Forecasting and planning?

Finding prey, mates, forage . . .

Presumably all of the above, but there is useful intermediate abstraction.

work out what’s “out there”.



Helmholtz

What information, then, can the qualities of such sensations give us about the characteristics
of the external causes and influences which produce them? Only this: our sensations are
signs, not images, of such characteristics.



Illusions

Gregory 1968
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Perception and Generative Models

Sensor activations reflect the state of the world through a (usually
non-invertible and noisy) physical transformation.

The goal of perception is to invert this transformation as best as
possible: to infer the state of the world from the sensor signals.

To do this, we need to know something about the forward (generative)
process: both the transformation and the statistics of the world

. . . and to use every available source of information.
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Incorporating priors – long-term priors

https://www.cs.huji.ac.il/˜yweiss/Rhombus/rhombus.html

https://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html


No simple rule

Weiss, Simoncelli, Adelson, 2002



Bayesian inference under a ’slow’ prior

Weiss, Simoncelli, Adelson, 2002



Incorporating priors – short-term adaptation

Raviv, Ahissar, Loewenstein, 2012



Frequency discrimination – contraction bias

Raviv, Ahissar, Loewenstein, 2012
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Structured inference

Kördig, Beierholm, et al. 2007
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Structured inference

Kördig, Beierholm, et al. 2007



Some neural consequences (in theory)

Sensory systems (possibly for low-level control) should feed into Perceptual systems.

See Goodale & Milner on (visual) ventral and dorsal streams.

Response properties and receptive fields in the perceptual pathway reflect properties of
elements within an inferential system.

We should be able to predict those properties by fitting generative models to data.
Representations should to represent and manipulate uncertainties, priors and other
elements of inference.



Physical vs. Generic Models

If the physics is known and simple (or if evolution is lucky), it may be possible
to invert the exact physical model. This will give the most accurate results.

Often difficult, particularly from an evolutionary standpoint.
Not flexible (e.g. if the statistics of the world change).
May be difficult to invert.
Neocortex appears to be generic.

We consider the case where a generic generative model, with only some
elements of physicality, is adapted through learning to describe the generative
process in the world.



Inference and Learning

Latent variable model:

Pθ (yi) =

∫
dx Pθ (yi | x)Pθ (x)

Inference (find xi given yi and θ):

Pθ (xi | yi) =
Pθ (yi | xi)Pθ (xi)

Pθ (yi)

Learning (find θ given {y})

P (θ | {y}) ∝
∏

i

Pθ (yi)P (θ)

usually by ML approximation

θ∗ = argmax
θ

∏
i

Pθ (yi)



Unsupervised Learning

Even if the ultimate goal is supervised or reinforcement learning,
unsupervised learning can serve as a useful “front end” for finding
good representations.

Generative models provide an extremely successful framework for
unsupervised learning.

Other viewpoints, such as redundancy reduction, can be viewed as
special cases of the generative modelling approach.



Linear Image Codes
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adapted from Bell and Sejnowski (1997)



Sparse Coding

E = min
{ai}

∑
x,y

[
I(x , y)−

∑
i

aiφi(x , y)

]2

︸ ︷︷ ︸
log P (Y | X)

+λ
∑

i

S(ai)︸ ︷︷ ︸
log P (X)

S(a) = log(1 + (a/σ)2)

Olshausen & Field (1996)



Infomax

E = −H

[
g

(∑
x,y

Wi(x , y)I(x , y)

)]

g(a) =
1

1 + e−a

Bell & Sejnowski (1997)



Overcompleteness

E = −
∫

da Pφ (I | a)PS (a)

(Integral is approximated by saddle-point
method.)

Lewicki & Sejnowski (2000); Lewicki & Olshausen (1999)



Topographic ICA - Hyvärinen & Hoyer

(locally pooled energies)

(linear filters)

square rectification

PIXEL INPUT

maximize

sparseness

SIMPLE CELLS

COMPLEX CELLS

fixed
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weights

weights

Hyvarinen & Hoyer (2001)



Dynamic constancy

Dynamic images and latent variables
I(x , y , t)⇒ ai(t).

Impose prior limiting change in ai(t).

With suitably constrained models,
results in phase insensitivity
(complex cells).
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Recognition models

P (I(x , y)) =
e−E(â)∫

db e−E(b)

E(â) = −
∑

i

log Pi (âi)

âi =
∑
x,y

W (x , y)I(x , y)

Hinton, Welling, Teh & Osindero (2002)
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Lateral normalization
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