Perception: Inference, Priors and Codes

Maneesh Sahani

Gatsby Computational Neuroscience Unit, UCL

• Control? (After all, the only point of having a brain is to move...)

- Control? (After all, the only point of having a brain is to move...)
- Forecasting and planning?

- Control? (After all, the only point of having a brain is to move...)
- Forecasting and planning?
- Finding prey, mates, forage ...

- Control? (After all, the only point of having a brain is to move...)
- Forecasting and planning?
- Finding prey, mates, forage ...

Presumably all of the above, but there is useful intermediate abstraction.

work out what's "out there".

Helmholtz

What information, then, can the qualities of such sensations give us about the characteristics of the external causes and influences which produce them? Only this: our sensations are signs, not images, of such characteristics.

Illusions

Gregory 1968

Illusions

Illusions

Perception and Generative Models

- Sensor activations reflect the state of the world through a (usually non-invertible and noisy) physical transformation.
- The goal of perception is to invert this transformation as best as possible: to infer the state of the world from the sensor signals.
- To do this, we need to know something about the forward (generative) process: both the transformation and the statistics of the world
- ... and to use every available source of information.

Cue combination

Ernst & Banks 2002

Cue combination

Cue combination

Incorporating priors – long-term priors

https://www.cs.huji.ac.il/~yweiss/Rhombus/rhombus.html

No simple rule

Weiss, Simoncelli, Adelson, 2002

Bayesian inference under a 'slow' prior

Incorporating priors – short-term adaptation

Raviv, Ahissar, Loewenstein, 2012

Frequency discrimination – contraction bias

Prior context

Prior context

Structured inference

Kördig, Beierholm, et al. 2007

Structured inference

Structured inference

Some neural consequences (in theory)

- Sensory systems (possibly for low-level control) should feed into Perceptual systems.
 - See Goodale & Milner on (visual) ventral and dorsal streams.
- Response properties and receptive fields in the perceptual pathway reflect properties of elements within an inferential system.
 - We should be able to predict those properties by fitting generative models to data.
 - Representations should to represent and manipulate uncertainties, priors and other elements of inference.

Physical vs. Generic Models

- If the physics is known and simple (or if evolution is lucky), it may be possible to invert the exact physical model. This will give the most accurate results.
 - Often difficult, particularly from an evolutionary standpoint.
 - Not flexible (e.g. if the statistics of the world change).
 - May be difficult to invert.
 - Neocortex appears to be generic.
- We consider the case where a generic generative model, with only some elements of physicality, is adapted through learning to describe the generative process in the world.

Inference and Learning

Latent variable model:

$$\mathsf{P}_{ heta}\left(\mathbf{y}_{i}
ight)=\int d\mathbf{x}\;\mathsf{P}_{ heta}\left(\mathbf{y}_{i}\mid\mathbf{x}
ight)\mathsf{P}_{ heta}\left(\mathbf{x}
ight)$$

Inference (find \mathbf{x}_i given \mathbf{y}_i and θ):

$$\mathsf{P}_{\theta}\left(\mathbf{x}_{i} \mid \mathbf{y}_{i}\right) = \frac{\mathsf{P}_{\theta}\left(\mathbf{y}_{i} \mid \mathbf{x}_{i}\right)\mathsf{P}_{\theta}\left(\mathbf{x}_{i}\right)}{\mathsf{P}_{\theta}\left(\mathbf{y}_{i}\right)}$$

Learning (find θ given $\{\mathbf{y}\}$)

$$\mathsf{P}\left(heta \mid \{\mathbf{y}\}
ight) \propto \prod_{i} \mathsf{P}_{ heta}\left(\mathbf{y}_{i}
ight) \mathsf{P}\left(heta
ight)$$

usually by ML approximation

$$\theta^{*} = \operatorname*{argmax}_{\theta} \prod_{i} \mathsf{P}_{\theta} \left(\mathbf{y}_{i} \right)$$

Unsupervised Learning

- Even if the ultimate goal is supervised or reinforcement learning, unsupervised learning can serve as a useful "front end" for finding good representations.
- Generative models provide an extremely successful framework for unsupervised learning.
- Other viewpoints, such as redundancy reduction, can be viewed as special cases of the generative modelling approach.

Linear Image Codes

adapted from Bell and Sejnowski (1997)

Sparse Coding

$$E = \min_{\{a_i\}} \underbrace{\sum_{x,y} \left[I(x,y) - \sum_i a_i \phi_i(x,y) \right]^2}_{\log P(Y \mid X)} + \underbrace{\lambda \sum_i S(a_i)}_{\log P(X)}$$
$$S(a) = \log(1 + (a/\sigma)^2)$$

Olshausen & Field (1996)

Infomax

$$E = -H\left[g\left(\sum_{x,y} W_i(x,y)I(x,y)\right)\right]$$
$$g(a) = \frac{1}{1 + e^{-a}}$$

Bell & Sejnowski (1997)

Overcompleteness

$$E = -\int d\mathbf{a} \ \mathsf{P}_{\phi}\left(I \mid \mathbf{a}
ight) \mathsf{P}_{\mathcal{S}}\left(\mathbf{a}
ight)$$

(Integral is approximated by saddle-point method.)

Lewicki & Sejnowski (2000); Lewicki & Olshausen (1999)

Topographic ICA - Hyvärinen & Hoyer

Hyvarinen & Hoyer (2001)

Dynamic constancy

- Dynamic images and latent variables $I(x, y, t) \Rightarrow a_i(t)$.
- Impose prior limiting change in $a_i(t)$.
- With suitably constrained models, results in phase insensitivity (complex cells).

Wiskott & Sejnowski; Körding et al.; Berkes, Turner & Sahani

Dynamic constancy

- Dynamic images and latent variables $I(x, y, t) \Rightarrow a_i(t)$.
- Impose prior limiting change in $a_i(t)$.
- With suitably constrained models, results in phase insensitivity (complex cells).

(sorted by increasing precision)

Α

Recognition models

$$P(I(x, y)) = \frac{e^{-E(\hat{\mathbf{a}})}}{\int d\mathbf{b} \ e^{-E(\mathbf{b})}}$$
$$E(\hat{\mathbf{a}}) = -\sum_{i} \log P_{i}(\hat{a}_{i})$$
$$\hat{a}_{i} = \sum_{x,y} W(x, y)I(x, y)$$

Hinton, Welling, Teh & Osindero (2002)

Feedback cancellation

Rao & Ballard (1997) (cf Friston)

Lateral normalization

Wainwright, Schwartz, & Simoncelli 2001