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Abstract
By comparison to some other sensory cortices, the functional proper-
ties of cells in the primary auditory cortex are not yet well understood.
Recent attempts to obtain a generalized description of auditory cortical
responses have often relied upon characterization of the spectrotempo-
ral receptive field (STRF), which amounts to a model of the stimulus-
response function (SRF) that is linear in the spectrogram of the stimulus.
How well can such a model account for neural responses at the very first
stages of auditory cortical processing? To answer this question, we de-
velop a novel methodology for evaluating the fraction of stimulus-related
response power in a population that can be captured by a given type of
SRF model. We use this technique to show that, in the thalamo-recipient
layers of primary auditory cortex, STRF models account for no more
than 40% of the stimulus-related power in neural responses.

1 Introduction

A number of recent studies have suggested that spectrotemporal receptive field (STRF)
models [1, 2], which are linear in the stimulus spectrogram, can describe the spiking re-
sponses of auditory cortical neurons quite well [3, 4]. At the same time, other authors have
pointed out significant non-linearities in auditory cortical responses [5, 6], or have empha-
sized both linear and non-linear response components [7, 8]. Some of the differences in
these results may well arise from differences in the stimulus ensembles used to evoke neu-
ronal responses. However, even for a single type of stimulus, it is extremely difficult to put
a number to the proportion of the response that is linear or non-linear, and so to judge the
relative contributions of the two components to the stimulus-evoked activity.

The difficulty arises because repeated presentations of identical stimulus sequences evoke
highly variable responses from neurons at intermediate stages of perceptual systems, even
in anaesthetized animals. While this variability may reflect meaningful changes in the
internal state of the animal or may be completely random, from the point of view of mod-
elling the relationship between stimulus and neural response it must be treated as noise.
As previous authors have noted [9, 10], this noise complicates the evaluation of the perfor-
mance of a particular class of stimulus-response function (SRF) model (for example, the
class of STRF models) in two ways. First, it makes it difficult to assess the quality of the
predictions given by any single model. Perfect prediction of a noisy response is impossi-
ble, even in principle, and since the the true underlying relationship between stimulus and
neural response is unknown, it is unclear what degree of partial prediction could possibly
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be expected. Second, the noise introduces error into the estimation of the model parame-
ters; consequently, even where direct unbiased evaluations of the predictions made by the
estimated models are possible, these evaluations understate the performance of the model
in the class that most closely matches the true SRF.

The difficulties can be illustrated in the context of the classical statistical measure of the
fraction of variance explained by a model, the coefficient of determination orr2 statistic.
This is the ratio of the reduction in variance achieved by the regression model (the total
variance of the outputs minus the variance of the residuals) to the total variance of the
outputs. The total variance of the outputs includes contributions from the noise, and so
an r2 of 1 is an unrealistic target, and the actual maximum achievable value is unclear.
Moreover, the reduction of variance on the training data, which appears in the numerator
of the r2, includes some “explanation” of noise due to overfitting. The extent to which
this happens is difficult to estimate; if the reduction in variance is evaluated on test data,
estimation errors in the model will lead to an underestimate of the performance of the best
model in the class. Hypothesis tests based onr2 compensate for these shortcomings in
answering questions of model sufficiency. However, these tests do not provide a way to
assess the extent of partial validity of a model class; indeed, it is well known that even
the failure of a hypothesis test to reject a specific model class is not sufficient evidence to
regard the model as fully adequate. One proposed method for obtaining a more quantita-
tive measure of model performance is to compare the correlation (or, equivalently, squared
distance) between the model prediction and a new response measurement to that between
two successive responses to the same stimulus [9, 11]; as acknowledged in those propos-
als, however, this yardstick underestimates the response reliability even after considerable
averaging, and so the comparison will tend to overestimate the validity of the SRF model.

Measures liker2 that are based on the fractional variance (or, for time series, the power) ex-
plained by a model do have some advantages; for example, contributions from independent
sources are additive. Here, we develop analytic techniques that overcome the systematic
noise-related biases in the usual variance measures1, and thus obtain, for a population of
neurons, a quantitative estimate of the fraction of stimulus-related response captured by a
given class of models. This statistical framework may be applicable to analysis of response
functions for many types of neural data, ranging from intracellular recordings to imaging
measurements. We apply it to extracellular recordings from rodent auditory cortex, quan-
tifying the degree to which STRF models can account for neuronal responses to dynamic
random chord stimuli. We find that on average less than half of the reliable stimulus-related
power in these responses can be captured by spectrogram-linear STRF models.

2 Signal power

The analysis assumes that the data consist of spike trains or other neural measurements
continuously recorded during presentation of a long, complex, rapidly varying stimulus.
This stimulus is treated as a discrete-time process. In the auditory experiment considered
here, the discretization was set by the duration of regularly clocked sound pulses of fixed
length; in a visual experiment, the discretization might be the frame rate of a movie. The
neural response can then be measured with the same level of precision, counting action
potentials (or integrating measurements) to estimate a response rate for each time bin, to
obtain a response vectorr = (rt)t=1...T . We propose to measure model performance in
terms of the fraction ofresponse powerpredicted successfully, where “power” is used in
the sense of average squared deviation from the mean:P (r) =

〈
(rt − 〈rt〉)2

〉
(〈·〉 denoting

1An alternative would be to measure information or conditional entropy rates. However, the ques-
tion of how much relevant information is preserved by a model is different from the question of how
accurate a model’s prediction is. For example, an information theoretic measure would not distin-
guish between a linear model and the same linear model cascaded with an invertible non-linearity.
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averages over time). As argued above, only some part of the total response power is pre-
dictable, even in principle; fortunately, thissignal powercan be estimated by combining
repeated responses to the same stimulus sequence. We present a method-of-moments [12]
derivation of the relevant estimator below.

Suppose we haveN responsesr(n) = µ + η(n), whereµ is the common, stimulus-
dependent component (signal) in the response andη(n) is the (zero-mean) noise compo-
nent of the response in thenth trial. The expected power in each response is given by

P (r(n)) E= P (µ) +
〈
(η(n)

t )2
〉

(where the symbol
E= means “equal in expectation”). This

simple relationship depends only on the noise component having been defined to have zero
mean, and holds even if the variance or other property of the noise depends on the signal
strength. We now construct two trial-averaged quantities, similar to the sum-of-squares
terms used in the analysis of variance (ANOVA) [12]: the power of the average response,
and the average power per response. Using· to indicate trial averages:

P (r(n)) E= P (µ) + P (η(n)) and P (r(n)) E= P (µ) + P (η(n)).
Assuming the noise in each trial is independent (although the noise in different time bins

within a trial need not be), we have:P (η(n)) E= P (η(n))/N . Thus solving forP (µ)
suggests the following estimator for the signal power:

P̂ (µ) =
1

N − 1

(
NP (r(n)) − P (r(n))

)
. (1)

(A similar estimator for thenoise poweris obtained by subtracting this expression from
P (r(n)).) This estimator is unbiased, provided only that the noise distribution has defined
first and second moments and is independent between trials, as can be verified by explic-
itly calculating its expected value. Unlike the sum-of-squares terms encountered in an
ANOVA, it is not aχ2 variate even when the noise is normally distributed (indeed, it is not
necessarily positive). However, since each of the power terms in (1) is the mean of at least
T numbers, the central limit theorem suggests thatP̂ will be approximately normally dis-
tributed for recordings that are considerably longer than the time-scale of noise correlation
(in the experiment considered here,T = 3000). Its variance is given by:

Var
[
P̂

]
=

4
N

(
1

T 2
µ′Σµ − 2

T
µσ′µ + µσµ

)
+

2
N(N − 1)

(
1

T 2
Tr [ΣΣ] − 2

T
σ′σ + σ2

)
,

(2)
whereΣ is the (T × T ) covariance matrix of the noise,σ is a vector formed by averaging
each column ofΣ, σ is the average of all the elements ofΣ andµ is the time-average of the

meanµ. Thus,Var
[
P̂

]
depends only on the first and second moments of the response dis-

tribution; substitution of data-derived estimates of these moments into (2) yields a standard
error bar for the estimator. In this way we have obtained an estimateP̂ (with correspond-
ing uncertainty) of the maximum possible signal power that any model could accurately
predict, without having assumed any particular distribution or time-independence of the
noise.

3 Extrapolating Model Performance

To compare the performance of an estimated SRF model to this maximal value, we must
determine the amount of response power successfully predicted by the model. This is not
necessarily the power of the predicted response, since the prediction may be inaccurate.
Instead, the residual power in the difference between a measured responser and the pre-
dicted responseρ to the same stimulus,P (r−ρ), is taken as an estimate of the error power.
(The measured response used for this evaluation, and the stimulus which elicited it, may or
may not also have been used to identify the parameters of the SRF model being evaluated;
see explanation of training and test predictive powers below.) The difference between the



Sahani & Linden: How Linear are Auditory Cortical Responses? 4

power in the observed responseP (r) and the error power gives thepredictive powerof the
model; it is this value that can be compared to the estimated signal powerP̂ (µ).

To be able to describe more than one neuron, an SRF model class must contain parameters
that can be adapted to each case. Ideally, the power of the model class to describe a pop-
ulation of neurons would be judged using parameters that produced models closest to the
true SRFs (theideal models), but we do not havea priori knowledge of those parameters.
Instead, the parameters must be tuned in each case using the measured neural responses.
One way to choose SRF model parameters is to minimize the mean squared error (MSE)
between the neural response in the training data and the model prediction for the same
stimulus; for example, the Wiener kernel minimizes the MSE for a model based on a finite
impulse response filter of fixed length. This MSE is identical to the error power that would
be obtained when the training data themselves are used as the reference measured response
r. Thus, by minimizing the MSE, we maximize the predictive power evaluated against the
training data. The resulting maximum value, hereafter thetraining predictive power, will
overestimate the predictive ability of the ideal model, since the minimum-MSE parameters
will be overfit to the training data. (Overfitting is inevitable, because model estimates based
on finite data will always capture some stimulus-independent response variability.) More
precisely, the expected value of the training predictive power is an upper bound on the true
predictive power of the model class; we therefore refer to the training predictive power
itself as anupper estimateof the SRF model performance. We can also obtain alower es-
timate, defined similarly, by empirically measuring the generalization performance of the
model by cross-validation. This provides an unbiased estimate of the average generaliza-
tion performance of the fitted models; however, since these models are inevitably overfit
to their training data, the expected value of thiscross-validation predictive powerbounds
the true predictive power of the ideal model from below, and thereby provides the desired
lower estimate.

For any one recording, the predictive power of the ideal SRF model of a particular class can
only be bracketed between these upper and lower estimates (that is, between the training
and cross-validation predictive powers). As the noise in the recording grows, the model
parameters will overfit more and more to the noise, and hence both estimates will grow
looser. Indeed, in high-noise conditions, the model may primarily describe the stimulus-
independent (noise) part of the training data, and so the training predictive power might
exceed the estimated signal power (P̂ (µ)), while the cross-validation predictive power may
fall below zero (that is, the model’s predictions may become more inaccurate than simply
predicting a constant response). As such, the estimates may not usefully constrain the
predictive power on a particular recording. However, assuming that the predictive power
of a single model class is similar for a population of similar neurons, the noise dependence
can be exploited to tighten the estimates when applied to the population as a whole, by
extrapolating within the population to the zero noise point. This extrapolation allows us
to answer the sort of question posed at the outset: how well, in an absolute sense, can a
particular SRF model class account for the responses of a population of neurons?

4 Experimental Methods

Extracellular neural responses were collected from the primary auditory cortex of rodents
during presentation of dynamic random chord stimuli. Animals (6 CBA/CaJ mice and 4
Long-Evans rats) were anaesthetized with either ketamine/medetomidine or sodium pento-
barbital, and a skull fragment over auditory cortex was removed; all surgical and experi-
mental procedures conformed to protocols approved by the UCSF Committee on Animal
Research. An ear plug was placed in the left ear, and the sound field created by the free-
field speakers was calibrated near the opening of the right pinna. Neural responses (205
recordings collected from 68 recording sites) were recorded in the thalamo-recipient layers
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Figure 1: Signal power in neural responses.

of the left auditory cortex while the stimulus (see below) was presented to the right ear.
Recordings often reflected the activity of a number of neurons; single neurons were iden-
tified by Bayesian spike-sorting techniques [13, 14] whenever possible. All analyses pool
data from mice and rats, barbiturate and ketamine/medetomidine anesthesia, high and low
frequency stimulation, and single-unit and multi-unit recordings; each group individually
matched the aggregate behaviour described here.

The dynamic random chord stimulus used in the auditory experiments was similar to that
used in a previous study [15], except that the intensity of component tone pulses was vari-
able. Tone pulses were 20 ms in length, ramped up and down with 5 ms cosine gates. The
times, frequencies and sound intensities of the pulses were chosen randomly and indepen-
dently from 20 ms bins in time, 1/12 octave bins covering either 2–32 or 25–100 kHz in
frequency, and 5 dB SPL bins covering 25–70 dB SPL in level. At any time point, the
stimulus averaged two tone pulses per octave, with an expected loudness of approximately
73 dB SPL for the 2–32 kHz stimulus and 70 dB SPL for the 25–100 kHz stimulus. The
total duration of each stimulus was 60 s. At each recording site, the 2–32 kHz stimulus was
repeated 20 times, and the 25–100 kHz stimulus was repeated 10 times.

Neural responses were binned at 20 ms, and STRFs fit by linear regression of the average
spike rate in each bin onto vectors formed from the amplitudes of tone pulses falling within
the preceding 300 ms of the stimulus (15 pulse-widths, starting with pulses coincident with
the target spike-rate bin). The regression parameters thus included a single filter weight
for each frequency-time bin in this window, and an additional offset (or bias) weight. A
Bayesian technique known as automatic relevance determination (ARD) [16] was used to
improve the STRF estimates. In this case, an additional parameter reflecting the average
noise in the response was also estimated. Models incorporating static output non-linearities
were fit by kernel regression between the output of the linear model (fit by ARD) and the
training data. The kernel employed was Gaussian with a half-width of 0.05 spike/bin; per-
formance at this width was at least as good as that obtained by selecting widths individually
for each recording by leave-one-out cross-validation. Cross-validation for lower estimates
on model predictive power used 10 disjoint splits into 9/10 training data and 1/10 test data.
Extrapolation of the predictive powers in the population, shown in Figs. 2 and 3, was per-
formed using polynomial fits. The degree of the polynomial, determined by leave-one-out
cross-validation, was quadratic for the lower estimates in Fig. 3 and linear in all other cases.

5 Results

We used the techniques described above to ask how accurate a description of auditory
cortex responses could be provided by the STRF. Recordings were binned to match the
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discretization rate of the stimulus and the signal power estimated using equation (1). Fig. 1
shows the distribution of signal powers obtained, as a scatter plot against the estimated
noise power and as a histogram. The error bars indicate standard error intervals based on
the estimated variances obtained from equation (2). A total of 92 recordings in the data
set (42 from mouse, 50 from rat), shown by filled circles and histogram bars in Fig. 1,
had signal power greater than one standard error above zero. The subsequent analysis was
confined to these stimulus-responsive recordings.

For each such recording we estimated an STRF model by minimum-MSE linear regres-
sion, which is equivalent to obtaining the Wiener kernel for the time-series. The training
predictive power of this model provided the upper estimate for the predictive power of
the model class. The minimum-MSE solution generalizes poorly, and so generates overly
pessimistic lower estimates in cross-validation. However, the linear regression literature
provides alternative parameter estimation techniques with improved generalization ability.
In particular, we used a Bayesian hyperparameter optimization technique known as Auto-
matic Relevance Determination [16] (ARD) to find an optimized prior on the regression
parameters, and then chose parameters which optimized the posterior distribution under
this prior and the training data (this and other similar techniques are discussed in Sahani
and Linden, “Evidence Optimization Techniques for Estimating Stimulus-Response Func-
tions”, this volume). The cross-validation predictive power of these estimates served as the
lower estimates of the model class performance.

Fig. 2 shows the upper (◦) and lower (•) estimates for the predictive power of the class of
linear STRF models in our population of rodent auditory cortex recordings, as a function
of the estimated noise level in each recording. The divergence of the estimates at higher
noise levels, described above, is evident. At low noise levels the estimates do not converge
perfectly, the extrapolated values being0.4026±0.0076 for the upper estimate and0.1817±
0.0079 for the lower (intervals are standard errors). This gap is indicative of an SRF model
class that is insufficiently powerful to capture the true stimulus-response relationship; even
if noise were absent, the trained model from the class would only be able to approximate
the true SRF in the region of the finite amount of data used for training, and so would
perform better on those training data than on test data drawn from outside that region.

Fig. 3 shows the same estimates for simulations derived from linear fits to the cortical
data. Simulated data were produced by generating Poisson spike trains with mean rates
as predicted by the ARD-estimated models for real cortical recordings, and rectifying so
that negative predictions were treated as zero. Simulated spike trains were then binned and
analyzed in the same manner as real spike trains. Since the simulated data are spectrogram-
linear by construction apart from the rectification, we expect the estimates to converge to a
value very close to 1 with little separation. This result is evident in Fig. 3. Thus, the analysis
correctly reports that virtually all of the response power in these simulations is linearly
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Figure 2: Evaluation of STRF predictive power in auditory cortex.
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Figure 3: Evaluation of linearity in simulated data.

predictable from the stimulus spectrogram, attesting to the reliability of the extrapolated
estimates for the real data in Fig. 2.

Some portion of the scatter of the points about the population average lines in Fig. 2 reflects
genuine variability in the population, and so the extrapolated scatter at zero noise is also
of interest. Intervals containing at least 50% of the population distribution for the cortical
data are(0.258, 0.548) for the upper estimate and(0.023, 0.340) for the lower estimate
(assuming normal scatter). These will be overestimates of the spread in the underlying
population distribution because of additional scatter from estimation noise. The variability
of STRF predictive power in the population appears unimodal, and the hypothesis that
the distributions of the deviations from the regression lines are zero-mean normal in both
cases cannot be rejected (Kolmogorov-Smirnov test,α = 0.1). Thus the treatment of these
recordings as coming from a single homogeneous population is reasonable. In Fig. 3, there
is a small amount of downward bias and population scatter due to the varying amounts of
rectification in the simulations; however, most of the observed scatter is due to estimation
error resulting from the incorporation of Poisson noise.

The linear model is not constrained to predict non-negative firing rates. To test whether
including a static output non-linearity could improve predictions, we also fit models in
which the prediction from the ARD-derived STRF estimates was transformed time-point by
time-point by a non-parametric non-linearity (see Experimental Methods) to obtain a new
firing rate prediction. The resulting cross-validation predictive powers were compared to
those of the spectrogram-linear model (data not shown). The addition of a static output non-
linearity contributed very little to the predictive power of the STRF model class. Although
the difference in model performance was significant (p < 0.001, Wilcoxon signed rank
test), the mean normalized predictive power increase with the addition of a static output
non-linearity was very small (0.031).

6 Conclusions

We have demonstrated a novel way to evaluate the fraction of response power in a popula-
tion of neurons that can be captured by a particular class of SRF models. The confounding
effects of noise on evaluation of model performance and estimation of model parameters
are overcome by two key analytic steps. First, multiple measurements of neural responses
to the same stimulus are used to obtain an unbiased estimate of the fraction of the response
variance that is predictable in principle, against which the predictive power of a model may
be judged. Second, Bayesian regression techniques are employed to lessen the effects of
noise on linear model estimation, and the remaining noise-related bias is eliminated by
exploiting the noise-dependence of parameter-estimation-induced errors in the predictive
power to extrapolate model performance for a population of similar recordings to the zero
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noise point. This technique might find broad applicability to regression problems in neu-
roscience and elsewhere, provided certain essential features of the data considered here are
shared: repeated measurements must be made at the same input values in order to esti-
mate the signal power; both inputs and repetitions must be numerous enough for the signal
power estimate, which appears in the denominator of the normalized powers, to be well-
conditioned; and finally we must have a group of different regression problems, with dif-
ferent normalized noise powers, that might be expected to instantiate the same underlying
model class. Data with these features are commonly encountered in sensory neuroscience,
where the sensory stimulus can be reliably repeated. The outputs modelled may be spike
trains (as in the present study) or intracellular recordings; local-field, evoked-potential, or
optical recordings; or even fMRI measurements.

Applying this technique to analysis of the primary auditory cortex we find that spectrogram-
linear response components can account for only 18% to 40% (on average) of the power
in extracellular responses to dynamic random chord stimuli. Further, elaborated models
that append a static output non-linearity to the linear filter are barely more effective at pre-
dicting responses to novel stimuli than is the linear model class alone. Previous studies
of auditory cortex have reached widely varying conclusions regarding the degree of lin-
earity of neural responses. Such discrepancies may indicate that response properties are
critically dependent on the statistics of the stimulus ensemble [6, 5, 10], or that cortical
response linearity differs between species. Alternatively, as previous measures of linearity
have been biased by noise, the divergent estimates might also have arisen from variation
in the level of noise power across studies. Our approach represents the first evaluation of
auditory cortex response predictability that is free of this potential noise confound. The
high degree of response non-linearity we observe may well be a characteristic of all audi-
tory cortical responses, given the many known non-linearities in the peripheral and central
auditory systems [17]. Alternatively, it might be unique to auditory cortex responses to
noisy sounds like dynamic random chord stimuli, or else may be general to all stimulus en-
sembles and all sensory cortices. Current and future work will need to be directed toward
measurement of auditory cortical response linearity using different stimulus ensembles and
in different species, and toward development of non-linear classes of models that predict
auditory cortex responses more accurately than spectrogram-linear models.
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