Assignment 2

Theoretical Neuroscience

TAs:

Roman Pogodin (roman.pogodin.17@ucl.ac.uk)
Franziska Broeker (franziska.broeker.15@ucl.ac.uk)
Ilyes Khemakhem (ilyes.khemakhem.17@ucl.ac.uk)
Due 15 February, 2019

1. Infinite cable response to arbitrary time-varying input

As we all know, the passive cable equation can be written

$$
\begin{equation*}
\tau_{m} \frac{\partial u}{\partial t}-\lambda^{2} \frac{\partial^{2} u}{\partial x^{2}}+u=r_{m} i_{e} \tag{1}
\end{equation*}
$$

where $u(x, t)=V(x, t)-\mathcal{E}_{L}$ is the membrane potential relative to the leak reversal potential, τ_{m} is the membrane time constant, $\lambda=\left(r_{m} a / 2 r_{L}\right)^{1 / 2}$ is the length constant, r_{m} is the specific resistance of the membrane, r_{L} is the longitudinal resistivity, and a is the radius of the cable.
(a) Let $i_{e}=r_{m}^{-1} \delta(x) \delta(t)$. (Yes, we know this has the wrong units but, as you'll see below, there's a reason for this.) Show that

$$
u(x, t)=\frac{1}{\tau_{m}} \frac{\exp \left[-x^{2} /\left(4 \lambda^{2} t / \tau_{m}\right)-t / \tau_{m}\right]}{\left(4 \pi \lambda^{2} t / \tau_{m}\right)^{1 / 2}} \Theta(t)
$$

where $\Theta(t)$ is the Heaviside step function $(\Theta(t)=1$ if $t>0$ and 0 otherwise).
Hint: Fourier transform both sides of Eq. (1) with respect to x (but not t), solve the resulting differential equation in time, then Fourier transform back.
(b) Plot the time course of the voltage at position $x=0, \lambda, 2 \lambda$. Write down an expression for the maximum amplitude of the voltage (with respect to time) as a function of x. Use this expression to determine the "speed" at which signals travel in a passive cable. Here speed is defined as $x / t_{\max }(x)$ where $t_{\max }$ is the time at which the voltage reaches a maximum at position x. Why is speed in quotes?
(c) Let $u_{\delta}(x, t)$ be the solution to Eq. (1) with $i_{e}=r_{m}^{-1} \delta(x) \delta(t)$. This is the Green function for the infinite, linear cable. The Green function is useful because it allows us to solve the equation

$$
\begin{equation*}
\tau \frac{\partial u}{\partial t}-\lambda^{2} \frac{\partial^{2} u}{\partial x^{2}}+u=r_{m} i_{e}(x, t) \tag{2}
\end{equation*}
$$

Show that the solution to Eq. (2) is

$$
u(x, t)=\int_{-\infty}^{\infty} d t^{\prime} \int_{-\infty}^{\infty} d x^{\prime} u_{\delta}\left(x-x^{\prime}, t-t^{\prime}\right) r_{m} i_{e}\left(x^{\prime}, t^{\prime}\right)
$$

The Green function method for solving linear inhomogeneous ODEs is an extremely powerful one; you should remember it.

2. Propagation in axons

Between nodes of Ranvier, the membrane potential in axons obeys the equation

$$
\frac{\partial V}{\partial t}=D \frac{\partial^{2} V}{\partial x^{2}}+c_{0} a_{1} \delta(t) \delta(x)
$$

where a_{1} is inner radius of the axon. This equation implies that a bolus of charge is injected at position $x=0$ (the location of a node of Ranvier) at time $t=0$
(a) Why is the total injected charge proportional to the inner radius?
(b) Verify, by directly computing the derivatives, that this has the solution

$$
V(x, t)=c_{0} a_{1} \frac{e^{-x^{2} / 4 D t}}{(4 \pi D t)^{1 / 2}} \Theta(t)
$$

(c) We want to know how long it takes the voltage to reach a value large enough to cause a spike in the next node of Ranvier. Assume "large enough" is V_{0}, so the goal is to find the value of t_{0} that satisfies

$$
V\left(L, t_{0}\right)=V_{0}
$$

Show that

$$
\begin{equation*}
t_{0}=\gamma\left(L / a_{1}, V_{0}\right) \frac{L^{2}}{4 D} \tag{3}
\end{equation*}
$$

where γ is an increasing function of V_{0}.
Note that if $a_{1} \propto L$ (as it is in real axons), the time to reach V_{0} is is independent of the inner diameter of the axon.
(d) Show that there is a critical value of V_{0} above which the membrane potential never reaches V_{0}.
(e) Show that at the critical value, $\gamma\left(L / a_{1}, V_{0}\right)=2$.

3. Noise in the amount of neurotransmitter per vesicle

It is common to model the neuromuscular junction as a synapse with n release sites. When an action potential arrives at the synapse, neurotransmitter is released (or not) from each site independently. The probability of release for all sites is p. If neurotransmitter is released from a particular site, the amount released, which we'll call q, is drawn from a distribution, denoted $P(q)$. This distribution has mean \bar{q} and variance σ_{q}^{2}.
(a) What is the mean total amount of neurotransmitter released in terms of n, p, \bar{q} and σ_{q}^{2} ?
(b) What is the variance of the total amount of neurotransmitter released in terms of n, p, \bar{q} and σ_{q}^{2} ?
(c) Plot the probability distribution of total neurotransmitter released. Assume $P(q)$ is Gaussian with standard deviation $0.5, \bar{q}=1, n=10$ and $p=0.25$.
(d) Why is the Gaussian assumption unrealistic?

For part c , you'll need to know that the probability that neurotransmitter is released at exactly k sites, denoted $p(k)$, is

$$
p(k)=p^{k}(1-p)^{n-k} \frac{n!}{k!(n-k)!} .
$$

This is the famous binomial distribution.

4. Spike-time dependent plasticity

In an STDP model proposed by Graupner and Brunel (PNAS 109:39913996, 2012), and simplified by me, the calcium concentration, C, in postsynaptic terminals obeys the differential equation

$$
\frac{d C}{d t}=-\frac{C}{\tau}+\sum_{i} \delta\left(t-t_{i}^{p r e}-D\right)+\rho \sum_{j} \delta\left(t-t_{j}^{p o s t}\right)
$$

where $t_{i}^{\text {pre }}$ are the times of the presynaptic spikes, $t_{j}^{\text {post }}$ are the times of the postsynaptic spikes, and $\delta(\cdot)$ is the Dirac delta-function. The delay, D is positive, as is ρ. The strength of the synapse, denoted w, evolves according to

$$
\tau_{w} \frac{d w}{d t}=\Theta\left(C-C_{0}\right)-\Theta\left(C-C_{1}\right) \Theta\left(C_{0}-C\right)
$$

where $\Theta(\cdot)$ is the Heaviside step function. Under this rule, the weight increases when $C>C_{0}$ and decreases when $C_{0}>C>C_{1}$; it can also be written

$$
\Delta w=\frac{\left(\text { total time for which } C>C_{0}\right)-\left(\text { total time for which } C_{0}>C>C_{1}\right)}{\tau_{w}}
$$

where Δw is the change in weight.
For simplicity, in what follows, assume that there is only one presynaptic spike at time $t=0$, and one postsynaptic spike at time $t=t_{0}$.
(a) Assume that $1+\rho>C_{0}>C_{1}>\max (1, \rho)$. List several reasons why we make this assumption.
(b) Derive an expression for $C(t)$.
(c) Derive an expression for the total change in weight (at a time long after the pair of spikes) versus t_{0}.
(d) Plot the expression for the total change in weight versus t_{0}, using $\rho=1, C_{0}=1.2$ and $C_{1}=1.1$. How would you choose D to make this look as much as possible like classical STDP?

5. Oja's rule

In an incredibly simple model of a neuron, the output, y, is related to the input, \mathbf{x}, via

$$
y=\mathbf{w} \cdot \mathbf{x}
$$

The weight, \mathbf{w}, is updated after each presentation of \mathbf{x} according to

$$
\Delta \mathbf{w}=\eta y(\mathbf{x}-y \mathbf{w})
$$

(a) Show that the average change in weight, $\langle\Delta \mathbf{w}\rangle$, is given by

$$
\langle\Delta \mathbf{w}\rangle=\eta(\mathbf{w} \cdot \mathbf{\Sigma}-\mathbf{w} \cdot \mathbf{\Sigma} \cdot \mathbf{w} \mathbf{w})
$$

where

$$
\boldsymbol{\Sigma} \equiv\langle\mathrm{xx}\rangle
$$

is the covariance matrix of the input (assuming it's zero mean; otherwise $\boldsymbol{\Sigma}$ has another name).
(b) Show that in equilibrium (when $\langle\Delta \mathbf{w}\rangle=0$), the weights have unit length: $\mathbf{w} \cdot \mathbf{w}=1$.
(c) Show that in equilibrium (when $\langle\Delta \mathbf{w}\rangle=0$), the weight points in the direction of the eigenvector of $\boldsymbol{\Sigma}$ with the largest eigenvalue.
(d) What happens if there are two eigenvectors with largest eigenvalue?

