Gastby induction week: (very) short differentiability review

September 2018

We consider a function $f: U \subset \mathbb{R}^n \to \mathbb{R}^p$, and let $f_1, f_2, \ldots, f_p: \mathbb{R}^n \to \mathbb{R}$ be the components (or coordinates) of f.

Definition 1 (Derivative (n = 1)). We say that $f : \mathbb{R} \to \mathbb{R}^p$ has a derivative at $a \in U$ if

$$\lim_{t \to 0} \frac{f(a+t) - f(a)}{t} \in \mathbb{R}^p$$

exist. We denote it by f'(a), and we have $f' : \mathbb{R} \to \mathbb{R}^p$.

Definition 2 (Partial derivative). We say that $f : \mathbb{R}^n \to \mathbb{R}^p$ has a partial derivative with respect to the *j*-th coordinate at $a \in U$ if

$$\lim_{t \to 0} \frac{f(a_1, \dots, a_j + t, \dots, a_n) - f(a)}{t} \in \mathbb{R}^p$$

exists. We denote it by $\partial_j f(a)$ and we have $\partial_j f: \mathbb{R}^n \to \mathbb{R}^p$.

Definition 3 (Jacobian matrix). If f has partial derivatives with respect to all coordinates at $a \in U$, then we define the Jacobian matrix of f at a as

$$J_f(a) = (\partial_j f_i(a))_{i < p, j < n} \in \mathcal{M}_{p,n}(\mathbb{R}).$$

If p = 1, then we define the gradient of $f : \mathbb{R}^n \to \mathbb{R}$ at a by

$$\nabla f(a) = grad(f)(a) = J_f(a)^T \in \mathbb{R}^n$$

Definition 4 (Differentiability). We say that $f : \mathbb{R}^n \to \mathbb{R}^p$ is differentiable at $a \in U$ if $\exists v \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$ a linear map such that

$$\lim_{h \to 0} \frac{\|f(a+h) - f(a) - v(h)\|}{\|h\|} = 0$$

We can prove v to be unique and we denote it by $df(a) \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$. We have $df: \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$.

Proposition 1. If $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$, then it is differentiable and $df(a) = f \, \forall a \in \mathbb{R}^n$.

If $\phi : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^p$ is bilinear, then ϕ is differentiable and $\forall (x, y) \in \mathbb{R}^d \times \mathbb{R}^m$, $\forall (h, k) \in \mathbb{R}^d \times \mathbb{R}^m$, $d\phi(x, y)(h, k) = \phi(x, k) + \phi(h, y)$.

If n = 1, then f is differentiable at a if and only if f has a derivative at a, and we have $\forall h \in \mathbb{R}, df(a)(h) = hf'(a)$.

Theorem 1. Let (e_1, \ldots, e_n) be the canonical basis of \mathbb{R}^n . If $f : \mathbb{R}^n \to \mathbb{R}^p$ is differentiable, then f has partial derivatives with respect to all coordinates, and $\forall a \in U, \forall i, \partial_i f(a) = df(a)(e_i)$.

In particular, $\forall h \in \mathbb{R}^n$, $df(a)(h) = \sum_i h_i \partial_i f(a) = J_f(a)h$. If p = 1, then $df(a)(h) = J_f(a)h = \nabla f(a)^T h = \langle \nabla f(a), h \rangle$.

Theorem 2 (Chain rule). Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^p$ and $g: V \subset \mathbb{R}^p \to \mathbb{R}^d$. We suppose that f is differentiable at $a \in U$, and g is differentiable at $f(a) \in V$. Then $g \circ f: U \subset \mathbb{R}^n \to \mathbb{R}^d$ is differentiable at a and

$$\forall h \in \mathbb{R}^n, d(g \circ f)(a)(h) = dg(f(a))(df(a)(h))$$

or equivalently if $g \circ f$ is differentiable on U

$$\forall a \in U, d(g \circ f)(a) = dg(f(a)) \circ df(a).$$