Gastby induction week: (very) short differentiability review

September 2018

We consider a function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$, and let $f_{1}, f_{2}, \ldots, f_{p}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the components (or coordinates) of f.
Definition 1 (Derivative $(n=1)$). We say that $f: \mathbb{R} \rightarrow \mathbb{R}^{p}$ has a derivative at $a \in U$ if

$$
\lim _{t \rightarrow 0} \frac{f(a+t)-f(a)}{t} \in \mathbb{R}^{p}
$$

exist. We denote it by $f^{\prime}(a)$, and we have $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}^{p}$.
Definition 2 (Partial derivative). We say that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ has a partial derivative with respect to the j-th coordinate at $a \in U$ if

$$
\lim _{t \rightarrow 0} \frac{f\left(a_{1}, \ldots, a_{j}+t, \ldots, a_{n}\right)-f(a)}{t} \in \mathbb{R}^{p}
$$

exists. We denote it by $\partial_{j} f(a)$ and we have $\partial_{j} f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$.
Definition 3 (Jacobian matrix). If f has partial derivatives with respect to all coordinates at $a \in U$, then we define the Jacobian matrix of f at a as

$$
J_{f}(a)=\left(\partial_{j} f_{i}(a)\right)_{i \leq p, j \leq n} \in \mathcal{M}_{p, n}(\mathbb{R}) .
$$

If $p=1$, then we define the gradient of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at a by

$$
\nabla f(a)=\operatorname{grad}(f)(a)=J_{f}(a)^{T} \in \mathbb{R}^{n}
$$

Definition 4 (Differentiability). We say that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is differentiable at $a \in U$ if $\exists v \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{p}\right)$ a linear map such that

$$
\lim _{h \rightarrow 0} \frac{\|f(a+h)-f(a)-v(h)\|}{\|h\|}=0 .
$$

We can prove v to be unique and we denote it by $d f(a) \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{p}\right)$. We have $d f: \mathbb{R}^{n} \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{p}\right)$.
Proposition 1. If $f \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{p}\right)$, then it is differentiable and $d f(a)=f \forall a \in \mathbb{R}^{n}$.
If $\phi: \mathbb{R}^{d} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ is bilinear, then ϕ is differentiable and $\forall(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{m}, \forall(h, k) \in \mathbb{R}^{d} \times \mathbb{R}^{m}, d \phi(x, y)(h, k)=$ $\phi(x, k)+\phi(h, y)$.

If $n=1$, then f is differentiable at a if and only if f has a derivative at a, and we have $\forall h \in \mathbb{R}, d f(a)(h)=h f^{\prime}(a)$.
Theorem 1. Let $\left(e_{1}, \ldots, e_{n}\right)$ be the canonical basis of \mathbb{R}^{n}. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is differentiable, then f has partial derivatives with respect to all coordinates, and $\forall a \in U, \forall i, \partial_{i} f(a)=d f(a)\left(e_{i}\right)$.

In particular, $\forall h \in \mathbb{R}^{n}, d f(a)(h)=\sum_{i} h_{i} \partial_{i} f(a)=J_{f}(a) h$. If $p=1$, then $d f(a)(h)=J_{f}(a) h=\nabla f(a)^{T} h=$ $\langle\nabla f(a), h\rangle$.

Theorem 2 (Chain rule). Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $g: V \subset \mathbb{R}^{p} \rightarrow \mathbb{R}^{d}$. We suppose that f is differentiable at $a \in U$, and g is differentiable at $f(a) \in V$. Then $g \circ f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{d}$ is differentiable at a and

$$
\forall h \in \mathbb{R}^{n}, d(g \circ f)(a)(h)=d g(f(a))(d f(a)(h))
$$

or equivalently if $g \circ f$ is differentiable on U

$$
\forall a \in U, d(g \circ f)(a)=d g(f(a)) \circ d f(a) .
$$

