
Gatsby ML Exam Review Guide

Jorge A. Menendez

November 6, 2017

Contents
1 Unsupervised Latent Variable Models 2

1.1 Gaussian Model . 2
1.1.1 Student t-distribution . 3
1.1.2 A note about the covariance matrix . 3

1.2 Continuous Latent Variable Models . 4
1.2.1 Probabilistic Principal Components Analysis (PPCA) 4
1.2.2 Factor Analysis . 7
1.2.3 Independent Components Analysis (ICA) 8
1.2.4 Gaussian Process Latent Variable Model (GPLVM) 9

1.3 Mixture Models . 11
1.3.1 Mixture of Gaussians (MoG) . 11
1.3.2 Latent Dirichlet Allocation . 12

1.4 Latent Chain Models . 12
1.4.1 Hidden Markov Model (HMM) . 13
1.4.2 Factorial HMM . 15
1.4.3 Linear-Gaussian State-Space Model (LGSSM) 16
1.4.4 Non-linear state-space model (NLSSM) . 17
1.4.5 Spectral Learning . 18

1.5 Markov Random Fields . 19
1.5.1 MAP estimation . 20
1.5.2 Boltzmann Machine . 21
1.5.3 Sigmoid Belief Net . 21

2 Supervised Learning Models 21
2.1 Linear Regression . 21

2.1.1 ML Linear Regression . 21
2.1.2 Bayesian Linear Regression . 22

2.2 Gaussian Process Regression . 22
2.2.1 Common GP Covariance Kernels . 24
2.2.2 GP Sparse Linear Regression with Inducing Points 24

2.3 GP Logistic Regression . 26
2.4 Discriminative vs Generative Modelling . 26
2.5 Conditional Random Field (CRF) . 26

3 Model Selection 27
3.1 Laplace Approximation . 27
3.2 Bayesian Information Criterion (BIC) . 28
3.3 Hyperparameter Optimization . 28

3.3.1 Automatic Relevance Detection (ARD) . 29
3.4 Variational Bayes (VB) . 29
3.5 Annealed Importance Sampling . 31

4 Expectation Maximization 31
4.1 Generalized EM . 33
4.2 EM for MAP . 33

1

5 Approximate Inference 33
5.1 Variational Inference . 34

5.1.1 Mean-Field Approximation . 35
5.2 Expectation Propagation . 35

5.2.1 Power EP . 38
5.2.2 My EP recipe . 38

5.3 Sampling Methods . 38
5.3.1 Simple Monte Carlo . 38
5.3.2 Importance Sampling . 38
5.3.3 Rejection Sampling . 39
5.3.4 Markov Chain Monte Carlo (MCMC) . 39
5.3.5 Hamiltonian Monte Carlo . 39
5.3.6 Slice Sampling . 39

6 Graphical Models 39
6.1 Types of Graphs . 39

6.1.1 Factor Graph . 39
6.1.2 Undirected Graph (Markov Net) . 39
6.1.3 Directed Acyclic Graph (DAG, or Bayes net) 39
6.1.4 Expressive Power of different types of graphs 40
6.1.5 Trees . 40

6.2 Inference on Trees: Belief Propagation . 41
6.3 Inference on Loopy Graphs . 42

6.3.1 Junction Tree Algorithm . 42
6.3.2 Loopy BP . 44

7 Exponential Family Distributions 45
7.1 Conjugate-Exponential Models . 46
7.2 The Log Partition Function and Duality . 46

8 Appendices 48
8.1 Probability Distributions . 48

8.1.1 Conjugate Priors . 48
8.1.2 Notes about Dirichlet Distribution . 48

8.2 Gaussian Identities . 49
8.3 Matrix Identities . 50

8.3.1 Basic Matrix Properties . 50
8.3.2 Vector Derivatives . 50
8.3.3 Matrix Derivatives . 50

1 Unsupervised Latent Variable Models

1.1 Gaussian Model
Given i.i.d. data D = {x(i)}Ni=1,x ∈ RD, the Gaussian models means and correlations between
dimensions/features x(i)

1 , . . . , x
(i)
D :

x ∼ N (µ,Σ)

N (x|µ,Σ) = |2πΣ|− 1
2 exp

[
−1

2
(x− µ)

T
Σ−1 (x− µ)

]
The maximum likelihood parameter estimates are:

µML =
1

N

N∑
i=1

x(i)

ΣML =
1

N

N∑
i=1

(x(i) − µML)(x(i) − µML)T

2

It turns out that the ML estimate for the covariance Σ is biased (one can easily verify that
E
[
ΣML

]
= N−1

N Σ 6= Σ) because it involves estimating deviations of the data from our estimate
of the mean µML that is itself based on the data, leading to underestimating the true expected
deviation. So we usually use the alternative unbiased estimate

ΣML
unbiased =

N

N − 1
ΣML =

1

N − 1

N∑
i=1

(x(i) − µ)(x(i) − µ)T

Bayesian parameter estimation is easy and tractable when using the following conjugate priors:

Parameter Conjugate Prior
µ Gaussian
σ−1 Gamma
Σ−1 Weishart
σ Inverse Gamma
Σ Inverse Weishart

Assuming the likelihood x(i) ∼ N (µ,ΣD), this yields the following posterior distributions for µ
and, in the one dimensional case, σ−1, where µML and σML are as above:

µ ∼ N (µ0,Σ0)

µ|D ∼ N
(
Σ∗(Σ−1

0 µ0 +NΣ−1
D µML),Σ∗

)
Σ∗ = (Σ−1

0 +NΣ−1
D)−1

σ−1 ∼ Gamma (a0, b0)

σ−1|D ∼ Gamma
(
a0 +

N

2
, b0 +

N

2
σML

)
1.1.1 Student t-distribution

Another Bayesian approach when it comes to modelling data with a Gaussian is to assume that
the mean µ is known (e.g. that the true mean is equal to the ML estimate) and the variance σ
is unknown, such that we should estimate the true data distribution by integrating over all values
of σ. In other words, we should average together all possible Gaussian distributions with mean µ
together, each one weighed by the prior probability of its corresponding variance σ. When we use
the prior

σ−1 ∼ Gamma
(ν

2
,
ν

2

)
we get the Student t-distribution:

St(x|µ, ν) =

∫
N (x|µ, σ)Gamma

(
σ−1|ν

2
,
ν

2

)
dσ−1

=
1√
νπ

Γ(ν+1
2)

Γ(ν2)

(
x2

ν
+ 1

)− ν+1
2

where the parameter ν is called the degrees of freedom. This can be generalized to the multi-
dimensional case using a Weishart distribution instead of a Gamma for the prior on the precision.

1.1.2 A note about the covariance matrix

For some intuition behind the structure of the covariance matrix of a multivariate Gaussian, con-
sider the variance of the data along some direction v ∈ RD,vTv, where RD is the data space (i.e.
x(i) ∈ RD). For some data set {x(i)}Ni=1, we naturally compute this by taking the squared scalar

3

projection of each data point’s deviation from the mean x̄ onto v, and averaging:

1

N

N∑
i=1

(vT(x(i) − x̄))2

=
1

N

N∑
i=1

vT(x(i) − x̄)(x(i) − x̄)Tv

= vT

(
1

N

N∑
i=1

(x(i) − x̄)(x(i) − x̄)T

)
v

= vTCv

where x̄ = 1
N

∑
i x

(i) is the empirical mean and C = 1
N

∑N
i=1(x(i) − x̄)(x(i) − x̄)T is the empirical

covariance matrix (equal to their respective maximum likelihood estimates µML,ΣML). Note now
that if v is an eigenvector of C, then

vTCv = λvTv = λ

i.e. the correponding eigenvalue λ gives the variance in that direcion.

1.2 Continuous Latent Variable Models
1.2.1 Probabilistic Principal Components Analysis (PPCA)

For i.i.d. data D = {x(i)}Ni=1,x ∈ RD, we assume they arise from a noisy linear transformation of
an underlying set of latent variables {y(i)},y ∈ RK , K < D, via a D ×K loading matrix A:

y ∼ N (0, I)

x|y ∼ N (Ay + b, σI)

By inferring the latents corresponding to each data point, we can hope to compress the data into
this lower dimensional subspace without losing too much information, just like in regular PCA.
The only differnece is that here we have a prior on where the latents should be - we model noise
in the latents as well as in the data.

This yields the following log likelihood:

`(b,A, σ) = logP (D|b,A, σ) =

N∑
i=1

logN
(
x(i)|b, σI + AAT

)
It is easy to verify that the ML estimate for b is the empirical mean:

bML =
1

N

N∑
i=1

x(i)

The ML estimate for the loading matrix is a bit more complicated:

∂`

∂A
=

∂

∂A

(
−N

2
log |σI + AAT| − 1

2
Tr

[
(σI + AAT)−1

N∑
i=1

(xi − b)(xi − b)T

])

=

(
−N

2
(σI + AAT)−1 +

N

2
(σI + AAT)−1C(σI + AAT)−1

)
∂(σI + AAT)

∂A

= −N(σI + AAT)−1A + (σI +NAAT)−1C(σI + AAT)−1A = 0

⇔ A = C(σI + AAT)−1A

where C is the empirical covariance matrix

C =
1

N

N∑
i=1

(x(i) − µML)(x(i) − µML)T

4

We thus have two possible solutions for the maximum likelihood estimate: (1) AML = 0, which
gives us a standard isotropic Gaussian model of the data centered at the empirical mean (turns
out to be a minimum, which can be verified by showing that the Hessian is positive definite), or,
(2) σI + AMLAMLT

= C, which gives us the following solution:

C = σI + AMLAMLT

= σI + UDVTVDTUT

= U(σI + D2)UT

⇔ CU = U(σI + D2)

where in the second line we took the SVD of A and

D2 =

d2
11 . . . 0

d2
22

. . .
... d2

KK

...
0

. . .
0 . . . 0

This tells us that each ui is an eigenvector of C with associated eigenvalue

λi =

{
d2
ii + σ if i ≤ K
σ else

The maximum likelihood solution is thus AML = UDVT, where V is an arbitraryK×K orthogonal
matrix, the columns of U are the eigenvectors of the empirical covariance matrix C, and D is a
D ×K diagonal matrix with components dii =

√
λi − σ, i = 1, . . . ,K.

We can further show that the log likelihood is maximized when u1, λ1, . . . ,uK , λK are the K
leading eigenvectors and eigenvalues of C. We note that

|σI + AMLAMLT| = |U(σI + D2)UT|

= σD−K
K∏
i=1

d2
ii + σ

= σD−K
K∏
i=1

λi

Tr
[(
σI + AMLAMLT

)−1

C

]
= Tr

[(
U(σI + D2)UT)−1

UΛUT
]

= Tr
[
U(σI + D2)−1ΛUT]

=

K∑
i=1

λi
d2
ii + σ

+

D∑
i=K+1

λi
σ

= K +
1

σ

D∑
i=K+1

λi

Our log likelihood is thus:

`(b,AML, σ) = −ND
2

log 2π − N

2
log |σI + AMLAMLT| − N

2
Tr
[
(σI + AMLAMLT

)−1C
]

= −N
2

log

(
σD−K

K∏
i=1

λi

)
− N

2

(
K +

1

σ

D∑
i=K+1

λi

)
+ const.

= −N
2

(
K∑
i=1

log λi +
1

σ

D∑
i=K+1

λi

)
+ const.

5

To maximize the likelihood, we need to minimize the sum inside the parentheses, which means
we should make λK+1, . . . , λN as small as possible since z increases faster than log z. Thus, these
should be the D−K smallest eigenvalues, leaving λ1, . . . , λK to be the K largest eigenvalues of C,
with associated eigenvectors u1, . . . ,uK , the firstK columns of U. This completes the derivation of
AML, which we can now rewrite as AML = UKDKVT , where V is an arbitrary orthogonal matrix
(see below), UK is a D×K matrix with columns given by the K leading eigenvectors of the sample
covariance C, and DK is a K×K diagonal matrix with components dii =

√
λi − σ, i = 1, . . . ,K.

Expressing our log likelihood in terms of σ, we have:

`(b,AML, σ) = −N
2

log

(
σD−K

K∏
i=1

λi

)
− N

2

(
K +

1

σ

D∑
i=K+1

λi

)
+ const.

= −N
2

(
(D −K) log σ +

1

σ

D∑
i=K+1

λi

)
+ const.

Differentiating with respect to σ and setting to 0, we get our ML estimate for the noise parameter:

∂`

∂σ
= −N

2

(
(D −K)σ−1 − σ−2

D∑
i=K+1

λi

)
= 0

⇔ σ−1 =
D −K∑D
i=K+1 λi

⇒ σML =
1

D −K

D∑
i=K+1

λi

i.e. the mean of the D −K smallest eigenvalues.
We can get some intuition for these two ML estimates by calculating the variance of the marginal

distribution of an observation P (x) = N
(
x|b, σI + AAT

)
along an arbitrary direction v, given

by the projection of v onto the column space of the covariance matrix: vT(σI + AAT)v. It is
easy to see that, if A = AML, for any direction v orthogonal to the latent space spanned by
the K leading eigenvectors u1, . . . ,uK of C, the variance along that direction will be σ (since
vTAML = 0). Thus, σML should be the mean variance along the data dimensions outside the
latent space. Conversely, if v = uk, k ≤ K, the variance along that direction will be λk (since
σvTv + vTAMLAMLT

v = σ + (
√
λk − σ)2 = λk).

In this view, it is easy to see that the limit of σ → 0 is standard principal components analysis
(PCA), where the data is projected onto a subspace formed by the K leading eigenvectors of the
empirical covariance matrix . One important difference between PPCA and PCA, however, is
that, whereas the PCA projection onto the principal subspace is simply an orthogonal projection,
the projection of observations onto the latent space in PCA is pulled away from the orthogonal
projection by the prior latent distribution (towards its mean). We can see this easily by computing
the posterior distribution over latents:

y|x ∼ N
(
(σ + ATA)−1AT(x− b), (I + σ−1ATA)−1

)
As σ → 0, the posterior becomes a delta function centered at the orthogonal projection of the
centered observation. Conversely, as σ gets bigger, the magnitude of this projection gets smaller
and smaller, getting pulled towards the 0-mean of the latent distribution. The same difference
holds for the “denoised” reconstruction x̃ = AE[y|x] = A(σ + ATA)−1AT(x− b).

Going back to the likelihood, we note that AMLAMLT
= UKD2UT

K , such that changing the
matrix V doesn’t change the likelihood of the data. Thus, the loading matrix is non-identifiable -
any change to V (i.e. any orthogonal transformation A→ AQ, for orthogonal Q) leaves the model
unchanged. More than that, any rotation of the latent space y→ Uy has the same null effect. To
compare the loading matrices of any two PPCA models we must then compare their eigenspectrum,
since they may look completely different yet represent the same linear transformation (specified by
UK and D). This observation also means that the number of parameters is not just DK+ 1 (1 for
σ, 1 for each component of A) - we need to correct for the degeneracy. The correction is easy to

6

see by computing the number of parameters needed to specify UKD, since we should really just
fix V. Since UK is orthonormal, we only need D − 1 numbers in the first column to fully specify
it (since it must have length 1), D − 2 to specify the next one that is orthogonal to the first one
and length 1, and so on, giving us:

(D−1)+(D−2)+. . .+(D−K)+K = DK−(1+2+. . .+K)+K = DK−K(K + 1)

2
+K = DK−K(K − 1)

2

Thus, the true number of parameters in the PPCA model is DK − K(K−1)
2 + 1. Note that this

number can’t surpass the number of parameters needed to specify the covariance matrix of the
observed data, or else the model becomes totally non-identifiable. Intuitively, if this were the case
then it would be impossible to know what observed variance arose from the spherical emission
noise or from the latent noise, since the resulting model would be able to fit itself to more noise
than is even possible in the data. One can easily verify that this condition, i.e.

DK − K(K − 1)

2
+ 1 ≤ D(D + 1)

2

is equivalent to enforcing K ≤ D − 1.
Lastly, note that the spherical emission noise makes the PPCA model invariant to rotations of

the data x→ Rx, where R is a D×D orthogonal matrix. Any such transformation is simply offset
by an equal transformation to the loading matrix A → RA, since a rotation of the data space
leads to the same rotation to its covariance matrix and thus to its eigenvectors, which compose A.
Because the emission noise σI is spherical (i.e. equal in every direction), the rotation leaves the
model unchanged. We thus say that the PPCA model is rotationally invariant.

1.2.2 Factor Analysis

The factor analysis model is the generalization of the PPCA model to non-spherical noise:

y ∼ N (0, I)

x|y ∼ N (Ay + b,Ψ)

where Ψ is a diagonal matrix. In the terminology of factor analysis, we call the loading matrix
the common factors and the independent emissions noise parameters ψdd the unique factors. The
classic example of data suitable for modelling with FA is performance on a battery of D intelligence
tests: variability on each test will be different for all subjects because of differing attentional or
other demands, but variability on all tests for a given subject will also be constrained by his/her
(latent) intelligence.

In the case of non-spherical noise, there is no closed form solution for maximum likelihood
parameter estimation, so we use gradient ascent or the EM algorithm. This leads to the following
M-step updates:

A∗ =

(
N∑
i=1

x(i)µT
i

)(
NΣ +

N∑
i=1

µiµ
T
i

)−1

Ψ∗ = AΣAT +
1

N

N∑
i=1

(x(i) −Aµi)(x(i) −Aµi)T

where µi and Σ are the parameters of the posterior distribution over latents

P (y(i)|x(i),A,Ψ) = N (µi,Σ)

µi = ΣATΨ−1(x(i) − b)

Σ = (I + ATΨ−1A)−1

Note that as Σ → 0 (i.e. as Ψdd → 0), these equations approach the the ML (i.e. least squares)
solution for linear regression, with the expected latents in place of the inputs and the observations
in place of the outputs. One caveat to ML learning for FA is that in some cases the data favors
ψdd → 0, leading to an unbounded likelihood (“Heywood cases”). This problem can be solved by
choosing an appropriate prior over ψdd.

7

Again, the loading matrix A is not unique, since the likelihood remains unchanged under
orthogonal transformations A→ AU for orthogonal U. Because we now have to pick each of the
K components on the diagonal of Ψ, the number of parameters is now

DK − K(K − 1)

2
+K

Enforcing this to be less than D(D+1)
2 implies that K be significantly less than D − 1.

Because of the non-spherical noise, the FA model is not rotationally invariant. On the other
hand, it is scale invariant, since the ψdd’s can adapt to a change in scale of the data x → Sx for
diagonal S.

1.2.3 Independent Components Analysis (ICA)

The ICA model is similar to FA, but with two major changes:

• the latent distribution P (y) is strictly non-Gaussian, and constrained to be factorizable into
the “independent”components yk

• K ≥ D is acceptable, since we are no longer modelling the data as being Gaussian (i.e. the
likelihood is not Gaussian)

Specifically, we have:

yk ∼ Py
⇒ P (y) =

∏
k

Py(yk)

x|y ∼ N (Ay,Ψ)

Generally, the context of ICA is that we have K independent sources yk that we want to estimate
given some observed signal x that was generated by a (noisy) linear combination of the sources. The
classic example is the “cocktail party problem”, where one wants to recover individual conversations
at a party from a sound signal being measured from the whole room (e.g. from your ears).
Because each conversation is occuring between a different group of people, each of these “sources”
is independent. The goal is thus to obtain a good estimate of the demixing matrix W ≈ A−1,
such that we can recover the sources y ≈ ŷ = Wx.

Because Py is non-Gaussian, however, inference is generally intractable. One extensively studied
case where it is tractable is called square, noiseless causal ICA, where K = D (so A is square and
invertible) and x = Ay. In this case, we can obtain the likelihood as follows: for dx, dy such that

Px(x)dx = Py(y)dy

we have

⇔ Px(x) =
∣∣∣dy

dx

∣∣∣Py(y)

= |W|Py(Wx)

= |W|
∏
k

Py(Wkx)

where Wk is the kth row of W. We then obtain our estimate of the demixing matrix W via
maximum likelihood:

∂

∂W
`(W) =

∂

∂W
log |W|+

∑
k

logPy(Wkx)

=
(
WT)−1

+
∂

∂y

∑
k

logPy(yk)
∂y

∂W

=
(
WT)−1

+ P ′(y)xT

where P ′(y) is a vector whose kth component is ∂ logPy(y)
∂y

∣∣∣
yk
. We can then update W via gradient

ascent:
∆W =

(
WT)−1

+ P ′(y)xT

Another approach to square noiseless ICA is to find the demixing matrix that maximizes the
information between something and something, called infomax. don’t re-

ally un-
derstand
Ma-
neesh’s
deriva-
tion for
this.
Arthur’s
makes
sense but
its a bit
weird

don’t re-
ally un-
derstand
Ma-
neesh’s
deriva-
tion for
this.
Arthur’s
makes
sense but
its a bit
weird

8

1.2.4 Gaussian Process Latent Variable Model (GPLVM)

The GPLVM is an alternative approach to PPCA for inferring latents in a lower dimensional space,
under the assumption of spherical noise in the data. The GPLVM differs from PPCA in that,
rather than modelling noise in the latent space, it instead models noise in the latent-to-observation
mapping, assuming the latents to be fixed and noiseless. This results in solving a “dual” problem
with respect to PPCA, and allows us to perform non-linear dimensionality reduction.

In PPCA, we (1) marginalize out the latents to obtain a likelihood as a function of the latent-
to-observation mapping (i.e. the loading matrix), (2) optimize the likelihood with respect to this
(linear) mapping, and (3) compute posteriors using this mapping to infer the lower-dimensional
latents. In GPLVM, on the other hand, we (1) marginalize out themapping to obtain a likelihood as
a function of the latents and (2) optimize the likelihood with respect to the latents. This difference
stems from the fact that in PPCA we assume a prior distribution on the latents, whereas in GPLVM
we assume the latents to be fixed and instead assume a (GP) prior on the mappings. The model
is as follows:

fd ∼ GP (0, kd(·, ·))
xd|fd, z ∼ N (fd(z), σ)

giving us a likelihood for data {xi}Ni=1 with associated latents Z = {zi}Ni=1:

fd =
[
fd(z1) . . . fd(zN)

]T
fd|Z ∼ N (0,Kd)

Kd,ij = kd(xi, xj)

x(d) =
[
x1d . . . xNd

]T
⇒ P (x(d)|Z) =

∫
N (x(d)|fd, σI)N (fd|0,Kd)dfd

= N (x(d)|0, σI + Kd)

`(Z) =

D∑
d=1

logN (x(d)|0, σI + Kd)

By modelling the full z → x as consisting of a set of independent mappings fd : z → xd for each
dimension of the data space, we can capture all kinds of non-linear mappings. By inferring what
these mappings are, we can then compress the data into the lower dimensional latent space by
optimizing the log likelihood with respect to Z. Note that since we are performing inference on
the N -dimensional vectors fd, our posterior covariances will be N ×N - rather than estimating the
covariance between dimensions (by averaging over data points) to infer an underlying latent (as in
PPCA), here we estimate the single-dimension covariance between data points (by averaging over
dimensions) to infer the latent-to-observation mapping for that dimension. Intuitively, it turns
out that if we use the linear covariance kernel kd(z, z′) = αzTz for all d = 1, . . . , D, we end up
with the same solution as PPCA, but using the leading eigenvectors of C′ = 1

DXTX rather than
C = 1

NXXT (X is D ×N data matrix with ith column equal to ith data point xi).
We can also incorporate other observation noise models into GPLVM. For example, we might

want to use the GPLVM to compress data about the number of mutations in individual genetic
profiles (see PCA slides). Each individual i has d = 1, . . . , D sites where xid ∈ {0, 1, 2} mutations
can occur, with independent probabilities, giving us a binomial noise model. Importantly, the
probability of a mutation may vary from site to site, so we model the sensitivity to mutation as a
latent variable fd. We thus have:

xid|fd ∼ φ(fd)
xid(1− φ(fd))

2−xid

where φ(u) = 1
1+e−u is the logistic function. Since the number of sites D is really big, we would like

to find a set of lower dimensional latents Z = {zi ∈ RK}, K < D, that would give rise to our data
set X = {xi ∈ RD}. We incorporate these into our model by modelling fd to be a function of this
lower dimensional latent. We further would like to model the variability in site-specific mutation

9

sensitivity across individuals, so we put a Gaussian Process prior on the function fd(·) to allow it
to vary across individuals:

xid|fd, zi ∼ φ(fd(zi))
xid(1− φ(fd(zi)))

2−xid

fd(·) ∼ GP(0, kd(·, ·))

giving us our final model

xid|fdi ∼ φ(fdi)xid(1− φ(fdi))2−xid

fd|Z ∼ N (0,Kd)

where Kd,ij = kd(zi, zj). To perform compression, we now want to find the set Z that maximizes
the likelihood

P (X|Z) =

D∏
d=1

∫
dfd N (fd|0,Kd)

N∏
i=1

φ(fdi)xid(1− φ(fdi))2−xid

which is intractable. If we knew the latent fd’s, however, we could easily find the best Z by
optimizing the latent-observation joint

P (X , {fd}|Z) =

D∏
d=1

P (fd|Z)P (x(d)|fd)

=

D∏
d=1

N (fd|0,Kd)

N∏
i=1

φ(fdi)xid(1− φ(fdi))2−xid

So we proceed with the EM algorithm, iteratively inferring the fd’s at the E-step and obtaining
our esimate for Z in the M-step, until convergence of the free energy lower bound to a maximum
of the true log likelihood. Inference, however, is intractable in this problem since our (binomial)
likelihood P (x(d)|fd) and (Gaussian) prior P (fd|Z) noise models are not conjugate. We thus turn to
expectation propagation to perform an approximate E-step, approximating the binomial likelihood
with a Gaussian. This results in the following approximate posterior q({fd}) and cavity distribution
q¬di(fdi):

P ({fd}|X ,Z) =
1

Z
P ({fd},X|Z)

=
1

Z

D∏
d=1

N (fd|0,Kd)

N∏
i=1

φ(fdi)xid(1− φ(fdi))2−xid

≈ 1

Z

D∏
d=1

N (fd|0,Kd)

N∏
i=1

N (fdi|µ̃di, σ̃di) = q({fd})

q¬di(fdi) = N (fdi|0, kd(zi, zi))

where zi is obtained from the previous M-step. We then have the following EP update for each this is
wrong!
can’t
marginal-
ize the
fd¬i just
like that,
need to
sepa-
rate the
Gaus-
sian on
the full
fd into a
distribu-
tion on
fdi and
a distri-
bution
on fd¬i
to be
able to
marginal-
ize (see
GP lo-
gistic re-
gression)

this is
wrong!
can’t
marginal-
ize the
fd¬i just
like that,
need to
sepa-
rate the
Gaus-
sian on
the full
fd into a
distribu-
tion on
fdi and
a distri-
bution
on fd¬i
to be
able to
marginal-
ize (see
GP lo-
gistic re-
gression)

approximate factor g̃di(fdi) = N (fdi|µ̃di, σ̃di):

g̃newdi (fdi) =
N
(
fdi| 〈fdi〉P̃ ,

〈
f2
di

〉
P̃ − 〈fdi〉P̃

)
q¬di(fdi)

where P̃(fdi) = gdi(fdi)q¬di(fdi), with gdi(fdi) = φ(fdi)xid(1− φ(fdi))2−xid being the true binomial
factor. On convergence of the EP algorithm, we have approximate posteriors for each latent

qd(fd) =
1

Z
N (fd|0,Kd)

N∏
i=1

g̃di(fdi)

which we can then take expectations over for the M-step:

Z∗ = arg max
Z={zi}

〈logP (X , {fd}|Z)〉q({fd})

= arg max
Z={zi}

D∑
d=1

〈logN (fd|0,Kd)〉qd(fd)

10

Letting Z =
[
z1 . . . zN

]
, we can then use the chain rule to perform the maximization by solving:

D∑
d=1

∂

∂Kd
〈logN (fd|0,Kd)〉qd(fd)

∂Kd

∂Z
= 0

As long as our kernels kd(z, z′) are differentiable, this should be tractable.

1.3 Mixture Models
One limitation of linear Gaussian latent variable models like FA and PPCA is that they can only
model the mean and variance of the data. This is often too restrictive, like when the data appears
to be multimodal. Mixture models are ideally suited for dealing with such data:

y ∼ Discrete(π)

x|y = k ∼ Pk(θk)

which gives the marginal distribution over observations:

x ∼
∑
k

πkPk(x|θk)

i.e. a convex combination of the mixture component distributions.
For i.i.d. data D = {xi}Ni=1, this results in a log likelihood that is not easy to optimize:

`(π, θ) =

N∑
i=1

log
∑
k

πkPk(xi|θk)

since we end up with a sum inside the logarithm. Incorporating Lagrange multipliers where nec-
essary and setting derivatives with respect to the parameters to 0, we get:

πML
k =

1

N

N∑
i=1

rik

0 =

N∑
i=1

rik
∂ logPk(xi|θk)

∂θML
k

where
rik = P (yi = k|xi) =

πkPk(xi|θk)∑
k′ πk′Pk′(xi|θk′)

is the posterior probability of the ith data point arising from mixture component k, termed the
responsibility of component k for data point i. Since these responsibilities themselves depend on
the parameters, there is no closed form solution for the maximum likelihood parameter estimates.
But we can easily use EM to obtain them, by setting the reponsibilities in the E-step and then
solving the above two equations in the M-step.

It is evident that mixture models are invariant to permutations of the mixture components:
the likelihood remains unchanged if we switch components k and k′.

1.3.1 Mixture of Gaussians (MoG)

The MoG model is:

y ∼ Discrete(π)

x|y = k ∼ N (µk,Σk)

It is useful for:

• Clustering data

• Approximating arbitrary probability distributions as a weighted sum of Gaussians

11

For i.i.d. data D = {x(i)}Ni=1,x ∈ RD, our M-step equations become:

µML
k =

∑N
i=1 rikx

(i)∑N
i=1 rik

ΣML
k =

∑N
i=1 rik(x(i) − µML

k)(x(i) − µML
k)T∑N

i=1 rik

For clustering data, if we set πk = 1
K , Σk = σ2I, as σ2 → 0, the responsibilities become binary

(i.e. the posterior distribution over components becomes a δ-function) and the corresponding EM
algorithm for obtaining µML is equivalent to K-means clustering.

1.3.2 Latent Dirichlet Allocation

blank!blank!

1.4 Latent Chain Models
All the above latent models that we have considered apply only to i.i.d. data. Data points in a
time series, however, are explicitly not independent: each observation depends on everything that
has occured in the time series up until that point. Latent chain models capture this property by
modelling temporal dependencies and dynamics in the latent space. To make learning tractable,
chain models often assume the Markov property by constraining probabilistic dependencies to only
n = 1 or 2 preceding timesteps. In other words, the graph that represents the joint distribution
over all latents is an nth order Markov chain:

P (yt|y1:t−1) = P (yt|yt−n:t−1)

where yt1:t2 denotes all points yt such that t ∈ [t1, t2]. Independent measurement noise is then
modelled by the emission distribution over observations, dependent only on the state of the latent
variable at the given timepoint of the observation:

P (xt|x1:t−1, xt+1:T , y1:T) = P (xt|yt)

If we assume the latent joint distribution is a first-order Markov chain, the observation-latent
joint distribution becomes very simple:

P (x1:T , y1:T) = P (y1)

T∏
t=2

P (yt|yt−1)

T∏
t=1

P (xt|yt)

and the the EM algorithm is greatly simplified, with the M-step:

θ(i) = arg max
θ

〈logP (x1:T , y1:T |θ)〉P (y1:T |x1:T ,θ(i−1))

= arg max
θ

〈logP (y1|θ)〉P (y1|x1:T ,θ(i−1)) +

T∑
t=2

〈logP (yt|yt−1, θ)〉P (yt,yt−1|x1:T ,θ(i−1))

+

T∑
t=1

〈logP (xt|yt, θ)〉P (yt|x1:T ,θ(i−1))

such that we need only compute expectations with respect to the singleton and pairwise marginals
P (yt|x1:T , θ

(i−1)) and P (yt, yt−1|x1:T , θ
(i−1)) in the E-step, rather than having to deal with the

much nastier full posterior distribution P (y1:T |x1:T , θ
(i−1)). However, computing these marginals

can be far too computationally costly if we do it by brute force marginalization of the full posterior
joint (e.g. for a discrete latent space with K possible satates, computing P (yt|x1:T) requires
summing over KT−1 terms). So we use a recursive message passing algorithm instead, obtained
by recursively applying Bayes’ rule to arrive at a recursive expression in terms of “forward” and
“backward” messages that take the form of joint distributions over adjacent timepoints, which

12

are easily computed with the given emission and latent transition conditional probabilities of our
model:

P (yt|x1:T) ∝ P (yt, x1:T)

∝ P (yt, x1:t)P (xt+1:T |yt)
∝M(t−1)→t(yt)Mt+1→t(yt)

M(t−1)→t(yt) := P (yt, x1:t)

= P (xt|yt)
∫
P (yt|yt−1)P (yt−1, x1:t−1)dyt−1

= P (xt|yt)
∫
P (yt|yt−1)M(t−2)→(t−1)(yt−1)dyt−1 [forward message]

M(t+1)→t(yt) := P (xt+1:T |yt)

=

∫
P (xt+1|yt+1)P (yt+1|yt)P (xt+2:T |yt+1)dyt+1

=

∫
P (xt+1|yt+1)P (yt+1|yt)M(t+2)→(t+1)(yt+1)dyt+1 [backward message]

where the integrals become sums over discrete states if the latent space is discrete. The recursive
equation for the forward message is called the Chapman Kolmogorov Equation.

Of course, we will have to recover the normalizers to be able to obtain actual posterior proba-
bility distributions from these messages. Luckily, if our model is such that the observation-latent
joint distribution is exponential family, then the messages will be exponential family as well and
we can easily compute their normalizers. Formally, the proportions above give us the following:

P (yt = y|x1:t) =
M(t−1)→t(y)∫
M(t−1)→t(y′)dy′

P (yt = y|x1:T) =
M(t−1)→t(y)M(t+1)→t(y)∫
M(t−1)→t(y′)M(t+1)→t(y′)dy′

the former is called Bayesian filtering and the latter Bayesian smoothing.
The two classical latent chain models are the hidden Markov Model (with discrete latents) and

the linear Gaussian state-space model (with continuous latents):

HMM LGSSM
mixture model + temporal dependencies FA model + temporal dependencies + Ψ not

necessarily diagonal + usually K > D
weak representation (requires 2N states to en-
code N bits)

powerful representation (continuous)

arbitrarily rich dynamics only linear dynamics
invariant to permutations & relaxation to
OOM

invariant to invertible transformations of la-
tents

The parameters for these two models can be learned via EM or via spectral learning.

1.4.1 Hidden Markov Model (HMM)

In this case, latent variables st take on discrete states, and transitions between states are governed
by a transition matrix Φ where Φij = φij = P (st = i|st−1 = j):

s1 ∼ Discrete(π)

st|(st−1 = k) ∼ Discrete(Φk)

xt|(st = k) ∼ Pk(θk)

where Φk is the kth column of Φ. The observation-latent joint distribution is then:

P (x1:T , s1:T) = πs1

T∏
t=2

φstst−1

T∏
t=1

Pst(xt|θst)

13

We can then perform inference using the following recursive message updates:

P (st = k|x1:T) ∝M(t−1)→t(k)M(t+1)→t(k)

Forward message:

αt(k) = P (st = k, x1:t) = Pk(xt|θk)
∑
k′

φkk′αt−1(k′)

α1(k) = P (s1 = k, x1) = πkPk(x1|θk)

Backward message:

βt(k) = P (xt+1:T |st = k) =
∑
k′

Pk′(xt+1|θk′)φk′kβt+1(k′)

βT−1(k) = P (xT |sT−1 = k)
∑
k′

Pk′(xT |θk′)φk′k

Giving us the following filtering and smoothing equations, and pairwise marginals:

P (st = k|x1:t) =
αt(k)∑
k′ αt(k

′)
(filtering)

P (st = k|x1:T) =
αt(k)βt(k)∑
k′ αt(k

′)βt(k′)
(smoothing)

P (st = i, st+1 = j|x1:T) =
P (st = i, st+1 = j, x1:T)

P (x1:T)

=
φjiPj(xt+1|θj)αt(i)βt+1(j)∑

k αT (k)

This recursive message-passing algorithm for computing the posteriors is called the forward-
backward algorithm. We can then use EM to learn the ML parameters of the model, using the
forward-backward algorithm to compute singleton and pairwise posterior expectations in the E-step
and then performing the following M-step updates:

π
(i)
k = P (s1 = k|x1:T , θ

(i−1))

φ
(i)
kk′ =

∑T−1
t=1 P (st = k′, st+1 = k|x1:T , θ

(i−1))∑T−1
t=1 P (st = k′|x1:T , θ(i−1))

where θ(i) = {π(i),Φ(i), {θ(i)
k }}. In other words, replace update πk with the proportion of times

you expect s1 to be in state k and φkk′ with the proportion of all k′ occurrences that you expect to
be followed by a state k. Then update your expectations given these updates (E-step) and iterate.
While this is simply EM, it is also called the Baum-Welch Algorithm. A similar update follows
for Pk. If it is Gaussian, then update it with state-posterior weighted mean and covariance, just
like the M-step updates for the MoG. If it is discrete, with emission probabilities Akk′ , the update
looks just like the update for Φ:

A
(i)
kk′ =

∑T
t=1 δ(xt = k′)P (st = k|x1:T , θ

(i−1))∑T
t=1 P (st = k|x1:T , θ(i−1))

The M-step equations look just like those for a mixture model, with the singleton and pairwise
posteriors as the required responsibilities. haven’t

included
the slide
on rescal-
ing the
messages

haven’t
included
the slide
on rescal-
ing the
messages

In addition to inference, one might also want to compute the most likely sequence of latent
states. One option here is to pick the st at each time point with highest posterior probability, giving
you the maximum expected number of correct states. This wouldn’t necessarily be the most likely
sequence of states, however. To find this, we use the Viterbi decoding algorithm, which is exactly
the same as the forward-backward algorithm, but with maximizations over states as opposed to
summations at each point in the recursion. This is equivalent to performing “zero-temperature”
EM, where instead of using expectations with respect to a posterior in the M-step, we simply use
point estimates taken from the posterior mode (i.e. expectations with respect to a δ−function
centered at the posterior mode - a probability distribution with zero entropy).

14

A generalization of the HMM model is called the Observable Operator Model (OOM). The
form arises from writing the likelihood of the HMM in a certain way:

P (x1:T |π,Φ, {θk}) =
∑
k

πkPk(x1)
∑
k′

φk′kPk′(x2)
∑
k′′

φk′′k′Pk′′(x3) . . .

= πTPx1Φ
TPx2Φ

TPx3 . . .Φ
TPxT 1

= 1TOxTOxT−1
. . .Ox1

π

where 1 is a K × 1 vector of ones, Px = diag([P1(x) . . .PK(x)]), and Ox = ΦAx is called a propa-
gation operator. OOM’s generalize HMMs to the set of all latent chain distributions parameterized
by some Ox. This includes HMMs with transition probabilities that can be negative and/or don’t
sum to one, so it forms a larger class of distributions. Note that they are degenerate wih respect
to a similarity transform Ox ← GOxG

−1. OOMs come into play in spectral learning algorithms
for HMMs, where the learned parameters may belong to the OOM with highest likelihood given
the data. It can be very difficult to normalize OOMs or transform back into an HMM.

1.4.2 Factorial HMM

An alternative to the classical HMM that greatly improves its representational power is the fac-
torial HMM. Here, the latent state at each timepoint t is represented by a whole set of variables
{s(1)
t , s

(2)
t , . . .}, i.e. we have a distributed representation of the latent state. The resulting graph

then looks like an HMM model with several latent chains on top of each other that all have directed
edges to the observations, but no edges between each other, giving the log joint

logP
(
x1:T , {s(m)

1:T }
)

=
∑
m

[
logP (s

(m)
1) +

T∑
t=2

logP (s
(m)
t |s(m)

t−1)

]
+

T∑
t=1

logP (xt|{s(m)
t })

Naturally, inference in this setting gets much more complicated than in the classical HMM, but
we can use factored variational approximations to make it feasible. One approach is to utilize a
structured variational approximation, factoring the posterior over latents Y = {s(1)

1:T , s
(2)
1:T , . . .} into

each of the latent chains:
q(Y) =

∏
m

qm(s
(m)
1:T)

yielding the marginals

qm(s
(m)
1:T) ∝ exp

[
logP (s

(m)
1) +

T∑
t=2

logP (s
(m)
t |s(m)

t−1) +

T∑
t=1

〈
logP (xt|s(1)

t , s
(2)
t , . . .)

〉∏
m′ 6=m qm′

]

∝ π(m)

s
(m)
1

T∏
t=2

φ
(m)

s
(m)
t s

(m)
t−1

T∏
t=1

e

〈
logP (xt|s(1)t ,s

(2)
t ,...)

〉∏
m′ 6=m q

m′

which looks just like the usual HMM observation-latent joint (which is always proportional to the
latent posterior) but with the likelihood term modified to incorporate information from the other
m′ 6= m chains. This allows for explaining away, which we would expect from the collider nodes
in the DAG structure (section 6.1.3).

A second approach would be mean-field learning, where we assume the posterior over latents
factors over each variable in each chain at each timepoint:

q(Y) =
∏
m

T∏
t=1

qm(s
(m)
t)

we then get the approximate marginals

qmt(s
(m)
t = i) ∝ exp

[〈
logP (s

(m)
t = i|s(m)

t−1)
〉
qm(t−1)

+
〈

logP (s
(m)
t+1|s

(m)
t = i)

〉
qm(t+1)

+
〈

logP (xt|s(1)
t , s

(2)
t , . . .)

〉∏
m′ 6=m qm′t

]
∝ e

〈
logP (xt|s(1)t ,s

(2)
t ,...,s

(m)
t =i,...)

〉∏
m′ 6=m q

m′t
+
∑
j qm(t−1)

(
s
(m)
t−1=j

)
log φ

(m)
ij

e
∑
j qm(t+1)

(
s
(m)
t+1=j

)
log φ

(m)
ji

∝M(t−1)→t(i)M(t+1)→t(i)

15

which yields a message passing solution just like the forward-backward algorithm, with a forward
message (in blue) and a backward message (in red). Just like in forward-backward algorithm, the
only incoming messages are those from its neighbors in the chain: the “mean field”. Importantly, as
in the structured variational approach, explaining away can occur via interactions between chains
in the log likelihood term logP (xt|s(1)

t , s
(2)
t , . . .).

1.4.3 Linear-Gaussian State-Space Model (LGSSM)

The LGSSM model is just like the FA model but with first-order temporal dependencies between
latents:

y1 ∼ N (µ0,Σ0)

yt|yt−1 ∼ N (Ayt−1,Σy)

xt|yt ∼ N (Byt,Σx)

One crucial difference with FA is that usually the latent dimensionality is often chosen to be greater
than the data space dimensionality, since this allows for modelling the observations’ underlying dy-
namics that may arise in a higher dimensional space. Additionally, the data covariance parameters
Σx,Σy need not be diagonal.

For inference with the LGSSM, forward and backward recursion (i.e. message passing) yield
the Kalman filtering and Kalman smoothing equations:

Kalman Filtering:

P (yt|x1:t) = N (yt|µ̂(t)
t , Σ̂

(t)
t)

µ̂
(t)
t = µ̂

(t−1)
t +Kt(xt −Bµ̂(t−1)

t)

Σ̂
(t)
t = Σ̂

(t−1)
t −KtBΣ̂

(t−1)
t

Kt = Σ̂
(t−1)
t BT(Σ̂x +BΣ̂

(t−1)
t BT)−1 (Kalman gain)

µ̂
(t−1)
t = Aµ̂

(t−1)
t−1

Σ̂
(t−1)
t = Σ̂y +AΣ̂

(t−1)
t−1 AT

µ̂
(0)
1 = µ̂0

Σ̂
(0)
1 = Σ̂0

Kalman Smoothing:

P (yt|x1:T) = N (yt|µ̂(T)
t , Σ̂

(T)
t)

µ̂
(T)
t = µ̂

(t)
t + Jt(µ̂

(T)
t+1 −Aµ̂

(t)
t)

Σ̂
(T)
t = Σ̂

(t)
t + Jt(Σ̂

(T)
t+1 − Σ̂

(t)
t+1)JT

t

Jt = Σ̂
(t)
t AT(Σ̂

(t)
t+1)−1

and we start the backward recursion with the estimates µ̂(T)
T , Σ̂

(T)
T obtained from running the

Kalman filter up to time T .
For ML parameter learning with EM, we use the Kalman smoothing equations (or message

passing) to get singleton and pairwise posteriors for the E-step and then perform the following
M-step updates:

Anew =

(
T−1∑
t=1

〈yt+1y
T
t 〉

)(
T−1∑
t=1

〈ytyT
t 〉

)−1

Bnew =

(
T∑
t=1

xt〈yt〉T
)(

T∑
t=1

〈ytyT
t 〉

)−1

where the expectations are with respect to the singleton and pairwise posteriors computed with
the parameters estimated in the previous iteration. Just like FA, these are very similar to the
ML solution for linear regression weights (in fact the B update is exactly the same as the loading
matrix A update for FA).

16

1.4.4 Non-linear state-space model (NLSSM)

We can generalize the state-space model to non-linear dynamics by modelling Markov temporal
dependencies through non-linear functions f and g:

yt = f(yt−1, ut−1) + wt

xt = g(yt, ut) + vt

where wt, vt are temporally independent innovations noise terms and ut are input variables, which
are known. When we assume the noise to be 0-mean Gaussian, we then have:

yt|yt−1, ut−1 ∼ N (f(yt−1, ut−1),Σy)

xt|yt, ut ∼ N (g(yt, ut),Σx)

Of course, inference in this setting becomes intractable, since we can no longer use our Gaussian
marginal and posterior identities when the relationship between variables is non-linear. We must
thus resort to approximations.

One such approximation is called the Extended Kalman Filter/Smoother (EKF/S). The idea is
to simply linearize the system at each timepoint, and then run the Kalman filter/smoother on the
resulting non-stationary system:

P (yt|yt−1, ut−1) = N
(
yt

∣∣∣f(µ̂
(t−1)
t−1 , ut−1) +

∂f

∂y

∣∣∣
µ̂
(t−1)
t−1

(yt−1 − µ̂(t−1)
t−1),Σy

)
= N

(
yt

∣∣∣b̃t + Ãtyt−1,Σy

)
P (xt|yt, ut) = N

(
xt

∣∣∣g(µ̂
(t−1)
t , ut) +

∂g

∂y

∣∣∣
µ̂
(t−1)
t

(yt − µ̂(t−1)
t),Σx

)
= N

(
yt

∣∣∣d̃t + C̃tyt,Σy

)

where µ̂(t′)
t is the mean of the (Gaussian) posterior P (yt|x1:t′), i.e. the estimate of yt taking into

account all observations until time t′. We can then obtain the filtering and smoothing posteriors
recursively (forward and backward, respectively) by running the Kalman filter.

Another option is to use an approximate message passing scheme via EP. We can write the
posterior distribution over latents as:

P (y1:T |x1:T) =
1

Z

∏
t

P (yt|yt−1)P (xt|yt)

=
1

Z

∏
t

ft(yt, yt−1)

We then approximate these factors with f̃t(yt, yt−1) via EP. By writing out the cavity distribution,
we observe that the resulting factor updates form a recursive message passing algorithm, with the
messages approximated by the EP factors:

q¬t(yt, yt−1) =

∫ ∫
dyt′<t−1dyt′>t

∏
t′ 6=t

f̃t′(yt′ , yt′−1)

=

∫
dyt′<t−1

∏
t′≤t−1

f̃t′(yt′ , yt′−1)

∫
dyt′>t

∏
t′>t

f̃t′(yt′ , yt′−1)

= αt−1(yt−1)βt(yt)

where
αt(yt) =

∫
dyt−1 f̃t(yt, yt−1)αt−1(yt−1)

is a recursive forward message and

βt(yt) =

∫
dyt+1 f̃t+1(yt+1, yt)βt+1(yt+1)

17

is a recursive backward message. We then approximate the factors by computing the approximate
marginal distribution P̂θ(yt, yt−1) via the KL minimization:

P̂θ(yt, yt−1) = arg min
Pθ

KL
[
P̃(yt, yt−1)‖Pθ(yt, yt−1)

]
where

P̃ (yt, yt−1) = ft(yt, yt−1)q¬t(yt, yt−1)

Pθ(yt, yt−1) = f̃t(yt, yt−1)q¬t(yt, yt−1)

If our approximate factors f̃t are constrained to be Gaussian, then Pθ is Gaussian as well (parametrized
by natural parameters θ) and the minimum KL is achieved via moment matching (see section 5.2).
We can then update our approximate factors and messages via:

f̃t(yt, yt−1) =
P̂θ(yt, yt−1)

αt−1(yt−1)βt(yt)

αt(yt) =
1

βt(yt)

∫
dyt−1 P̂θ(yt, yt−1)

βt(yt) =
1

αt(yt)

∫
dyt+1 P̂θ(yt+1, yt)

The EP algorithm proceeds by passing forward and backward messages along the chain multiple
times until convergence on some set of approximate factors (and messages). We can then use these
factors to compute posteriors.

1.4.5 Spectral Learning

When the likelihood distribution P (xi|θ) is exponential family, maximum likelihood learning with
i.i.d. data is equivalent to moment matching:

〈T (x)〉P (x|θML) =
1

N

N∑
i=1

T (xi)

i.e. the maximum likelihood parameter is that which matches the expected sufficient statistics to
their empirical mean. Spectral learning is based on generalizing this idea to non-exponential family
distributions: given some function of the data T (x) and some metric C, optimize your parameters
via

θ∗ = arg min
θ
‖〈T (x)〉P (x|θ) −

1

N

N∑
i=1

T (xi)‖C

If T (x) and C are picked well, the resulting learning algorithm may have a global and consistent
optimum, thus evading the local maxima problem of EM.

One straight-forward application of this is to latent chain models, with T (x) set to correlations
between observations at different time-lags. For LGSSMs, the resulting learning algorithm is called
Ho-Kalman SSID. We first define the cross correlation at some time lag τ as

Mτ = 〈xt+τxT
t 〉 = 〈Byt+τ (Byt)

T〉 = BAτ 〈ytyT
t 〉BT

since the Gaussian error εt is independently drawn at each timestep and therefore uncorrelated
with any variability in the past, so 〈εt+τyT

t 〉 = 0. In the last equality we assumed stationarity of
the Markov chain, such that yt+τ ≈ Aτyt - a key assumption of the Ho-Kalman spectral algorithm
(that never really holds). Setting a maximum time lag of L, we proceed to construct the LD×LM
Hankel matrix

H = 〈x+
t x
−
t

T〉 =

M1 M2 . . . ML

M2
.

...
...

.
...

ML M2L−1

18

where we are computing the covariance between the DL× 1 vectors

x+
t =

xt
xt+1

...
xt+L−1

 x−t =

xt−1

xt−2

...
xt−L

Taking the identity derived above Mτ = BCτ 〈ytyT

t 〉BT, we note the Hankel matrix factors as

H =

B
BA
...

BAL−1

 [AΠBT A2ΠBT . . . ALΠBT] = ΞΥ

with Π = 〈ytyT
t 〉. Under the assumption of stationarity, we can get an empirical estimate of this

by

Ĥ =
1

T − 2(L+ 1)

T−L+1∑
t=L+1

x+
t x
−
t

T

which we can use to get least-squares estimates of Ξ and Υ via the SVD deomposition of the Hankel not sure
why we
can’t
use the
whole
chain for,
say, M1

not sure
why we
can’t
use the
whole
chain for,
say, M1

matrix:

Ĥ = USV T

Ξ = US
1
2 Υ = S

1
2V T

Then, we can estimate A,B,Π via regression between blocks and Σy,Σx from the second moments
of xt and yt, by stationarity:

Ξ1:(L−1)DA = Ξ2:LD

lim
t→∞
〈ytyT

t 〉 = Π = Σy +AΠAT

lim
t→∞
〈xtxT

t 〉 = Σx +BΠBT

with somewhat more complicated but similar regression equations for B,Π. Moreover, noting from
the factorization of H that its rank can’t be greater than the latent dimensionality K (the number
of row/columns in Ξ/Υ), we can use the eigenspectrum of the Hankel matrix to estimate K.

Spectral methods for learning are great because they are efficient and find the global optimum
for the parameters while also providing an estimate of the latent dimensionality. However, they
critically require the assumption of stationarity, which is often a bad assumption in the context of
latent chain models (particularly short ones). Whenever this assumption holds however, spectral
learning recovers the true parameters.

In the case of HMM’s, spectral learning is limited by the fact that it only recovers the parameters
up to an arbitrary invertible transform of the latents. This implies that the parameters returned
by spectral learning are those of an OOM, which is not easy to turn into an HMM if it is not
already one.

1.5 Markov Random Fields
A Markov Random Field is an undirected graphical model, where some of the nodes are observed
and others are not, called the “hidden” or latent variables.

Any discrete MRF with pairwise interactions can be parameterized as an exponential family
joint distribution as follows:

P (X) =
1

Z

∏
nodes i

P (Xi)
∏

edges (ij)

P (Xi, Xj)

= exp

∑
i

logP (Xi) +
∑
(ij)

logP (Xi, Xj)− logZ

= exp

∑
i

∑
k

θi(k)δ(Xi = k) +
∑
(ij)

∑
k,k′

θij(k, k
′)δ(Xi = k)δ(Xj = k′)− φ(θ)

19

where θi(k) = logP (Xi = k), θij(k, k
′) = logP (Xi = k,Xj = k′) and φ(θ) is the log partition

function. For any observed node Xa or pair of observed nodes Xa, Xa′ , θa(k) = θaa′(k, k
′) = 0.

We thus had an exponential family distribution with natural parameters and sufficient statistics

θ = [θi(k), θij(k, k
′) ∀i, j, k, k′]

T (X) = [δ(Xi = k), δ(Xi = k)δ(Xj = k′) ∀i, j, k, k′]

and mean parameters (i.e. expected sufficient statistics)

µ = [P (Xi = k), P (Xi = k,Xj = k′) ∀i, j, k, k′]

Given the exponential family form, one way to perform inference in an MRF is to solve the
dual optimization problem

arg max
µ∈M

θTµ− ψ(µ)

which is equivalent to maximizing the free energy lower bound on the log likelihood (see section
7.2 for this derivation). Here, the set of feasible meansM is the set of globally consistent marginal
probabilities, i.e. the set of singleton marginals P (Xi) and pairwise marginals P (Xi, Xj) such that∑

X\Xi

P (X) = P (Xi)

Unfortunately, M and ψ(µ) are generally hard to work with, so we proceed with the following
approximation:

1. Relax M to L, the set of locally consistent marginals, i.e. the set of singlteon bi(Xi) and
pairwise bij(Xi, Xj) marginals such that∑

Xj

bij(Xi, Xj) = bi(Xi)

In the terminology of loopy BP, we call these pseudomarginals.

2. Approximate ψ(µ) with the negative entropy that we would have if the graph structure were
a tree:

ψ̃(µ) = −
∑
i

H[bi] +
∑
(ij)

KL[bij(Xi, Xj)||bi(Xi)bj(Xj)]

It is not hard to see that ψ̃(µ) = −HBethe(µ), such that the resulting approximation is equivalent
to replacing a maximization of the true free energy lower bound on the log likelihood with a
maximization of the Bethe free energy (section 6.3.2). This implies that if the graph structure is
a tree, our approximation is in fact exact, since (i) the Bethe entropy is the true entropy under a
tree structure and (ii) in a tree, local consistency implies global consistency of the marginals, i.e.
L =M.

Indeed, the above approach to inference is equivalent to simply running BP on the graph. If the I thinkI think
graph is a tree, the resulting marginals are exact. Otherwise, you get the loopy BP approximation
with locally but not necessarily globally consistent marginals. However, we’ve lost the advantage
of replacing the primal problem with the dual, since the resulting optimization problem

arg max
µ∈L

θTµ+HBethe(µ)

is no longer convex. Even though L is still a convex set, HBethe(µ) is not convex in µ. convexifying
BP by
tighten-
ing an
upper
bound on
the log
partition
function

convexifying
BP by
tighten-
ing an
upper
bound on
the log
partition
function

1.5.1 MAP estimation

MAP estimation on a discrete pairwise MRF is another computationally difficult optimization
problem that we can solve efficientlly via an approximation, called a linear programming (LP)
relaxation. The optimization problem is as follows:

XMAP = arg max
X={Xi}

∑
i

∑
k

θi(k)δ(Xi = k) +
∑
(ij)

∑
k,k′

θij(k, k
′)δ(Xi = k)δ(Xj = k′)

20

which we can rewrite as optimization under constraints:

XMAP = arg max
{bi,bij}

∑
i

∑
k

θi(k)bi(k) +
∑
(ij)

∑
k,k′

θij(k, k
′)bij(Xi = k,Xj = k′)

subject to ∀i, j bi(k), bij(k) ∈ {0, 1}

∀i
∑
k

bi(k) = 1

∀i, j
∑
k′

bij(k, k
′) = bi(k)

The linear programming relaxation consists of relaxing the first constraint to:

∀i, j bi(k), bij(k) ∈ [0, 1]

This results in a linear program that we can easily solve. Furthermore, whenever the solution takes
the form bi(k), bij(k) ∈ {0, 1} for all k, i, j, this is the exact solution to the original problem. It
is easy to see that in fact the linear programming relaxation is equivalent to a “zero-temperature”
version of the Bethe free energy maximization discussed above, relaxingM→ L but now ignoring
the Bethe entropy term ψ̃(µ) = HBethe(µ) (i.e. setting the entropy - and hence the “temperature”
- to zero).

When MRF is binary and attractive, it turns out that an LP relaxation always gives us the
exact MAP solution. Furthermore, we can find it via a particularly efficient algorithm called the
Max Flow - Min Cut algorithm, analagous to maximizing network flow on a graph. The joint
distribution of any binary MRF can be written as follows:

P (X) =
1

Z
exp

∑
(ij)

Wijδ(Xi = Xj) +
∑
i

ciXi

The MRF is then called attractive if all Wij ≥ 0, such that neighboring nodes “prefer” to be in the
same state. max cut-

min flow
algo-
rithm

max cut-
min flow
algo-
rithm

1.5.2 Boltzmann Machine

1.5.3 Sigmoid Belief Net

2 Supervised Learning Models

2.1 Linear Regression
The linear regression model is:

y|x,w, σ2 ∼ N (f(x), σ2)

f(x) =

M−1∑
j=0

wjφj(x) = wTφ(x)

φ(x) =
[
φ0(x) φ1(x) . . . φM−1(x)

]T
where y is the output variable, x is the input variable, and {φj(·)} are called the basis functions
(with φ0(x) = b as the bias). While the basis functions can be arbitrary non-linear functions, the
model is still called linear regression since it is linear in each φj . The game in linear regression
is to estimate the corresponding linear weights wj (i.e. the parameter w) given a set of observed
input-output pairs D = {(xi, yi)}Ni=1.

2.1.1 ML Linear Regression

The log likelihood is:

`(w, σ2) =

N∑
i=1

logN (yi|wTφ(xi), σ
2)

21

Setting derivatives with respect to each parameter to 0, we get the following ML estimates:

wML = (ΦΦT)−1Φy

Φ =
[
φ(x1) φ(x2) . . . φ(xN)

]
y =

[
y1 y2 . . . yN

]T
σ2ML

=
1

N

N∑
i=1

(yi −wTφ(xi))
2

It turns out that the ML estimate for w is equivalent to the least-squares estimate that mini-
mizes the squared error: wML = arg maxw `(w, σ2) = arg minw

∑
i(yi−wTφ(xi))

2 = arg minw ‖y−
ΦTw‖. Under this formulation, it is clear that the maximum likelihood estimates wML and σ2ML

correspond to the projection of y onto the row space of Φ and the distance between this projection
and the original vector, respectively. Importantly, we can thus interpret the ML solution for wj as
the scalar projection of y onto the vector φj =

[
φj(x1) φj(x2) . . . φj(xN)

]T.
2.1.2 Bayesian Linear Regression

It is often useful to impose a Gaussian prior on w:

w ∼ N (µw,Σw)

giving the following posterior distribution:

P (w|D) = N
(
w|µw|D,Σw|D

)
µw|D = Σw|D

(
Σ−1
w µw +

1

σ2
Φy

)

Σw|D =

(
ΦΦT

σ2
+ Σ−1

w

)−1

Averaging predictions from every possible setting of w weighted by its posterior probability, we
get the following predictive distribution over outputs ynew for an arbitrary input xnew:

P (ynew|xnew,D, σ, µw,Σw) = N
(
y | φ(xnew)Tµw|D, σ

2 + φ(xnew)TΣw|Dφ(xnew)
)

One commonly used prior is:
w ∼ N (0, α−1I)

which constrains the linear regression weights to be small to avoid overfitting. This is called ridge
regression, or weight decay. The resulting MAP estimate for w is the mean of the resulting posterior
distribution:

wMAP =
(
ΦΦT + σ2αI

)−1

Φy

which is equivalent to what you would get from minimizing the squared error under the constraint
wTw = 0 with Lagrange multiplier α

2 . Since the constraint (the regularizer) is quadratic in w:
wTw =

∑M
j=1 w

2
j , this is called L2 regularization. Other types of regularization with regularizers

of the form
∑M
j=1 w

q
j lead to different constraints on the linear regression weights which may be

useful as well (e.g. the Lasso regularizer with q = 1).

2.2 Gaussian Process Regression
An alternative approach to linear regression is impose a prior distribution on mean functions f(x),
completely bypassing the weights w and basis functions φj(x) by leaving them implicit in the mean
function. It is easy to see that this is in fact a simple generalization of Bayesian linear regression,
since f(x) = wTφ(x) is just a linear transformation of a Gaussian random variable w ∼ N (µw,Σw)
and is thus a Gaussian random variable itself. Because it is a function, however, we formalize its
probability distribution as a stochastic process, defined as a collection of random variables - in

22

this case input-mean output pairs {x1, f(x1)}, {x2, f(x2)}, Since we’ve established that f(x)
is Gaussian distributed, its distribution is given by a Gaussian process:

f(·) ∼ GP(m(·), k(·, ·))

where k(x, x′) is called the covariance kernel. Mercer’s theorem tells us that as long as this kernel is
symmetric and positive semi-definite, it will be equivalent to a dot product between basis function
vectors in RM . Thus, the basis functions are implicit in whatever covariance kernel we pick (as
long as it is symmetric and positive semi-definite), so we can have up to M = ∞ of them if we
want.

Importantly, this doesn’t affect the complexity of our predictive distribution, since resulting
Gaussian requires working only with covariance matrices of size N ×N (so, even though it scales
infinitely well with the number of basis functionsM , GP regression scales pretty badly with sample
size N). We can see this by considering the case of ridge regression and deriving the predictive
distribution in terms of the corresponding covariance kernel:

m(x) = E[f(x)] = E[w]Tφ(x) = 0

k(x, x′) = E[f(x)f(x′)]− E[f(x)]E[f(x′)]

= φ(x)TE[wwT]φ(x′)− 0

= α−1φ(x)Tφ(x′)

Given the linear regression model above, this yields the following moments of the marginal distri-
bution over outputs y =

[
y1 . . . yN

]T with corresponding (known) inputs x1, . . . , xN :

E[yi] = E[f(xi)] = m(xi) = 0

Var[yi] = σ2 + Var[f(xi)] = σ2 + k(xi, xi)

cov[yi, yj] = cov[f(xi), f(xj)] = k(xi, xj)

⇒ y ∼ N (0, K̃D)

KD = α−1ΦTΦ

K̃D = KD + σ2I

where Φ =
[
φ(x1) φ(x2) . . . φ(xN)

]
as above, and the N × N Gram matrix KD is such

that KD,ij = k(xi,xj) for all input data points i, j = 1, . . . , N . Given some set of new inputs
{x′1, . . . , x′N ′} we can now use this marginal distribution to easily obtain a predictive distribu-
tion over their corresponding outputs ynew =

[
y′1 . . . y′N ′

]T by simply using our identities of
partitioned Gaussians:

Y ∼ N (0,K)

Y =
[
y1 y2 . . . yN y′1 y′2 . . . y′N ′

]T
K =

[
K̃D K′

K′
T

K̃new

]
K̃new = α−1ΦT

newΦnew + σ2I

K′ = α−1ΦTΦnew

Φnew =
[
φ (x′1) φ (x′2) . . . φ (x′N ′)

]
⇒ P (ynew|y) = N (K′

T
K̃−1
D y, K̃new −K′

T
K̃−1
D K′)

One can easily verify (via some clever applications of the matrix inversion lemma) that the resulting
predictive distribution is equivalent to that obtained via traditional ridge regression. The crucial
point is that when we perform linear regression in this way (i.e. in terms of the covariance kernel
k(·, ·)), all we need to do is contruct the N + N ′ × N + N ′ Gram matrix K : Ki,j = k(xi, xj) to
define our final Gaussian predictive distribution.

The general approach in GP regression is to pick a covariance kernel k(·, ·) that reflects some-
thing about how the inputs and outputs covary, and then let the GP machinery produce the

23

predictive distribution corresponding to the basis functions and Gaussian prior on weights implicit
in this kernel via Mercer’s theorem. A table of a few commonly used kernels and the properties of
the functions favored by the resulting GP prior is outlined below.

One may also want to hand-pick a non-zero mean on the Gaussian process prior on the mean
function f(x). A typical application is using a GP prior to model the residuals in some standard
regression model with some set of preset basis functions. The case of polynomial regression is
illustrated below:

y = g(x)

= βTφ(x) + f(x)

= β0 + β1x+ β2x
2 + . . .+ βM−1x

M−1 + f(x)

f(·) ∼ GP (0, k(·, ·))
β ∼ N (b,B)

⇒ g(·) ∼ GP
(
bTφ(·), k(·, ·) + φ(·)TBφ(·)

)
2.2.1 Common GP Covariance Kernels

Kernel Function Properties
k(x, x′) = (1− xTx′)m mth degree polynomial
k(x, x′) = θ2 exp

[
−‖x−x

′‖2
2η2

]
smooth on length scale η

k(x, x′) = θ2 exp
[
− 2 sin2(π(x−x′)/τ)

η2

]
smooth & periodic with period τ

k(x, x′) =
(

1 + ‖x−x′‖2
2αη2

)−α
smooth on multiple scales

2.2.2 GP Sparse Linear Regression with Inducing Points

As briefly mentioned above, GP regression scales really badly with the number of training points
N . Specifically, computing the parameters of the predictive distribution requires inverting the
N × N matrix K̃D (see above), which requires O(N3) time. The same inversion is also required
for computing the marginal likelihood/Bayesian evidence P (y|X) = N (y|0, K̃D), which we need
if we want to perform hyperparameter optimization. So can we find a way to make this matrix
smaller?

The “inducing point” approach is to try to find a smaller set of K << N fictitious input-output
pairs {(uj , zj)}Kj=1 (called inducing points) that we can use for approximate prediction. In this
setting, our marginal likelihood becomes:

P (y|X,Z) =

∫
df

∫
du P (y,u, f |X,Z)

=

∫
df

∫
du P (y|f)P (f |u,X,Z)P (u|Z)

where we assume the same GP prior we had on f for the input-output mapping of the inducing
points {(uj , zj)} such that [

u
f

]
∼ N

(
0,

[
KZ KZD

KDZ KD

])
where KZ,ij = k(zi, zj), KZD,ij = k(zi,xj), and KDZ = KT

ZD, treating the fictitious inputs {zi}
as parameters. We thus have:

P (y|f) = N (y|f , σ2I)

P (f |u,X,Z) = N
(
f |KDZK−1

Z u,KD −KDZK−1
Z KZD

)
P (u|Z) = N (u|0,KZ)

We proceed by performing EM, iteratively inferring f and u and optimizing over Z to maximize

24

the free energy lower bound

F(q(f ,u), θ) =

∫
df

∫
du q(f ,u) log

P (y,u, f |X,Z)

q(f ,u)

=

〈
log

P (y|f)P (f |u,X,Z)P (u|Z)

q(f ,u)

〉
q(f ,u)

where θ = {Z, σ2, η}, with the hyperparameters of the kernel k contained in the set η. The trick
is to use a variational E-step with the following variational form:

q(f ,u) = P (f |u,X,Z)q(u)

Since the posterior P (f |u,X,Z) is fixed by the model, our inference step is forced to compress all
information about the data y,X into the posterior on u:

q∗(f ,u) = arg min
q

KL [q(f ,u)‖P (f ,u|y,X,Z)]

= arg min
q

∫
df

∫
du q(f ,u) log

q(f ,u)

P (f ,u|y,X,Z)

= arg min
q

∫
df

∫
du P (f |u,X,Z)q(u) log

P (f |u,X,Z)q(u)

P (f |u,y,X,Z)P (u|y,X,Z)

= arg min
q

∫
du q(u) log

q(u)

P (u|y,X,Z)
+ const.

⇒ q∗(u) = arg min
q

KL [q(u)‖P (u|y,X,Z)]

Using the shorthand P (f |u) = P (f |u,X,Z), our free energy can then be expressed as

F(q(f ,u), θ) =

〈
log

P (y|f)P (u|Z)

q(u)

〉
q(f ,u)

=
〈
〈logP (y|f)〉P (f |u) + logP (u|Z)− log q(u)

〉
q(u)

Expanding the first term, we get (all expectations with respect to P (f |u)):

〈logP (y|f)〉 = −1

2
log |2πσ2| − 1

2σ2
Tr
[〈

(y − f)(y − f)T
〉]

= −1

2
log |2πσ2| − 1

2σ2
Tr
[
yyT − 〈f〉yT − y〈f〉T + 〈ffT〉

]
= −1

2
log |2πσ2| − 1

2σ2
Tr
[
yyT − 〈f〉yT − y〈f〉T + Σf |u + 〈f〉〈f〉T

]
= −1

2
log |2πσ2| − 1

2σ2
Tr
[
(y − 〈f〉)(y − 〈f〉)T

]
− 1

2σ2
Tr
[
Σf |u

]
= logN (y|〈f〉, σ2I)− 1

2σ2
Tr
[
Σf |u

]
where Σf |u = KD −KDZK−1

Z KZD, giving us

F(q(u), θ) =

〈
log
N (y|KDZK−1

Z u, σ2I)N (u|0,KZ)

q(u)

〉
q(u)

− 1

2σ2
Tr
[
KD −KDZK−1

Z KZD
]

Recognizing
N (y|KDZK−1

Z u, σ2I)N (u|0,KZ) = P (y,u|σ2,KZ)

as the observation-latent joint distribution of a PPCA-like model with loading matrix KDZK−1
Z

and recalling that after the E-step q(u) = P (u|y,X,Z), we have that the fraction inside the

25

logarithm simplifies to the PPCA likelihood

N (y|KDZK−1
Z u, σ2I)N (u|0,KZ)

q(u)
=
P (y,u|σ2,KZ)

P (u|y,X,Z)

= P (y|X,Z)

=

∫
N (y|KDZK−1

Z u, σ2I)N (u|0,KZ)du

= N
(
y|0, σ2I + (KDZK−1

Z)KZ(KDZK−1
Z)T

)
= N

(
y|0, σ2I + KDZK−1

Z KZD
)

giving us the following simplification of the free energy:

F(q∗, θ) = logN
(
y|0, σ2I + KDZK−1

Z KZD
)
− 1

2σ2
Tr
[
KD −KDZK−1

Z KZD
]

Our M-step then consists of maximizing this with respect to Z, σ2, and any other hyperparameters
of the kernel to improve the variational approximation. The result is a marginal likelihood that
only requires inverting the K ×K matrix KZ .

2.3 GP Logistic Regression
Nice EP example

2.4 Discriminative vs Generative Modelling
Suppose we have some labelled data {x1:T } with corresponding labels {s1:T }. The goal of super-
vised learning is to use these labels to get an estimate θ̂ of the parameters of the conditional label
distribution P (s1:T |x1:T , θ) to then be able to label new data. Two possibilities arise in computing
θ̂:

• Discriminative modelling:

θ̂cond = arg max
θ
〈logP (s1:T |x1:T , θ)〉P̃

• Generative modelling:

θ̂joint = arg max
θ
〈logP (s1:T , x1:T |θ)〉P̃

where P̃ (s1:T , x1:T) is the true distribution of the labelled training data. By construction,

〈logP (s1:T |x1:T , θ̂cond)〉P̃ ≥ 〈logP (s1:T |x1:T , θ̂joint)〉P̃

where the equality holds if P̃ is of the same form/model class as P (s1:T , x1:T |θ), such that
P (s1:T , x1:T |θ̂joint) = P̃ (s1:T , x1:T).

While this is usually not the case, discriminative modelling tends to lead to overfitting, and is
much more complicated than generative modelling.

2.5 Conditional Random Field (CRF)
CRFs are a multivariate generalization of generalized linear models (GLMs): Is this

unsuper-
vised or
super-
vised??

Is this
unsuper-
vised or
super-
vised??

P (s1:T |x1:T , λ, κ) ∝ exp

 T∑
t=1

∑
i

λifi(st, xt) +

T∑
t=2

∑
j

κjgj(st, st−1, xt, xt−1)

where {st} are labels corresponding to observations {xt}. ML parameter estimation can be done
via gradient ascent: don’t un-

derstand
where
the ex-
pecta-
tions
come
from

don’t un-
derstand
where
the ex-
pecta-
tions
come
from

26

3 Model Selection
ML and MAP parameter learning concerns inferring the parameters of a given model. But how do
we choose the model in the first place? For this, maximum likelihood won’t help, since the likelihood
will always be higher for a model with more parameters, leading to overfitting. Normatively, we
should pick the model m with the highest posterior distribution

P (m|D) =
P (D|m)P (m)

P (D)

Typically, we assume a uniform prior over models, such that we perform model selection by com-
paring the marginal likelihood or Bayesian evidence

P (D|m) =

∫
dθm P (D|θm,m)P (θm|m)

Performing model selection in this way in fact avoids the overfitting problem completely by au-
tomatically implementing a form of Occam’s razor because the Bayesian evidence is a probability
distribution over data sets that has to normalize to one. Thus, while a highly complex and flexible
model with lots of parameters will have a non-zero marginal likelihood over many more data sets,
the density will be lower for all of them. A simpler model will have zero marginal likelihood for
many possible data sets, but a much higher density for those that are non-zero. Thus, model
selection via the Bayesian evidence autmoatically leads to selecting the model with just the right
level of complexity/flexibility. (see diagram in slides)

For conjugate-exponential family models, the Bayesian evidence is usually tractable, given by
the ratio of the posterior and prior volume occupied in this data space:

P (D|m) =

∫
dθm g(θm)Neθ

T
m

∑
i T (xi)

1

Z(τ, ν)
g(θm)νeθ

T
mτ

=
1

Z(ν, τ)

∫
dθm g(θm)ν+Neθ

T
m(τ+

∑
i T (xi))

=
Z (ν +N, τ +

∑
i T (xi))

Z(ν, τ)

Usually, however, computing the Bayesian evidence is intractable, so we need to approximate:

3.1 Laplace Approximation
The Laplace approximation is a second order Taylor expansion of the log joint around the parameter
posterior mode θMAP

m :

P (D|m) =

∫
dθm P (D, θm|m)

=

∫
dθm exp [logP (D, θm|m)]

≈
∫

dθm exp

[
logP (D, θMAP

m |m) +

(
∂

∂θm

∣∣∣
θMAP
m

logP (D, θm|m)

)(
θm − θMAP

m

)
+

1

2

(
θm − θMAP

m

)T(∂2

∂θ2
m

∣∣∣
θMAP
m

logP (D, θm|m)

)(
θm − θMAP

m

)]
≈
∫

dθm exp

[
logP (D, θMAP

m |m)− 1

2

(
θm − θMAP

m

)T
A−1

(
θm − θMAP

m

)]
≈ P (D, θMAP

m |m)

∫
dθm exp

[
−1

2

(
θm − θMAP

m

)T
A
(
θm − θMAP

m

)]
≈ P (D, θMAP

m |m)|2πA−1| 12

≈ P (D|θMAP
m ,m)P (θMAP

m |m)(2π)
M
2 |A|− 1

2

where

A = − ∂2

∂θ2
m

∣∣∣
θMAP
m

logP (D, θm|m)

27

is the negative Hessian of the log joint evaluated at θMAP
m andM is the number of parameters. This

arises from going from the 5th to the 6th line above, where we note that the expression inside the
integral is an unnormalized Gaussian distribution over θm, with mean and covariance θMAP

m and
A−1, respectively. Thus, the Laplace approximation is equivalent to approximating the posterior
distribution over parameters with a Gaussian: an approximation that, by CLT, is correct in the
limit of infinite data.

3.2 Bayesian Information Criterion (BIC)
The BIC is an easy number to compute to give a rough criterion by which to compare models. It is
derived from the Laplace approximation in the limit of infinite data. We first note the dependence
of A on N by writing down the negative Hessian of the log joint for i.i.d. data D = {xi}Ni=1:

A = −
(
∂2

∂θ2
m

∣∣∣
θMAP
m

logP (D|θm,m) +
∂2

∂θ2
m

∣∣∣
θMAP
m

logP (θm,m)

)
= −

(
N∑
i=1

∂2

∂θ2
m

∣∣∣
θMAP
m

logP (xi|θm,m) +
∂2

∂θ2
m

∣∣∣
θMAP
m

logP (θm|m)

)
= NA0 +A1

As N →∞, then, the Laplace approximation of the log evidence becomes:

lim
N→∞

logP (D|m) ≈ lim
N→∞

logP (D|θMAP
m ,m) + logP (θMAP

m |m) +
D

2
log(2π)− 1

2
log |A|

≈ lim
N→∞

N∑
i=1

logP (xi|θMAP
m ,m) + logP (θMAP

m |m) +
D

2
log(2π)− 1

2
log |NA0 +A1|

≈
N∑
i=1

logP (xi|θMAP
m ,m)− 1

2
logNM

≈ logP (D|θMAP
m ,m)− M

2
logN

where M is equal to the number of parameters such that the second term is a penalty on the
number of parameters.

While the BIC is an approximation of an approximation in a usually unrealistic limit, it is very
easy to compute, sinc we will already have the log likelihood and θMAP

m from parameter learning.
Furthermore, in the limit of infinite data, θML = θMAP, so it is theoretically ok to use the ML
estimate rather than the MAP estimate in the evaluation of the likelihood term, making the BIC
a straight-forward number to compute after ML parameter estimation for model selection.

3.3 Hyperparameter Optimization
Sometimes, we will have fixed parametric model in mind, with a prior over the parameters
parametrized by a set of hyperparameters. In this case, we want to select the model with the
setting of the hyperparameters η that maximizes the Bayesian evidence:

P (D|η) =

[∫
dθm P (D|θm)P (θm|η)

] [
P (η)

P (D)

]
where we only need to take into account the term in blue if we assume a non-uniform hyperprior
P (η) on the hyperparameters. Learning the model by optimizing the hyperparameters is called
maximum marginal likelihood or Type 2 Maximum Likelihood (ML-2) learning.

For Bayesian linear regression with a 0-mean Gaussian prior on the weights N (0,Σw), for

28

example, the Baysian evidence E(Σw, σ
2) is as follows:

E(Σw, σ
2) =

∫
dwN (y|ΦTw, σ2)N (w|0,Σw)

= N (y|0, (σ2I + ΦTΣwΦ))

=

√
|2πΣw|D|

|2πσ2I||2πΣw|
exp

[
−1

2
yT

(
1

σ2
−

ΦTΣw|DΦ

σ4

)
y

]

where Σw|D =
(

Σ−1
w + ΦΦT

σ2

)−1

is the covariance of the posterior on w.

3.3.1 Automatic Relevance Detection (ARD)

We can exploit hyperparameter optimization to learn the dimensionality of a latent or parameter
space. This is called automatic relevance detection.

In linear regression, we can use this to learn the number of basis functions we actually need
to model the data. Given some set of M basis functions, we impose the ridge regression prior on
weights:

wk ∼ N (0, α−1
k I)

and then perform Bayesian evidence optimization to learn the αk’s, k = 1, . . . ,M . Computing the
derivatives of the above Bayesian evidence with respect to αk and σ2 and equating to 0, we get:

αnewk =
1− αk

[
Σw|D

]
kk

µw|D2
k

σ2new =
(yT − µT

w|DΦ)(yT − µT
w|DΦ)T

N −
∑
k

(
1− αk

[
Σw|D

]
kk

)
where µw|D = Σw|D

Φy
σ2 is the mean of the posterior on w. During optimization, some of the αk’s no idea

how
these
solutions
arise...

no idea
how
these
solutions
arise...

diverge to infinity, indicating irrelevant inputs/basis functions. Running this algorithm yields a
sparse solution to regression that avoids the overfitting pitfalls of ML regression.

We can also use ARD to learn the latent dimensionality in a linear Gaussian latent variable
model like Factor Analysis. Analagously to the linear regression case, we impose the following
prior on the loading matrix:

Ak ∼ N (0, α−1
k I)

where Ak is the kth column of the loading matrix. We proceed by writing the model as K = D,
and then run variational Bayes with an additional hyper-M step to optimize the αk’s’ at each
iteration:

αnewk = arg max
αk

∫ ∫
dYdAQy(Y)QA(A)

(
logP (X|Y,A) + logP (Y) +

D∑
k′=1

logP (Ak′ |αk′)

)
= arg max

αk

〈logP (Ak|αk)〉QA

= arg max
αk

〈logN (Ak|0, αkI)〉QA

As before, the differe αk’s will diverge, with some going to infinity and thus indicating irrelevant
dimensions. So we can estimate the latent space dimensionality by counting the number of αk’s
that remain finite.

3.4 Variational Bayes (VB)
For a latent variable model, rather than directly trying to compute the Bayesian evidence, an
alternative more tractable approach is to compute a free energy lower bound on it. Then, we
might proceed by picking the model with the highest such lower bound on the evidence. We can
compute the true free energy in the usual way, but now treating the parameters as an additional
latent variable:

logP (D|m) = log

∫ ∫
dYdθmQ(Y, θm)

P (X ,Y, θm|m)

Q(Y, θm)

Jensen
≥

∫ ∫
dYdθmQ(Y, θm) log

P (X ,Y, θm|m)

Q(Y, θm)

29

With this formulation, we can now hope to compute the Bayesian evidence via an EM-like algorithm
to saturate this free energy lower bound. As we know from our E-step equations, however, the
optimal value of Q is the true posterior over latents and parameters Q(Y, θm) = P (Y, θm|X), which
is rarely accessible or tractable. So, we take a factored variational approach to approximating it
by assuming that Q factorizes over the latents and parameters Q(Y, θm) = Qy(Y)Qθ(θm), giving
us the following lower bound on the true free energy lower bound:

logP (D|m) ≥
∫ ∫

dYdθmQy(Y)Qθ(θm) log
P (X ,Y, θm|m)

Qy(Y)Qθ(θm)
= F(Qy, Qθ)

Maximizing the approximate free energy lower bound F(Qy, Qθ) (which is really a lower bound on
a lower bound) to approximate the Bayesian evidence is called variational Bayes. Indeed, we can
find the latents and variables that maximize it by using a variational EM-like algorithm:

• VB-E step:
Q(i)
y (Y) ∝ exp

[
〈logP (X ,Y|θm)〉

Q
(i−1)
θ

]
• VB-M step:

Q
(i)
θ (θm) ∝ P (θm|m) exp

[
〈logP (X ,Y|θm)〉

Q
(i)
y

]
where i indexes the current iteration. This iterative algorithm will eventually converge to an
approximate lower bound on the Bayesian evidence and approximate posteriors over latents Qy
and parametersQθ. Thus, we can use the variational Bayes algorithm for model selection, inference,
and parameter estimation! Indeed, in the EM-like formulation above, we can see that the original
EM algorithm is just zero-temperature variational Bayes, where the approximate posterior over
parameters is a δ−function centered at θ∗m = arg max

θ
P (θ|m) exp

[
log 〈P (X ,Y|θ)〉

Q
(i)
y

]
(i.e. the

E-step posterior is parametrized by a point estimate of θ rather than an expectation).
When the model joint is conjugate-exponential family with i.i.d. observations X = {xi}Ni=1:

P (X ,Y|θm) = g(θm)N

[
N∏
i=1

f(xi, yi)

]
e
∑N
i=1 φ(θm)TT (xi,yi)

P (θm|τ, ν) = F (τ, ν)g(θm)νeφ(θm)Tτ

the VB-E and VB-M steps simplify to

Q(i)
y (Y) ∝ exp

[
N log g(θm) +

N∑
n=1

log f(xn, yn) + 〈φ(θm)〉T
Q

(i−1)
θ

T (xn, yn)

]

∝
N∏
n=1

f(xn, yn) exp
[
〈φ(θm)〉T

Q
(i−1)
θ

T (xn, yn)
]

=

N∏
n=1

P
(
yn|xn, 〈φ(θm)〉

Q
(i−1)
θ

)
Q

(i)
θ (θm) ∝ exp

[
logF (τ, ν) + ν log g(θm) + φ(θm)Tτ +N log g(θm) +

N∑
n=1

〈log f(xn, yn)〉
Q

(i)
y

+ φ(θm)T 〈T (xn, yn)〉
Q

(i)
y

]

∝ exp

[
(ν +N) log g(θm) + φ(θm)T

(
τ +

N∑
n=1

〈T (xn, yn)〉
Q

(i)
y

)]
= P (θm|τ̃ (i), ν̃)

ν̃ = ν +N

τ̃ (i) = τ +

N∑
n=1

〈T (xn, yn)〉
Q

(i)
y

Thus, all we need to keep track of across iterations is τ̃ (i), since ν̃ is fixed given a data set and the
expected sufficient statistics 〈T (xi, yi)〉P (yi|xi,〈θm〉P (θm|τ̃,ν̃))

depend on τ̃ . The EM-like algorithm

30

will eventually converge to τ̃∗ yielding the approximate latent and parameter posteriors

Q∗y(Y) =

N∏
i=1

q∗i (yi)

q∗i (yi) = P (yi|xi, 〈θm〉Q∗θ)

Q∗θ(θm) = P (θm|τ̃∗, ν̃)

and the free energy lower bound on the Bayesian evidence F(Q∗y, Q
∗
θ).

We can also use VB for hyperparameter optimization by introducing a hyper-M step (after the
M-step) to maximize the free energy lower bound with respect to the hyperparameter:

η(i) = arg max
η

F(Qy, Qθ, η)

= arg max
η

∫ ∫
dYdθmQy(Y)Qθ(θm) logP (X ,Y, θm|η)

We can exploit this to perform automatic relevance detection (section 3.3.1.

3.5 Annealed Importance Sampling
We can also use importance sampling to approximate the Bayesian evidence.

4 Expectation Maximization
It is often the case with latent variable models that the latent-observation joint distribution
P (Y,X|θ) has a form that is easy to work with (e.g. exponential family) and easy to optimize with
respect to the parameters θ when the latents Y are fixed. However, we never know the latents and
estimating them requires we know the parameters, which are the unknowns we want to estimate
in the first place. This suggests an iterative approach whereby we should alternate between (1)
fixing the parameters and estimating the latents and (2) fixing the latents and estimating the
parameters. This is called the EM algorithm, where in step (1) we estimate the latents Y with
their posterior P (Y|X , θ) expectations under the current setting of θ (called the E-step) and in
step (2) we estimate the parameters θ by optimizing the joint distribution P (X ,Y|θ) with respect
to θ, with the latents Y fixed to their previous estimates (called the M-step).

It turns out that when this is performed exactly, you are actually maximizing a lower bound
on the log likelihood, called the free energy F(q, θ):

`(θ) = log

∫
P (X ,Y|θ)dY

= log

∫
q(Y)

P (X ,Y|θ)
q(Y)

dY

Jensen
≥

∫
q(Y) log

P (X ,Y|θ)
q(Y)

dY = F(q, θ)

where q(Y) is an arbitrary probability distribution on latents. The inequality in the last line follows
from Jensen’s rule: for any concave function f (such as the logarithm),

f(E[x]) ≥ E[f(x)]

The EM algorithm then proceeds by iteratively maximizing the free energy lower bound with
respect to q and θ) at each iteration i:

31

• E-step:

q(i)(Y) = arg max
q

F(q, θ(i−1))

= arg max
q

∫
q(Y) log

P (X ,Y|θ(i−1))

q(Y)
dY

= arg max
q

∫
q(Y) log

P (X|θ(i−1))P (Y|X , θ(i−1))

q(Y)
dY

= arg max
q

∫
q(Y) logP (X|θ(i−1))dY +

∫
q(Y) log

P (Y|X , θ(i−1))

q(Y)
dY

= arg max
q

logP (X|θ(i−1))−
∫
q(Y) log

q(Y)

P (Y|X , θ(i−1))
dY

= arg max
q

`(θ(i−1))−KL
[
q(Y)‖P (Y|X , θ(i−1))

]
= arg min

q
KL
[
q(Y)‖P (Y|X , θ(i−1))

]
= P (Y|X , θ(i−1))

since KL[p‖q] ≥ 0] for any pair of probability distributions p, q, where the equality (i.e. the
minimum) holds only when p = q. Thus, at the end of the E-step, F(q, θ(i−1)) = `(θ(i−1)).

• M-step:

θ(i) = arg max
θ

F(q(i), θ)

= arg max
θ

∫
q(i)(Y) log

P (X ,Y|θ)
q(i)(Y)

dY

= arg max
θ

∫
q(i)(Y) logP (X ,Y|θ)dY −

∫
q(i)(Y) log q(i)(Y)dY

= arg max
θ

〈logP (X ,Y|θ)〉q(i) −H[q(i)]

= arg max
θ

〈logP (X ,Y|θ)〉q(i)

The free energy thus increases at each iteration, until it converges to a (possibly local) maximum,
upper bounded by the true log likelihood:

`(θ(i−1))
E-step

= F(q(i), θ(i−1))
M-step
≤ F(q(i), θ(i))

Jensen
≤ `(θ(i))

Importantly, we can theoretically prove that if EM converges to some θ∗, this fixed point must
be a maximum of the log likelihood. If it has converged, then necessarily

0 =
∂

∂θ

∣∣∣
θ∗
〈logP (X ,Y|θ)〉P (Y|X ,θ∗)

=
∂

∂θ

∣∣∣
θ∗
〈logP (Y|X , θ)〉P (Y|X ,θ∗) +

∂

∂θ

∣∣∣
θ∗

logP (X|θ)

=
∂

∂θ

∣∣∣
θ∗

(
〈logP (Y|X , θ)〉P (Y|X ,θ∗) − 〈logP (Y|X , θ∗)〉P (Y|X ,θ∗)

)
+

∂

∂θ

∣∣∣
θ∗
`(θ)

= − ∂

∂θ

∣∣∣
θ∗
KL [P (Y|X , θ∗)‖P (Y|X , θ)] +

∂

∂θ

∣∣∣
θ∗
`(θ)

=
∂

∂θ

∣∣∣
θ∗
`(θ)

where in the last line we noted that, when evaluated at θ∗, the KL divergence term is equal to 0,
which is its minimum and therefore a stationary point with derivative zero. This demonstrates that
a fixed point of EM is a fixed point of the log likelihood. We then compute the second derivative
at this point to show that this fixed point is indeed a maximum of the log likelihood:

∂2

∂θ2

∣∣∣
θ∗

logP (X|θ) =
∂2

∂θ2

∣∣∣
θ∗
〈logP (X ,Y|θ)〉P (Y|X ,θ∗) −

∂2

∂θ2

∣∣∣
θ∗
〈logP (Y|X , θ)〉P (Y|X ,θ∗)

32

By construction of the M-step, we know that θ∗ is a maximum of 〈logP (X ,Y|θ)〉P (Y|X ,θ∗), so the
first term is negative. As we just did above,

− ∂2

∂θ2

∣∣∣
θ∗
〈logP (Y|X , θ)〉P (Y|X ,θ∗) =

∂2

∂θ2

∣∣∣
θ∗
KL [P (Y|X , θ∗)‖P (Y|X , θ)] > 0

since at θ∗ the KL is at a minimum so its second derivative must be positive.. but it
should
be nega-
tive...??

but it
should
be nega-
tive...??

For an exponential-family joint distribution, the M-step takes the following form:

θ(i) = arg max
θ

〈
log

(
1

Z(θ)
f(x, y)eθ

TT (x,y)

)〉
q(i)

= arg max
θ

〈
θTT (x, y)

〉
q(i)
− logZ(θ)

= arg max
θ

θT 〈T (x, y)〉q(i) − logZ(θ)

Recalling that q(i)(Y) = P (Y|X , θ(i−1)), we note that performing this optimization only requires
of us that we compute posterior expectations of the sufficient statistics of the joint 〈T (x, y)〉q(i) =
〈T (x, y)〉P (Y|X ,θ(i−1)). We don’t actually have to bother computing the whole posterior distribution.
This can simplify things greatly, e.g. in latent chain models, where sufficient stats are single or
pairs of latent variables rather than the whole chain.

In general, computing these expectations - what we call inference - will be the hardest part.
Latent variable posterior distributions are often of a form that leads to intractable integrals when
computing expectations, requiring either Monte Carlo sampling approximations to the integrals or
variational approximations of the distributions themselves (section 5).

4.1 Generalized EM
Sometimes, there is no closed form solution to the maximization problem posed by the M-step. In
this case, we can fall back to gradient ascent:

θ(i) = θ(i−1) + η

(
∂

∂θ

∣∣∣
θ(i−1)

F(q(i), θ)

)
= θ(i−1) + η

(
∂

∂θ

∣∣∣
θ(i−1)

〈logP (X ,Y|θ)〉q(i)
)

where η is a learning rate. Since after the E-step F(q, θ) = `(θ), we can be sure this step is a step
up the gradient of the true log likelihood.

Such an M-step is called a partial M-step, and the algorithm is called generalized EM. We can
also take partial E-steps by, for example, updating the posterior distribution with respect to only
a subset of the latent variables.

4.2 EM for MAP
We can also use EM for MAP parameter estimation under some prior P (θ). The E-step remains
the same, since it assumes the previous point estimates of the parameters. But the M-step is
modified to incorporate the prior distribution:

θ(i) = arg max
θ

〈logP (X ,Y, θ)〉q(i)

= arg max
θ

〈logP (X ,Y|θ) + logP (θ)〉q(i)

= arg max
θ

〈logP (X ,Y|θ)〉q(i) + logP (θ)

5 Approximate Inference
Inference is the E-step of EM, i.e. calculating the posterior distribution over latents:

qnew(Y) = arg max
q

F(q, θ) = arg min
q

KL [q(Y‖P (Y|X , θ)] = P (Y|X , θ)

33

In practice, we don’t usually ever have to compute the full posterior, but expectations of the log
joint P (X ,Y) sufficient statistics with respect to the posterior. Often, computing the full posterior
or expectations with respect to it is intractable, so we resort to approximations:

5.1 Variational Inference
In variational inference, we constrain the posterior to be in a certain family of distributions Q that
are easy to work with:

qnew(Y) = arg max
q∈Q

F(q, θ)

Of course, unless the true posterior lies in Q, the approximation implies that we will never saturate
the free energy lower bound at the E-step. Thus, EM with a variational E-step won’t reach a
maximum of the log likelihood, but should still converge to a relatively good solution.

One approach is to pick Q to be a certain probability distribution Pη(y) parametrized by some
set of parameters η (e.g. Gaussian, with η = [µ Σ]), transforming the E-step into a simpler
parameter estimation problem:

ηnew = arg min
η

KL [Pη(Y|η)‖P (Y|X , θ)]

Another alternative is a factored variational approximation, where we enforce q(Y) to be fac-
torizable over disjoint sets Yk that partition the set of all latents Y:

Q =

{
q(Y) =

∏
k

qk(Yk) : ∀i 6= jYi ∩ Yj = ∅, Y1 ∪ Y2 ∪ . . . = Y

}

We can then estimate each individual marginal qk(Yk) by setting variational derivatives of the free
energy lower bound to 0 and solving, using Lagrange multipliers to constrain each marginal to sum
to 1:

0 =
δ

δqk

[
F(q, θ) + λ

(∫
dYk qk(Yk)− 1

)]
=

δ

δqk

[
〈logP (X ,Y|θ)〉∏

k′ qk′
+ H[q]

]
+

δ

δqk
λ

(∫
dYk qk(Yk)− 1

)

=
δ

δqk

∫ dYk qk(Yk)

∫
dYk′ 6=k

∏
k′ 6=k

qk′(Yk′) logP (X ,Y|θ)

+
δ

δqk

∑
k′

H[qk′] + λ

=
δ

δqk

[∫
dYk qk(Yk) 〈logP (X ,Y|θ)〉∏

k′ 6=k qk′

]
+

δ

δqk

[
−
∫

dYk qk(Yk) log qk(Yk)

]
+ λ

= 〈logP (X ,Y|θ)〉∏
k′ 6=k qk′

− (1 + log qk(Yk)) + λ

⇔ qk(Yk) ∝ exp
[
〈logP (X ,Y|θ)〉∏

k′ 6=k qk′

]
For an observation-joint latent distribution with DAG structure

P (X ,Y) =
∏
i

P (Zi|Pa(Zi))

(where {Zi} are all the nodes - observed or latent - in the graph), we obtain the following approx-
imate posterior marginals for each disjoint latent subset Yk:

qk(Yk) ∝ exp

[∑
i

〈logP (Zi|Pa(Zi))〉∏
k′ 6=k qk′

]

∝ exp

∑
i∈Yk

〈logP (Yi|Pa(Yi))〉∏
k′ 6=k qk′

+
∑

i∈Ch(Yk)

〈logP (Zi|Pa(Zi))〉∏
k′ 6=k qk′

34

In other words, each Yk marginal incorporates information only from the Markov boundaries of its
elements: each node receives messages from only its Markov boundary. For complicated graphs,
it is often useful to factorize q(Y) into a product of distributions on subtrees Yk. This is called a
structured variational approximation. An example application of this approach is for inference in
FHMMs (section 1.4.2), where each Yk is a different latent chain. The DAG structure then allows
for explaining away between the different latent chains via the log likelihood.

5.1.1 Mean-Field Approximation

If the sufficient statistics of the observation-latent joint are separable in the latent variables {yk},
then it is useful to perform factored variational inference with a full factorization over all variables:
Yk = yk. The resulting approximation is called a mean-field approximation, since the resulting
marginals qk(yk) depend only on the means of the latents in the Markov boundary Vk of yk: the
mean field imposed by Vk. The resulting inference algorithm is then to keep updating each of these
marginals until all the means agree.

The classic example of this is inference in the Boltzmann machine:

logP (X ,Y) =
∑
(ij)

Wijsisj +
∑
i

bisi − logZ

⇒ 〈logP (X ,Y)〉∏
i qi(si)

=
∑
(ij)

Wij〈si〉qi〈sj〉qj +
∑
i

bi〈si〉qi − logZ

qi(si)

{
∝ exp

[
bisi +

∑
(ij)Wijsi〈sj〉qj

]
if si ∈ Y

= δ(si = xi) if si ∈ X

We can then infer the states of the hidden variables si ∈ Y by iteratively updating each qi until
convergence, i.e. until the mean fields agree.

Mean-field learning can also be used for inference in the factorial HMM, yielding an approximate
message passing algorithm analogous to the forward-backward algorithm (section 1.4.2).

5.2 Expectation Propagation
In an arbitrary DAG, the posterior distribution over latents factorizes as follows:

P (Y|X) =
P (X ,Y)

P (X)
=

∏
nodes k P (Zk|Pa(Zk))

P (X)

=
1

Z

∏
i

P (Yi|Pa(Yi))

=
1

Z

∏
i

fi(Yi), Yi = Yi ∪ Pa(Yi)

Often the factors fi are intractable (e.g. NLSSM), so we need to approximate them to be able
to perform inference. Notably, we can’t use a factored variational approach, since the Yi aren’t
disjoint.

One alternative is to use a parametric variational approach, but it turns out that, in practice,
there is better alternative, called expectation propagation (EP). In EP, we approximate the factors
with

fi(Yi) ≈ f̃i(Yi)

giving us the approximate posterior

P (Y|X) ≈ q(Y) =
∏
i

f̃i(Yi)

that we can then use for inference. The key move is that, rather than approximating the full
posterior by minimizing the free energy lower bound - i.e.

q(Y) = arg min
q(Y)=

∏
i f̃i(Yi)

KL [q(Y)‖P (Y|X)]

35

-, in EP we instead approximate each factor individually by minimizing

f̃i(Yi) = arg min
f̃i

KL
[
fi(Yi)q¬i(Yi)‖f̃i(Yi)q¬i(Yi)

]
where

q¬i(Yi) =

∫
dYj 6=i

q(Y)

f̃i(Yi)

=

∫
dYj 6=i

∏
j 6=i

f̃j(Yj)

is called the cavity distribution. In a tree, for example, we can see the cavity distribution as a
product of messages from all nodes neighboring the approximate factor f̃i being estimated:

q¬i(Yi) =
∏

j∈ne(i)

Mj→i(Yi)

We then proceed by iteratively updating each factor in turn until convergence. Note that becase
this KL divergence doesn’t correspond to any bound on the true log likelihood, we now have no
guarantee of convergence. However, when EP does converge, in practice it tends to give better
estimates than variational inference (see figure 10.17 in Bishop).

Noting the differences with the regular KL divergence that is minimized in EM gives some
intuition for why this works:

• Firstly, we minimize a KL divergence with respect to each factor one-by-one, rather than
minimizing with respect to the whole posterior directly. This allows for tractability in the
face of complicated posteriors, at the expense of exact inference.

• Importantly, however, the KL divergence that is minimized always contains all the other
estimated factors via the cavity distribution, allowing them to inform each other. Thus,
by iteratively updating each factor one-by-one, EP approximates local factors in a globally
sensitive manner.

• Lastly, note that the factors we want to approximate appear on the opposite side of the
KL divergence (on the right, rather than the left). This means that the approximating
distribution q(Yi) = f̃(Yi)q¬i(Yi) falls inside the logarithm. So, if we pick our approximating
factors f̃(Yi) such that q(Yi) is exponential family, this will yield to a simple solution to the
KL minimization problem (next).

So let’s pick our approximating factors f̃i such that f̃i(Yi)q¬i(Yi) = 1
Z(θ)e

θTT (Yi) = Pθ(Yi) is an
exponential family distribuition with natural parameters θ. If we now formulate the KL minimiza-
tion problem as a minimization of the KL divergence between Pθ(Yi) and P̃(Yi) = fi(Yi)q¬i(Yi),
we get a simple moment matching solution:

P̂θ(Yi) = arg min
Pθ

KL
[
P̃(Yi)‖Pθ(Yi)

]
= arg min

θ
KL
[
P̃(Yi)‖

1

Z(θ)
eθ

TT (Yi)
]

= arg min
θ

−
∫

dYi P̃(Yi) log

(
1

Z(θ)
eθ

TT (Yi)
)

= arg min
θ

− θT 〈T (Yi)〉P̃ + logZ(θ)

⇔ 0 = − ∂

∂θ
θT 〈T (Yi)〉P̃ +

∂

∂θ
logZ(θ)

= −〈T (Yi)〉P̃ + 〈T (Yi)〉Pθ
⇔ 〈T (Yi)〉P̃ = 〈T (Yi)〉Pθ

In other words, minimize the KL divergence by finding the natural parameters θ of the exponential
family distribution Pθ(Yi) such that its expected sufficient statistics are equal to their expectation

36

under the distribution P̃(Yi). Then, we have:

f̃i(Yi) =
P̂θ(Yi)
q¬i(Yi)

One important caveat to this algorithm is that it requires computing expectations with respect to
P̃, which will usually require numerical integration methods, or a Monte Carlo sampling approxi-
mation.

We can use EP to compute approximate messages on a graph where message passing would be
otherwise intractable (e.g. NLSSM, section 1.4.4). In fact, it turns out that loopy BP is actually
an instantiation of EP, where we approximate the pairwise factors in the graph as a product of
messages:

P (X) =
1

Z

∏
i

fi(Xi)
∏
(ij)

fij(Xi, Xj)

fij(Xi, Xj) ≈ f̃ij(Xi, Xj) = Mj→i(Xi)Mi→j(Xj)

giving the approximate joint distribution

⇒ P̃ (X) =
1

Z

∏
i

fi(Xi)
∏
(ij)

Mj→i(Xi)Mi→j(Xj)

=
1

Z

∏
i

fi(Xi)
∏

j∈ne(i)

Mj→i(Xi)

Marginalizing over all Xk 6=i,j , we get the following cavity distribution:

q¬ij(Xi, Xj) ∝
1

Mj→i(Xi)Mi→j(Xj)

∑
X\Xi,Xj

∏
k

fk(Xk)
∏

k′∈ne(k)

Mk′→k(Xk)

∝

fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

fj(Xj)
∏

k∈ne(j)\i

Mk→j(Xj)

 ∑
X\Xi,Xj

∏
k 6=i,j

fk(Xk)
∏

k′∈ne(k)

Mk′→k(Xk)

=

1

Z
fi(Xi)fj(Xj)

∏
k∈ne(i)\j

Mk→i(Xi)
∏

k∈ne(j)\i

Mk→j(Xj)

Minimizing the KL divergence

KL [fij(Xi, Xj)q¬ij(Xi, Xj)‖Mj→i(Xi)Mi→j(Xj)q¬ij(Xi, Xj)]

we note that at the minimum (dropping the normalizers)

fij(Xi, Xj)q¬ij(Xi, Xj) = Mj→i(Xi)Mi→j(Xj)q¬ij(Xi, Xj)

⇔
∑
Xj

fij(Xi, Xj)q¬ij(Xi, Xj) =
∑
Xj

Mj→i(Xi)Mi→j(Xj)q¬ij(Xi, Xj)

⇔

fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

∑
Xj

fij(Xi, Xj)

fj(Xj)
∏

k∈ne(j)\i

Mk→j(Xj)

= Mj→i(Xi)

fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

∑
Xj

Mi→j(Xj)

fj(Xj)
∏

k∈ne(j)\i

Mk→j(Xj)

⇔
∑
Xj

fij(Xi, Xj)fj(Xj)
∏

k∈ne(j)\i

Mk→j(Xj) =
1

Z
Mj→i(Xi)

⇒ Mj→i(Xi) ∝
∑
Xj

fij(Xi, Xj)fj(Xj)
∏

k∈ne(j)\i

Mk→j(Xj)

which is exactly the expression for belief propagation messages. In otherwords, marginal posteriors
obtained via belief propagation on a loopy graph (loopy BP) are the EP approximation to the true
posteriors. This explains why loopy BP yields good solutions whenever it converges.

37

5.2.1 Power EP

Because convergence can be a problem in EP, it is often useful to resort to power EP methods that
make the EP updates more gradual to encourage convergence:

f̃newi (Yi) = arg min
f̃

KL
[
fi(Yi)αf̃oldi (Yi)1−αq¬i(Yi)‖f̃(Yi)q¬i(Yi)

]
with α < 1. In this case, the left side of the KL contains a mixture of the true factor with its
approximation in the previous iteration, making the updates more gradual and thus more likely to
converge.

5.2.2 My EP recipe

1. Pick a set of singleton or pairwise (or both) factors fi(xi) or gij(xi, xj) to approximate
(doesn’t have to be all of them)

2. Pick an exponential family to approximate this factor with f̃i(xi) = 1
Z(θi)

f(xi) exp[θTi T (xi)]

3. Write the approximate marginal joint distribution that follows from the factor approximation:

P̃ (X) =
∏

nodes i

f̃(xi)
∏

edges (ij)

gij(xi, xj)

4. For a given singleton factor fi(xi), compute the cavity distribution as

q¬i(xi) =
P̃ (xi)

f̃i(xi)
, P̃ (xi) =

∫
. . .

∫
dx¬i P̃ (X)

For a pairwise factor, compute the pairwise marginal.

5. Write out Pθ(xi) = f̃i(xi)q¬i(xi) in exponential family form and derive the mean sufficient
statistic as a function of θ

〈T (xi)〉Pθ =
∂

∂θ
logZ(θ)

6. Write out P̃(xi) = fi(xi)q¬i(xi), and compute the expectation of T (xi) with respect to this
distribution, 〈T (xi)〉P̃

7. Solve for θ∗ by moment matching:

〈T (xi)〉Pθ = 〈T (xi)〉P̃

⇔ ∂

∂θ
logZ(θ) = 〈T (xi)〉P̃

giving us the parameter setting θ = θ∗ that matches the first moment of our approximate
marginal Pθ(xi) with that of the less approximate marginal P̃(xi).

8. Using our newfound optimal parameter setting θ∗, update f̃i by:

f̃newi (xi)←
Pθ∗(xi)
q¬i(xi)

9. Repeat steps 4-8 for each factor, iterating over all factors multiple times until convergence.
At each iteration, we update a single factor and the cavity distribution.

5.3 Sampling Methods
5.3.1 Simple Monte Carlo

5.3.2 Importance Sampling

Mention Sampling-Importance Resampling (SIR) (e.g. particle filtering), Annealed Importance
Sampling (AIS) (e.g. for evaluating the evidence)

38

5.3.3 Rejection Sampling

5.3.4 Markov Chain Monte Carlo (MCMC)

5.3.5 Hamiltonian Monte Carlo

5.3.6 Slice Sampling

6 Graphical Models
A graph G is a way of representing a family of probability distributions

• PC(G) that satisfy the set of conditional independence statements C(G) implied by G

• PG that factor as implied by G

All graphs imply a certain set of conditional independence statements and a certain factorization
of the probability distribution. Whether PC(G) and PG are necessarily the same set depends on the
type of graph.

A graph contains a set of nodes with connections between them. The nodes represent the
random variables over which the corresponding family of probability distributions is defined, and
the connections say something about the conditional dependencies between them. For example,
one particularly important notion when considering conditional independence is theMarkov blanket
V of a random variable X:

V = {V : ∀X ′ /∈ V ∪X;X ⊥⊥ X ′|V}

where the notation X ⊥⊥ Y |Z indicates conditional independence: P (X|Y, Z) = P (X|Z). The
Markov boundary of X is the minimal Markov blanket. We will see the connections between nodes
in a graph allow us to easily express such notions.

6.1 Types of Graphs
6.1.1 Factor Graph

Factor graphs imply the following factorization over factor potentials fi:

P (X) =
1

Z

∏
i

fi(ne(fi))

Conditional independence in factor graphs is easy to to read off the graph: X ⊥⊥ Y |V iff every
path between X and Y includes some node V ∈ V. The Markov boundary of a node X is thus its
neighbors ne(X). For an arbitrary factor graph G, it is not necessarily the case that PC(G) = PG

6.1.2 Undirected Graph (Markov Net)

Implies a factorization over maximal cliques XCi :

P (X) =
1

Z

∏
i

fi(XCi)

where fi are called the clique potentials and a clique is defined as a fully connected subgraph.
A clique is maximal if it is not contained inside any other clique. Conditional independence is
determined just like factor graphs and the Markov boundary is the same. However, PC(G) = PG
for any arbitrary undirected graph G such that P (X) > 0 for all possible X .

6.1.3 Directed Acyclic Graph (DAG, or Bayes net)

Dependencies are made explicit, leading to the following factorization over all nodes:

P (X) =
∏
i

P (Xi|Pa(Xi))

where Pa(Xi)) designates the parents of node Xi. As opposed to the factor and undirected graphs,
DAGs can imply marginal independence as well as conditional independence between connected

39

nodes. However, reading conditional independence statements from the graph becomes more com-
plicated: X ⊥⊥ Y |V iff the path between nodes X and Y is blocked. A path is blocked iff there is a
node V on the path that

• has non-convergent arrows and is in V

• has convergent arrows, is not in V, and neither are any of its descendants

This set of criteria is called d-separation. X ⊥⊥ Y |∅ (marginal independence) iff there is no path
at all between X and Y (just like in factor and undirected graphs) OR if the path between X and
Y meets at some node with convergent arrows. The fact that two connected nodes X and Y can
have marginal independence allows us to model the situation that is often called explaining away,
whereby observation of X doesn’t change your belief about Y because the corresponding change
in your belief about the node at which the path between them meets (with convergent arrows) is
explained away by the observation and thus says nothing about Y . Conversely, if the (convergent)
node between them is observed, X and Y become conditionally dependent because each of them
has the ability to “explain away” the observation, thus altering the probability of the other. The
classic example of this is the event of your sprinkler turning on and the event of rain, which are
evidently marginally independent, but become conditionally dependent when one observes that
the grass is wet: if you believe the sprinklers were on, then your belief that it rained won’t be any
higher than for any other day; but if you believe the sprinklers were off, then you will be sure that
it did rain.

The Markov boundary of a node X in a DAG is its parents, children, and parents of children:

{Pa(X) ∪ Ch(X) ∪ Pa(Ch(X))}

For any arbitrary DAG G, PC(G) = PG .

6.1.4 Expressive Power of different types of graphs

The set of probability distributions representable as a DAG intersects that of distributions repre-
sentable as an undirected graph. But it is not the same, as is evident from the fact that only DAGs
can represent pairs of random variables that are both marginally independent and conditionally
dependent (i.e. explaining away). However, the set of distributions representable as a factor graph
subsumes the set of distributions representable as an undirected graph.

6.1.5 Trees

A tree is a graph where there is a single unique path between any two nodes. When the graph is
a DAG, this implies that there is at least one “root” node that has no parents. When the graph
is an undirected graph, this implies that all maximal cliques are of size 2. Importantly, any such
DAG with a single root is equivalent to the corresponding undirected tree, and any undirected tree
is equivalent to a single rooted DAG tree. Henceforth I will refer to trees with one root as trees,
and trees with multiple roots as polytrees.

To see the first equivalence, note that the tree structure plus the fact that there is a single
root implies that each node has only a single parent. The distribution then necessarily factors into
pairwise factor/clique potentials:

P (X) = P (Xr)
∏
i 6=r

P (Xi|Pa(Xi))

= P (Xr)
∏
i 6=r

fi(Xi ∪ Pa(Xi))

=
1

Z

∏
(ij)

fij(Xi, Xj)

where Xr is the root node. The the third equality follows from the fact that each node has
only one parent, so Xi ∪ Pa(Xi) = {Xi, Xj}. Thus, the corresponding undirected tree with size
2 maximal cliques is equivalent to the original DAG tree. It is easy to see that in addition to
the equivalent factorization, the conditional and marginal independence statements are the same.
This follows from the important fact that there are no collider nodes in a single-rooted directed

40

tree, so “explaining away” doesn’t happen in DAG trees. Therefore, all conditional and marginal
dependence statements implied by a DAG tree are also possible to express with an undirected tree.

To see the opposite direction (any undirected tree is equivalent to a DAG tree), we first note that
the probability distribution of any DAG can be expressed as a product of pairwise and singleton
marginals:

P (X) = P (Xr)
∏
i6=r

P (Xi|Pa(Xi))

= P (Xr)
∏
j→i

P (Xi|Xj)

= P (Xr)
∏
j→i

P (Xi, Xj)

P (Xj)P (Xi)
P (Xi)

= P (Xr)
∏
i6=r

P (Xi)
∏
j→i

P (Xi, Xj)

P (Xj)P (Xi)

=
∏
i

P (Xi)
∏
(ij)

P (Xi, Xj)

P (Xj)P (Xi)

=

∏
(ij) P (Xi, Xj)∏
i P (Xi)deg(i)−1

where j → i indexes all directed edges pointing from j to i, and deg(i) is the degree of the ith node,
i.e. the number of neighbors of node i. Thus, given the pairwise and singleton marginals of an
undirected tree (which we can compute via BP, below), it is evident from the above derivation that
there is an equivalent single rooted DAG. In fact there are several, which we can find by simply
picking an arbitrary node in the undirected graph to be the root and making all directed edges
flow away from it. The above derivation shows that the joint distributions of all such DAG trees
are equivalent to that of the original undirected tree.

6.2 Inference on Trees: Belief Propagation
Learning in graphical models is usually relatively easy: you just need expectations with respect
to marginal posteriors on cliques. But computing these marginal posteriors - i.e. inference - can
be quite costly, since it requires summing over all possible settings of the remaining nodes in the
graph outside of the given clique (O(KN−1) for N total nodes that can each take on K possible
states), rendering inference computationally intractable for graphs of any relatively useful size. In
the case of trees, however, we can bypass these costly sums by using a recursive message passing
algorithm that allows us to perform marginalization efficiently in O(NK2) time. The algorithm is
called belief propagation.

As discussed above, a tree (directed or undirected) factorizes over pairwise factors:

P (X) =
1

Z

∏
(ij)

fij(Xi, Xj)

We can then calculate the marginal distribution over node Xi in the resulting undirected tree by
computing incoming messages from its neighbors:

P (Xi) =
∑
X\Xi

P (X)

∝
∑
X\Xi

∏
(kk′)

fkk′(Xk, Xk′)

∝
∑
X\Xi

∏
j∈ne(Xi)

fij(Xi, Xj)
∏

(kk′)∈Tj→i

fkk′(Xk, Xk′)

∝

∏
j∈ne(Xi)

∑
Xl∈Tj→i

fij(Xi, Xj)
∏

(kk′)∈Tj→i

fkk′(Xk, Xk′)

41

∝
∏

j∈ne(Xi)

∑
Xj

fij(Xi, Xj)
∏

k∈ne(Xj)\i

∑
Xk′∈Tk→j

fjk(Xj , Xk)
∏

(k′k′′)∈Tk→j

fk′k′′(Xk′ , Xk′′)

∝
∏

j∈ne(Xi)

∑
Xj

fij(Xi, Xj)
∏

k∈ne(Xj)\i

Mk→j(Xj)

∝

∏
j∈ne(Xi)

Mj→i(Xi)

Mj→i(Xi) =
∑
Xj

fij(Xi, Xj)
∏

k∈ne(Xj)\i

Mk→j(Xj)

where Tj→i is the subtree separated from node Xi by node Xj , including Xj . The key to the
message passing derivation is the tree structure of the graph that makes each Tj→i disjoint, allowing
us to switch the product and summations in the fourth line. These messages then give us the
following singleton and pairwise marginals:

P (Xi) ∝
∏

j∈ne(Xi)

Mj→i(Xi)

P (Xi, Xj) ∝ fij(Xi, Xj)
∏

k∈ne(Xi)\j

Mk→i(Xi)
∏

k∈ne(Xj)\i

Mk→j(Xj)

Importantly, given some observed node Xa and some e.g. latent node Xi we can exploit the
tree structure to perform inference by computing the posterior as

P (Xi|Xa = a) ∝
∏

j∈ne(Xi)

Mj→i(Xi)

where
Ma→k(Xk) = fak(Xa = a,Xk)

This follows from the above stated fact that there are no collider nodes in a tree, so, by d-separation,
we have conditional independence whenever a node on the path between Xi and Xj is observed.
Thus, we don’t need to consider any incoming messages from nodes on the other side of Xa (which,
in the terminology of d-separation, is “blocking” the path between them and Xi), giving us this
modified message equation. This crucial property and resulting simplification allows us to perform
inference on trees efficiently, via belief propagation.

In sum, for any tree-structured graph, BP can efficiently compute exact singleton and pairwise
marginal posteriors up to a constant of proportionality, which we can easily obtain if the messages
are exponential family distributions. When a graph has any loops, however, it loses its tree
structure and BP will no longer work. It turns out that running BP anyway (“loopy BP”) will give
us good approximate posteriors if it converges, but to obtain exact posteriors we must turn to the
Junction Tree algorithm.

6.3 Inference on Loopy Graphs
6.3.1 Junction Tree Algorithm

The Junction Tree algorithm is an algorithm for exact inference on a graph that doesn’t have
tree structure. It consists of transforming the graph into a so-called junction tree, which has tree
structure such that we can use a message-passing algorithm akin to belief propagation to perform
inference. While it yields exact posteriors, it requires much computation, as opposed to the efficient
but approximate loopy BP algorithm.

To transform the graph into a junction tree, we carry out the following three steps:

1. DAG → undirected graph: marry all parents by putting an edge between them (“moraliza-
tion”), i.e. create a clique out of each node and its parents, fixing observed nodes:

XCi = Xi ∪ Pa(Xi)

fi(XCi) = P (Xi|Pa(Xi))

fobserved(Xi) = δ(Xi = xi) for observed nodes

42

2. Undirected graph → chordal graph: add edges so all loops contain ≤ 3 nodes (“triangula-
tion”). One algorithm for this is called variable elimination: eliminate variables one by one,
introducing the necessary edges at each elimination to maintain the same conditional inde-
pendence structure. In this algorithm, the order in which variables are eliminated is really
important; two methods are:

• Minimum deficiency search: eliminate the variable that will induce the fewest new edges
• Maximum cardinality search: eliminate the variable with the most previously visited

neighbors no idea
what this
means...

no idea
what this
means...3. Chordal graph→ junction tree: a junction tree is a tree where the nodes are maximal cliques

of variables, and the edges, called separators, are labelled by the intersection between the
cliques corresponding to the nodes connected by that edge. The chordal graph is accordingly
transformed into a junction tree with nodes given by its maximal cliques and edges given
by their intersections. To turn the resulting graph into a tree, we prune the edges with the
fewest shared variables (i.e. the size of the separator, |XCi ∩ XCj | for edge ij), giving the
maximum-weight spanning tree (edge weights are separator sizes).

For inference, we perform a kind of message passing algorithm on the junction tree, called
Shafer-Shenoy propagation:

Mj→i(XSij) =
∑
X\XSij

fj(XCj)
∏

k∈ne(j)\i

Mk→j(XSjk)

P (XCi) ∝ fi(XCi)
∏

j∈ne(i)

Mj→i(XSij)

P (XSij) ∝Mi→j(XSij)Mj→i(XSij)

where XCi is the set of variables in clique Ci and XSij = XCi ∩XCj is the set of variables in the
separator between cliques Ci and Cj . This message passing phase of the junction tree algorithm is
the most costly, with complexity O

(
K |Cmax|

)
, where Cmax is the largest clique in the junction tree

and K is the number of states each variable can take on.
A different way of looking at these message updates is an equivalent message passing algorithm

called Hugin propagation. By construction, a junction tree has the running intersection property :
if X ∈ Ci, Cj , then all cliques and separators on the path between the junction tree nodes i and j
also contain X. This property, together with the tree structure of the junction tree graph, implies
that local consistency between clique and separator marginals qi, rij , i.e.∑

XCi\Sij

qi(XCi) = rij(XSij)

guarantees global consistency : ∑
X\XCi

P (X) = qi(XCi)∑
X\XSij

P (X) = rij(XSij)

P (X) =

∏
cliques i qi(XCi)∏

separators (ij) rij(XSij)

Hugin propagation expoits this fact to iteratively update the marginals until convergence to the
true marginals:

Initialize: qi(XCi) ∝ fi(XCi)
rij(XSij) ∝ 1

Update: rnewij (XSij) =
∑

XCi\Sij

qi(XCi)

qnewi (XCi) = qi(XCi)
rnewij (XSij)

rij(XSij)

43

Since the updates enforce local consistency, the resulting marginals are guaranteed to be globally
consistent via the running intersection property.

6.3.2 Loopy BP

As discussed above, the graphical structure of trees - namely the lack of collider nodes - makes
inference feasible via belief propagation. In non-trees, however, loops introduce collider nodes
and the possibility of marginal independence and explaining away between connected nodes. This
nullifies the BP message equations we derived above for inference. However, it turns out that if
we run BP on such “loopy” graphs anyway, we often get good approximate solutions to inference.

In this case, there is no guarantee of convergence. But whenever it does converge, it turns out
that applying the message passing equations gives us approximate marginals that are locally but
not globally consistent - what we call pseudomarginals. We can see this by noting that loopy BP
is equivalent to running BP on each spanning tree of the graph. Recalling Hugin propagation,
this implies enforcing each marginal to be locally consistent with respect each spanning tree.
Thus, it will converge whenever there is a set of singleton and pairwise pseudomarginals bi(Xi),
bij(Xi, Xj) that are locally consistent in all the subtrees. These pseudomarginals tend to be good
approximations to the true marginals. But, because the graph doesn’t have tree structure, local
consistency doesn’t imply global consistency, so our joint will (likely) be such that:

P (X) =
∏
i

bi(Xi)
∏
(ij)

bij(Xi, Xj)

bi(Xi)bj(Xj)

where bi(Xi) =
∑
Xj

bij(Xi, Xj)

but bi(Xi) 6=
∑
X\Xi

P (X)

Akin to expectation maximization, we can also interpret loopy BP as finding the pseudo-
marginals that maximize the Bethe free energy Fbethe:

Fbethe = εbethe(b) +Hbethe(b)
εbethe(b) = 〈logP (X)〉b(X)

=

〈∑
i

log fi(Xi) +
∑
(ij)

log fij(Xi, Xj)

〉
∏
i bi(Xi)

∏
(ij)

bij(Xi,Xj)

bi(Xi)bj(Xj)

=
∑
i

〈log fi(Xi)〉bi +
∑
(ij)

〈log fij(Xi, Xj)〉bij

Hbethe(b) =
∑
i

H[bi]−
∑
(ij)

KL[bij(Xi, Xj)‖bi(Xi)bj(Xj)]

In other words, the average energy term εbethe(b) is equal to the expected log joint as though the
pseudomarginals were correct and the entropy term is the sum of the pseudomarginal entropies
corrected for pairwise interactions - but ignoring higher order dependencies, thus approximate.
Maximizing this under the constraints

∀i
∑
Xi

bi(Xi) = 1 w/ Lagrange multiplier ξi

∀(ij)
∑
Xj

bij(Xi, Xj) = bi(Xi) w/ Lagrange multiplier ξij(Xi)∑
Xi

bij(Xi, Xj) = bj(Xj) w/ Lagrange multiplier ξji(Xj)

yields the following pseudomarginals:

bi(Xi) ∝ fi(Xi)
∏

j∈ne(i)

e−ξij(Xi)

bij(Xi, Xj) ∝ fij(Xi, Xj)bi(Xi)e
ξij(Xi)bj(Xj)e

ξji(Xj)

44

Enforcing the local consistency constraint
∑
Xj
bij(Xi, Xj) = bi(Xi) we see that these are in fact

equivalent to belief propagation message updates:

bi(Xi) =
∑
Xj

bij(Xi, Xj)

∝
∑
Xj

fij(Xi, Xj)bi(Xi)e
ξij(Xi)bj(Xj)e

ξji(Xj)

⇔ e−ξij(Xi) ∝
∑
Xj

fij(Xi, Xj)bj(Xj)e
ξji(Xj)

∝
∑
Xj

fij(Xi, Xj)

fj(Xj)
∏

k∈ne(j)

e−ξjk(Xj)

 eξji(Xj)
∝
∑
Xj

fij(Xi, Xj)fj(Xj)
∏

k∈ne(j)\i

e−ξjk(Xj)

⇔Mj→i(Xi) ∝
∑
Xj

fij(Xi, Xj)fj(Xj)
∏

k∈ne(j)\i

Mk→j(Xj)

with messagesMj→i(Xi) = e−ξij(Xi). Thus, the stable fixed points of belief propagation on a loopy
graph (loopy BP) are local maxima of the Bethe free energy.

One important technique that is often used to encourage convergence in loopy BP is called
damping, where we make the message updates more gradual:

Mnew
j→i (Xi) = (1− α)Mj→i(Xi) + α

∑
Xj

fij(Xi, Xj)fj(Xj)
∏

k∈ne(j)\i

Mk→j(Xj)

with 0 < α < 1.

7 Exponential Family Distributions
The Exponential Family of probability distributions is the group of all probability distributions
with probability (density) function of the form

P (x|θ) =
1

Z(θ)
f(x) exp[θTT (x)]

where the vector θ contains the natural parameters of the distribution and the components of
the vector T(x) are called the sufficient statistics of the distribution. Given this form, the log
likelihood of a set of i.i.d. data D = {xi}Ni=1, xi

i.i.d.∼ Pθ, where P is exponential family with natural
parameters θ, takes the following form:

`(θ) = logP (D|θ) = −N logZ(θ) +

(
N∑
i=1

log f(xi)

)
+ θT

(
N∑
i=1

T (xi)

)

The simplicity of this likelihood stems from the crucial fact that the natural parameters interact
only linearly with the sufficient statistics. The exponential form makes maximum likelihood pa-
rameter estimation even easier via maximization of the log likelihood. In fact, one can show that
maximum likelihood parameter estimation with exponential family distributions is equivalent to
moment matching, i.e. solving the following equation:

〈T (x)〉P (x|θML) =
∂

∂θ
logZ(θ)

∣∣∣
θML

=
1

N

N∑
i=1

T (xi)

45

7.1 Conjugate-Exponential Models
Bayesian parameter estimation with an exponential family likelihood is also greatly simplified
when we assume a prior that is conjugate to the likelihood: a prior that, when multiplied with the
likelihood, leads to a posterior in the same form. For exponential family likelihoods, the conjugate
prior is always tractable and with the following general form:

P (θ|τ, ν) = F (τ, ν)
1

Z(θ)ν
exp[θTτ]

where Z(θ) is the same normalizer from the likelihood function (but now is no longer acting as a
normalizer). The resulting posterior is then:

P (θ|D) ∝ 1

Z(θ)ν+N
exp

[
θT (τ +D)

]
= F (τ +D, ν +N)

1

Z(θ)ν+N
exp

[
θT (τ +D)

]
where

D =

N∑
i=1

T (xi)

It is thus often intuitive to think about the hyperparameters τ and ν as pseudo-observations,
reflecting our prior expectations about the parameters that are subsequently updated by our real
observations - namely, the sufficient statistics and the total number of observations, respectively.

This fact can be exploited not only for Bayesian parameter estimation but for learning in latent
variable models. If our observation-latent joint distribution is exponential family and the prior
distribution over latents is conjugate, then we can easily find the posterior of latents as we did
above for parameters (e.g. PPCA).

7.2 The Log Partition Function and Duality
We call the logarithm of the normalizer the log partition function:

φ(θ) = logZ(θ) = log

∫
dx exp[θTT (x)]

for an exponential family distribution with no base factor in x alone f(x). It really important for
inference with exponential family distributions because it maps the natural parameters to moments
of sufficient statistics via its derivative:

∂φ

∂θ
=

1

Z(θ)

∫
dx

∂

∂θ
exp[θTT (x)]

=

∫
dxT (x)

1

Z(θ)
exp[θTT (x)]

= 〈T (x)〉P (x|θ)

∂2φ

∂θ2
=
∂φ

∂θ

1

Z(θ)

∫
dxT (x) exp[θTT (x)]

=
1

Z(θ)

∫
dxT (x)2 exp[θTT (x)]−

(∫
dxT (x) exp[θTT (x)]

)2
Z(θ)2

= 〈T (x)2〉P (x|θ) − 〈T (x)〉2P (x|θ)

= VarP (x|θ)[T (x)]

Importantly, note that its second derivative with respect to θ (which is equal to the variance
of T (x)) is positive semi-definite, meaning that φ(θ) is convex in θ. So if we can rewrite an
optimization problem in terms of φ(θ), we can hope to find the global optimum. We can do this
by considering the conjugate dual function of the log partition function:

ψ(µ) = 〈logP (x|θ)〉P (x|θ) = −H[Pθ] = θTµ− φ(θ)

46

where µ = 〈T (x)〉P (x|θ) is the expected sufficient statistic (also called the mean parameter). This
function - i.e. the negative entropy of Pθ - is dual to the log partition function, since:

∂φ

∂θ
= µ

∂ψ

∂µ
= θ

We can see that they are conjugate in the optimization sense by considering the KL divergence
between some proposed distribution P (x|θ′) and a target distribution P (x|θ) with the same form
but different parameters:

KL[P (x|θ)‖P (x|θ′)] = 〈logP (x|θ)〉P (x|θ) − 〈logP (x|θ′)〉P (x|θ)

= θTµ− φ(θ)− (θ′
T
µ− φ(θ′))

= ψ(µ)− (θ′
T
µ− φ(θ′)) ≥ 0

⇔ ψ(µ) ≥ θ′Tµ− φ(θ′)

⇒ ψ(µ) = sup
θ′

θ′
T
µ− φ(θ′)

θ(µ) = arg max
θ′

θ′
T
µ− φ(θ′)

⇒ φ(θ) = sup
µ′

θTµ′ − ψ(µ′)

µ(θ) = arg max
µ′

θTµ′ − ψ(µ′)

This example illustrates the fact that any exponential family distribution can be equivalently
parameterized by its expected sufficient statistics rather than by its natural parameters.

We can exploit this duality for inference in a latent variable model with an exponential family
observation-latent joint:

P (X ,Y|θ) = exp[θTT (X ,Y)− φ(θ)]

⇒ P (Y|X , θ) = exp[θTT (Y|X)− φy(θ)]

where T (Y|X) = T (X ,Y) with all x ∈ X clamped to their observations. In other words, I
have chosen to parametrize the posterior on latents with the same natural parameters (likely a
redundant, but still valid, parametrization). This then yields the following log likelihood:

`(θ) = logP (X ,Y|θ)− logP (Y|X , θ)
= θTT (X ,Y)− φ(θ)− (θTT (Y|X)− φy(θ))

= φy(θ)− φ(θ)

= sup
µy

θTµy − ψ(µy)− φ(θ)

= sup
µy

〈logP (X ,Y|θ)〉P (x|θ) − ψ(µy)

= sup
µy

F(θ, µy) [E-step]

which yields the exact same free energy lower bound that we maximize in EM. We might thus try
to perform inference (i.e. an E-step) by solving the optimization problem:

µ∗y = arg max
µy

θTµy − ψ(µy)− φ(θ)

= arg max
µy

θTµy − ψ(µy)

since this is the µy that will maximize the free energy lower bound on the log likelihood. Noting
that

θTµy − ψ(µy) = φy(θ)

we know that the optimization problem is convex, since the objective function (equal to the log par-
tition function) is concave and we are optimizing over a convex set (since µy =

∑
P (Y|X , θ)T (X ,Y) is the

reason
we know
this be-
cause it
equals
to log
partition
function
which is
a loga-
rithm?

is the
reason
we know
this be-
cause it
equals
to log
partition
function
which is
a loga-
rithm?

47

is a weighted sum with weights
∑
Y P (Y|X , θ) = 1 that sum to one). Thus, if we perform infer-

ence by solving this optimization problem, we can be sure we have found the global optimum.
Furthermore, we can directly optimize the mean sufficient statistics rather than optimizing a (ex-
act/approximate) posterior over latents q and then computing its expected sufficients (which we
then use in the M-step).

However, solving this optimization problem is often too difficult, mainly for two reasons:

1. ψ(µy) is generally very hard to compute

2. We want to restrict our optimization to the setM of feasible means µy - called the marginal
polytope -, which can be a complicated set. For example, for a Boltzmann machine with two
binary variables,

T (X) =
[
x1 x2 x1x2

]T
M = convex hull

1

0
0

 ,
0

1
0

 ,
1

1
1

 ,
0

0
0

The usual solution is to approximate ψ(µy) and relaxM to some larger and still reasonable set L.
In certain cases, this ends up being equivalent to maximizing the Bethe free energy approximate
lower bound on the log likelihood (e.g. see section 1.5 on inference for MRFs).

8 Appendices

8.1 Probability Distributions

Name Domain PDF E[x] Var[xi] cov[xi, xj]

N (µ,Σ) RD |2πΣ|− 1
2 e(x−µ)TΣ−1(x−µ) µ Σii Σij = Σji

Gamma(α, β) R βα

Γ(α)x
α−1e−βx α

β
α
β2 -

Bernoulli(p) {0, 1} px(1− p)1−x p p(1− p) -
Binomial(n, p) Z+

(
n
x

)
px(1− p)n−x np np(1− p) -

Multinomial(n,p) ZD+ n!
x1!x2!...xD!

∏D
d=1 p

xd
d np npi(1− pi) −npipj

Beta(α, β) [0, 1] 1
B(α,β)x

α−1(1− x)β−1 α
α+β

αβ
(α+β)2(α+β+1) -

Dir(α) [0, 1]D
Γ(
∑
k αk)∏

k Γ(αk)

∏
k x

α−1
k

1∑
k αk

α αk(α0−αk)
α2

0(α0+1)
− αkαk′
α2

0(α0+1)

Po(λ) Z+
λxe−λ

x! λ λ -

8.1.1 Conjugate Priors

Likelihood Parameter Conjugate Prior
Bernoulli, Binomial p Beta
Multinomial p Dirichlet
Gaussian µ Gaussian
Gaussian Σ Gamma
Poisson λ Gamma

8.1.2 Notes about Dirichlet Distribution

The Dirichlet distribution with α =
[
1 ldots 1

]
is the uniform distribution over all K-

dimensional simplexes, i.e. all K-dimensional x with xk ∈ [0, 1],
∑
k xk = 1.

The marginal distribution over one of the components xk is a beta distribution:

∫ 1

0

dx¬kDir(x|α) = Beta

xk|αk,∑
k′ 6=k

αk′

48

8.2 Gaussian Identities
Useful to remember the exponential family form:

N (x|µ,Σ) =
e−

1
2µ

TΣ−1µ√
|2πΣ|

exp
[
θTT (x)

]
T (x) =

[
x

vec(xxT)

]
θ =

[
Σ−1µ

− 1
2vec(Σ

−1)

]
with sufficient statistics T (x) and natural parameters θ. Thus, the product of two Gaussians
distributions of the same variable but with different parameters is:

N (x|a,A)N (x|b,B) ∝ N (x|C(A−1a + B−1b),C)

C = (A−1 + B−1)−1

For any probability distribution over some random variable x,

E [Ax + b] = AE[x] + b

cov [Ax + b] = Acov[x]AT

Furthermore, if x is conditionally dependent on some other random variable y, then the marginal
moments are always given by

EP (x)[x] = EP (y)

[
EP (x|y)[x]

]
covP (x)[x] = EP (y)

[
covP (x|y)[x]

]
+ covP (y)

[
EP (x|y)[x]

]
So, for a pair of Gaussian random variables

y ∼ N (µy,Σy)

x|y ∼ N (Ay + b,Σx)

The posterior over y and marginal over x are:

P (y|x) = N (y|Σy|x(Σ−1
y µy + ATΣ−1

x (x− b),Σy|x)

Σy|x = (Σ−1
y + ATΣ−1

x A)−1

P (x) = N (x|Aµy + b,Σx + AΣyA
T)

For a partitioned Gaussian,

x =

[
xa
xb

]
∼ N

([
µa
µb

]
,

[
Σaa Σab
Σba Σbb

])
we have:

P (xa) = N (xa|µa,Σaa)

P (xa|xb) = N (xa|µa + ΣabΣ
−1
bb (xb − µb),Σaa − ΣabΣ

−1
bb Σba)

49

8.3 Matrix Identities
8.3.1 Basic Matrix Properties

|AB| = |A||B| ⇒ |A| = 1

|A−1

|A| =
∏
i

λi (product of eigenvalues)

Tr[A + B] = Tr[A] + Tr[B]

Tr[A] = Tr[AT]

Tr[ABC . . .] = Tr[BC . . .A] = Tr[C . . .AB] = . . .

Tr[A] =
∑
i

λi

(A + UBV)−1 = A−1 −A−1U(B−1 + VA−1U)−1VA−1 (Matrix Inversion Lemma)[
A B
C D

]−1

=

[
M −MBD−1

−D−1BM D−1 + D−1CMBD−1

]
, M = (A−BD−1C)−1

Inverse of a symmetric matrix is also symmetric.

8.3.2 Vector Derivatives

∂

∂x
aTx =

∂

∂x
xTa = a

∂

∂x
xTAx = (A + AT)x

∂

∂x
Ax = AT

8.3.3 Matrix Derivatives

∂

∂X
log |X| = (X−1)

T

∂

∂X
Tr[AX] =

∂

∂X
Tr[XA] = AT

∂

∂X
Tr[XTAX] = (A + AT)X

∂

∂X
Tr[X−1A] = −X−1ATX−1

∂

∂X
Xa = 1aT

∂

∂X
aTXb = abT

∂

∂X
aTXTCXbT = CTXabT + CXbaT

50

	Unsupervised Latent Variable Models
	Gaussian Model
	Student t-distribution
	A note about the covariance matrix

	Continuous Latent Variable Models
	Probabilistic Principal Components Analysis (PPCA)
	Factor Analysis
	Independent Components Analysis (ICA)
	Gaussian Process Latent Variable Model (GPLVM)

	Mixture Models
	Mixture of Gaussians (MoG)
	Latent Dirichlet Allocation

	Latent Chain Models
	Hidden Markov Model (HMM)
	Factorial HMM
	Linear-Gaussian State-Space Model (LGSSM)
	Non-linear state-space model (NLSSM)
	Spectral Learning

	Markov Random Fields
	MAP estimation
	Boltzmann Machine
	Sigmoid Belief Net

	Supervised Learning Models
	Linear Regression
	ML Linear Regression
	Bayesian Linear Regression

	Gaussian Process Regression
	Common GP Covariance Kernels
	GP Sparse Linear Regression with Inducing Points

	GP Logistic Regression
	Discriminative vs Generative Modelling
	Conditional Random Field (CRF)

	Model Selection
	Laplace Approximation
	Bayesian Information Criterion (BIC)
	Hyperparameter Optimization
	Automatic Relevance Detection (ARD)

	Variational Bayes (VB)
	Annealed Importance Sampling

	Expectation Maximization
	Generalized EM
	EM for MAP

	Approximate Inference
	Variational Inference
	Mean-Field Approximation

	Expectation Propagation
	Power EP
	My EP recipe

	Sampling Methods
	Simple Monte Carlo
	Importance Sampling
	Rejection Sampling
	Markov Chain Monte Carlo (MCMC)
	Hamiltonian Monte Carlo
	Slice Sampling

	Graphical Models
	Types of Graphs
	Factor Graph
	Undirected Graph (Markov Net)
	Directed Acyclic Graph (DAG, or Bayes net)
	Expressive Power of different types of graphs
	Trees

	Inference on Trees: Belief Propagation
	Inference on Loopy Graphs
	Junction Tree Algorithm
	Loopy BP

	Exponential Family Distributions
	Conjugate-Exponential Models
	The Log Partition Function and Duality

	Appendices
	Probability Distributions
	Conjugate Priors
	Notes about Dirichlet Distribution

	Gaussian Identities
	Matrix Identities
	Basic Matrix Properties
	Vector Derivatives
	Matrix Derivatives

