Info theory (TN) notes

Kirsty McNaught

2017

1 Lots of juicy terms

1.1 Entropy $H(S)$

"How many bits do I need to record the value of s?"

$$
H[S]=\sum_{i} P(s) \log _{2} P(s)
$$

1.1.1 Some examples

- Uniform distribution, 2 discrete values: 1 bit
- Uniform distribution, 16 discrete values: 4 bits
- 16 discrete values, but most of probability density on 8 values: just over 2 bits
- A sequence of M entries, each one of N equiprobable values: $\log _{2} M^{N}=N \log _{2} M$ bits

1.1.2 A derivation

We can derive the above definition for the entropy by considering how many bits would be required to encode a sequence of M entries, each one of N possible values, but which are not equiprobable. The likelihood of a given sequence is:

$$
\begin{equation*}
P\left(S_{1}, S_{2}, \ldots, S_{3}\right)=\prod_{m} p_{m}^{n_{m}} \tag{1}
\end{equation*}
$$

where n_{m} is the number of times the m-th value occurred. Now we use the asymptotic equipartition property, which says that the only set of sequences with non-zero probability in the limit of large M is those for which all $n_{m}=p_{m} N$, i.e. the non-surprising, or typical sequences. We consider the probability of all other (surprising) sequences to be infinitesimally small. All typical sequences have equal likelihood, so we are back in the easy situation of a uniform distribution. The number of bits required to encode these sequences is:

$$
\begin{aligned}
N & =\log _{2}\left[\frac{1}{\prod_{m} p_{m}^{p_{m} N}}\right] \\
& =-\log _{2} \prod_{m} p_{m}^{p_{m} N} \\
& =-N \sum_{m} p_{m} \log _{2} p_{m} \\
& =N H[S]
\end{aligned}
$$

1.2 Conditional entropy $H(S \mid R)$

"How many bits do I need to record the value of s, given that I already know r?" Given a particular value of r , the conditional entropy $H(S \mid r)$ is given by

$$
H(S \mid r)=-\sum_{s} P(s \mid r) \log _{2} P(s \mid r)
$$

The overall conditional entropy must be averaged over all possible values of r, i.e.

$$
\begin{aligned}
H(S \mid R) & =\sum_{r} H(S \mid r) \\
& =-\sum_{r} P(r) \sum_{s} P(s \mid r) \log _{2} P(s \mid r) \\
& =-\sum_{s, r}[P(r) P(s \mid r)] \log _{2} P(s \mid r) \\
& =-\sum_{s, r} P(s, r) \log _{2} P(s \mid r)
\end{aligned}
$$

1.3 Mutual information $I(S ; R)$

"How much information is gained about S if I am told R"
This can be interpreted as the reduction of entropy about S caused by finding out about R, i.e.

$$
I(S ; R)=H(S)-H(S \mid R)
$$

We can also derive a direct definition:

$$
\begin{aligned}
I(S ; R) & =H(S)-H(S \mid R) \\
& =-\sum_{s} P(s) \log _{2} P(s)+\sum_{s, r} P(s, r) \log _{2} P(s \mid r) \\
& =-\sum_{s, r} P(s, r) \log _{2} P(s)+\sum_{s, r} P(s, r) \log _{2} P(s \mid r) \\
& =\sum_{s, r} P(s, r) \log _{2} \frac{P(s \mid r)}{P(s)} \\
& =\sum_{s, r} P(s, r) \log _{2} \frac{P(s, r)}{P(s) P(r)}
\end{aligned}
$$

1.4 Cross entropy

"How many bits do I need to encode a value using the p.d.f. of Q instead of (true) p.d.f. P?"

$$
H_{\mathrm{x}}(P, Q)=-\sum_{s} P(s) \log _{2} Q(s)
$$

1.5 KL divergence

"How many excess bits does it cost me to encode using p.d.f. of Q instead of (true) p.d.f. P?"

$$
\begin{aligned}
K L[P ; Q] & =H_{\mathrm{x}}(P, Q)-H[P] \\
& =-\sum_{s} P(s) \log _{2} Q(s)+\sum_{s} P(s) \log _{2} P(s) \\
& =-\sum_{s} P(s) \log _{2} \frac{P(s)}{Q(s)}
\end{aligned}
$$

Mutual information can be described as the KL divergence between the joint distribution $P(S, R)$ and the marginals $P(S) P(R)$, i.e. the cost of encoding using the marginals if you don't know the joint.

$$
I[S ; R]=\sum_{s, r} P(s, r) \log _{2} \frac{P(s, r)}{P(s) P(r)}=K L[P(S, R) \| P(S) P(R)]
$$

1.6 Relationships between these quantities

With two variables, we can draw a Venn diagram that summarises the relationship between each quantity.

