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1 Lots of juicy terms

1.1 Entropy H(S)

“How many bits do I need to record the value of s?”

H[S] =
∑
i

P (s) log2 P (s)

1.1.1 Some examples

• Uniform distribution, 2 discrete values: 1 bit

• Uniform distribution, 16 discrete values: 4 bits

• 16 discrete values, but most of probability density on 8 values: just over 2 bits

• A sequence of M entries, each one of N equiprobable values: log2 M
N = N log2 M bits

1.1.2 A derivation

We can derive the above definition for the entropy by considering how many bits would be required to
encode a sequence of M entries, each one of N possible values, but which are not equiprobable. The
likelihood of a given sequence is:

P (S1, S2, ..., S3) =
∏
m

pnm
m (1)

where nm is the number of times the m-th value occurred. Now we use the asymptotic equipartition
property, which says that the only set of sequences with non-zero probability in the limit of large M is
those for which all nm = pmN , i.e. the non-surprising, or typical sequences. We consider the probability
of all other (surprising) sequences to be infinitesimally small. All typical sequences have equal likelihood,
so we are back in the easy situation of a uniform distribution. The number of bits required to encode
these sequences is:

N = log2

[
1∏

m ppmN
m

]
= − log2

∏
m

ppmN
m

= −N
∑
m

pm log2 pm

= NH[S]
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1.2 Conditional entropy H(S | R)

“How many bits do I need to record the value of s, given that I already know r?”

Given a particular value of r, the conditional entropy H(S | r) is given by

H(S | r) = −
∑
s

P (s | r) log2 P (s | r)

The overall conditional entropy must be averaged over all possible values of r, i.e.

H(S | R) =
∑
r

H(S | r)

= −
∑
r

P (r)
∑
s

P (s | r) log2 P (s | r)

= −
∑
s,r

[P (r)P (s | r)] log2 P (s | r)

= −
∑
s,r

P (s, r) log2 P (s | r)

1.3 Mutual information I(S;R)

“How much information is gained about S if I am told R”

This can be interpreted as the reduction of entropy about S caused by finding out about R, i.e.

I(S;R) = H(S)−H(S | R)

We can also derive a direct definition:

I(S;R) = H(S)−H(S | R)

= −
∑
s

P (s) log2 P (s) +
∑
s,r

P (s, r) log2 P (s | r)

= −
∑
s,r

P (s, r) log2 P (s) +
∑
s,r

P (s, r) log2 P (s | r)

=
∑
s,r

P (s, r) log2

P (s | r)

P (s)

=
∑
s,r

P (s, r) log2

P (s, r)

P (s)P (r)

1.4 Cross entropy

“How many bits do I need to encode a value using the p.d.f. of Q instead of (true) p.d.f. P?”

Hx(P,Q) = −
∑
s

P (s) log2 Q(s)

1.5 KL divergence

“How many excess bits does it cost me to encode using p.d.f. of Q instead of (true) p.d.f.
P?”

KL[P ;Q] = Hx(P,Q)−H[P ]

= −
∑
s

P (s) log2 Q(s) +
∑
s

P (s) log2 P (s)

= −
∑
s

P (s) log2

P (s)

Q(s)
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Mutual information can be described as the KL divergence between the joint distribution P (S,R)
and the marginals P (S)P (R), i.e. the cost of encoding using the marginals if you don’t know the joint.

I[S;R] =
∑
s,r

P (s, r) log2

P (s, r)

P (s)P (r)
= KL[P (S,R) || P (S)P (R)]

1.6 Relationships between these quantities

With two variables, we can draw a Venn diagram that summarises the relationship between each quantity.
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